
Probl. Anal. Issues Anal. Vol. 10 (28), No 2, 2021, pp. 27–43 27
DOI: 10.15393/j3.art.2021.10030

UDC 517.968, 517.98, 51-75

M. Boulanouar

MATHEMATICAL ANALYSIS OF A MODEL OF
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Abstract. In this work, we model the dynamics of an Age-Cycle
Length structured cell population. At each time, the cell population
is divided into two interacting compartments: Proliferating cells
andQuiescent cells. Each cell is then: Proliferating (Active) or Qui-
escent (Resting). We prove that this new Proliferation-Quiescence
model is well posed.
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1. Introduction. In this work we model the dynamics of a Cell
Cycle Length-Age structured cell population. At each time, the cell pop-
ulation is divided into two interacting compartments: Proliferating cells
(P) and Quiescent cells (Q). Then each cell is either Proliferating (Active)
or Quiescent (Resting).

Quiescence (also called G0) is the most common cell state on Earth.
It is the counterpart to proliferation: a reversible and nondividing state.
For instance, cells in uninjured skin, adult neuronal cells, cells of the adult
mammalian heart, somatic cells, . . . . All these cells, and so many others,
are quiescent.

So, let us consider a cell population in which each cell is distinguished
by two physiological parameters. The first one is the cell cycle length
l ∈ (l1, l2) (0 6 l1 < l2 6 ∞). It describes the time between cell’s
birth and cell’s mitosis (or division). The second one is the age a. It
is zero (a = 0) at birth and equals the cell cycle length l (a = l) at
mitosis. Between birth and mitosis, we have 0 6 a 6 l. Before writing
the mathematical model, let us put the following biological assumptions:
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Assumption 1. Assume that in the Proliferation Phase (P) cells are
born, grow, and divide. They carry out their life processes and then they
die (by mitosis or other causes).
Assumption 2. Assume that after the birth cells go into the Quiescence
Phase (Q). In this phase, cells remain metabolically active but do not
proliferate and do not undergo any kind of division.
Assumption 3. Each cell is fully characterized by its status: Proliferating
(Active) or Quiescent (Resting). Cells can transit back and forth from one
state to the other. Cells transit between the two phases is described by
the following scheme

Figure 1: Diagram of the cell transit between (P) and (Q).

where σ and δ denote, respectively, the transition rates from the Pro-
liferation phase (P) to the Quiescence phase (Q), and vice versa. Let
(p, q) = (p(t, a, l), q(t, a, l)) denote, at time t, the density of proliferat-
ing and quiescent cells, with respect to the age a and cell cycle length l.
According to the Figure above, we write

∂p

∂t
+
∂p

∂a
+ µp−

l2∫
l1

η(a, l, l′)p(t, a, l′)dl′ = −σp+ δq, (1)

∂q

∂t
+
∂q

∂a
= +σp− δq, (2)

where µ = µ(a, l) denotes the mortality rate in the Proliferation phase.
The kernel η(a, l, l′) denotes the transition rate in which proliferating cells
change their cell cycle length from l′ to l.
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According to Assumption 1, proliferating cells divide. At each mito-
sis, the cell population is divided in two distinct subpopulations in most
observed cases. In the first subpopulation, there is a total inheritance of
the cell cycle length l between a mother cell and its daughters, while in
the second one there is a correlation k = k(l, l′) between the cell cycle
length, l′, of the mother cell and that of a daughter cell, l. Hence,

p(t, 0, l) = αp(t, l, l) + β

l2∫
l1

k(l, l′)p(t, l′, l′) dl′, l ∈ (l1, l2), (3)

where α > 0 and β > 0 denote the average number of daughter cells viable
per mitosis into the corresponding subpopulation.

However, Assumption 2 means that the quiescent cells do not divide.
Therefore,

q(t, 0, l) = 0, l ∈ (l1, l2). (4)

The simplified proliferation model (1) (with σ = δ = η = 0) and (3) (with
α = 0) has been studied (see [4], [6] and references therein) when 0 <
< l1 < l2 <∞. We have recently improved it by introducing the transition
rate η(a, l, l′) like in [5]. We have proved, then, that the new proliferation
model (1) (with σ = δ = 0) and (3) is governed by a C0−semigroup when
0 < l1 < l2 <∞ (see [2], [3]).

The purpose of this work is to analyze the new full Proliferation-
Quiescence Model (1)–(4) when 0 6 l1<l26∞; that is,

∂p

∂t
= −∂p

∂a
− σp+ δq − µp+

l2∫
l1

η(a, l, l′)p(t, a, l′)dl′, (PQ)1

∂q

∂t
= −∂q

∂a
+ σp− δq, (PQ)2

p(t, 0, l) = αp(t, l, l) + β

l2∫
l1

k(l, l′)p(t, l′, l′)dl′, (PQ)3

q(t, 0, l) = 0, (PQ)4

describing a structured cell population with two interacting compart-
ments: Proliferating cells (P) and Quiescent cells (Q). To our knowledge,
this model is new and has never been proposed nor studied. We organize
this work as follows:
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2. Trace Result;
3. Unperturbed Quiescence Model;
4. Unperturbed Proliferation Model;
5. Unperturbed Proliferation-Quiescence Model;
6. Full Proliferation-Quiescence Model.

In Section 2, we prove a Trace Result. This one allows us to make a
sense to all unbounded linear operators considered in this work. Section 3
deals with the unperturbed Quiescence Model (PQ)2 (with σ=δ=0) and
(PQ)4. We prove then that this Model is governed by a C0−semigroup of
contractions. This contractiveness is due to Assumption 2.

In Section 4, we consider the unperturbed Proliferation Model (PQ)1

(with µ=σ= δ=η=0) and (PQ)3. The case l1 = 0 means that there are
cells that are born, simultaneously, as mothers and daughters. Therefore,
we study the two cases l1 > 0 and l1 = 0 separately whenever this is neces-
sary. In each case, we prove that the considered unperturbed Proliferation
Model is governed by a C0−semigroup provided a suitable assumption on
the kernel of correlation k holds.

Section 5 deals with the unperturbed-Proliferation Quiescence Model
(PQ)1 (with µ=σ= δ=η= 0), (PQ)2 (with σ= δ= 0), (PQ)3 and (PQ)4.
Using the results of the previous sections, we prove that the considered un-
perturbed Proliferation-Quiescence Model is governed by a C0−semigroup.

Finally, in Section 6 we consider the full Model (PQ)1–(PQ)4. Ac-
cording to relevant assumptions on the rates, µ, σ, δ, and on the kernel
η, the full Proliferation-Quiescence Model (PQ)1–(PQ)4 appears then as
a linear perturbation of the unperturbed Proliferation-Quiescence Model
already studied in Section 5; then the desired well-posedness of the full
Proliferation-Quiescence Model (PQ)1–(PQ)4 follows. We end this work
by some remarks.

2. Trace Result.The aim of this section is to prove a useful trace
result allowing us to define all unbounded linear operators throughout
this work. So, let l1 and l2 be such that 0 6 l1 < l2 6 ∞ and let
Ω := {(a, l) : 0 < a < l and l1 < l < l2}. Let L1 and Y1 be the following
Banach spaces:

L1 := L1(Ω) whose norm is ‖ϕ‖1 :=

∫
Ω

|ϕ(a, l)|da dl,
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Y1 := L1(l1, l2) whose norm is ‖ψ‖Y1
:=

l2∫
l1

|ψ(l)|dl.

Let also W1 be the following Banach space:

W1 :=

{
ϕ ∈ L1 :

1

l
ϕ ∈ L1 and

∂ϕ

∂a
∈ L1

}
normed by ‖ϕ‖

W1
:= ‖ϕ‖

1
+
∥∥∥∂ϕ
∂a

∥∥∥
1

+
∥∥∥1

l
ϕ
∥∥∥

1

.

Lemma 1. Let γ0 and γ1 be such that

γ0ϕ(l) := ϕ(0, l) and γ1ϕ(l) := ϕ(l, l), l ∈ (l1, l2).

Then γ0 and γ1 are continuous mappings from W1 into Y1.

Proof. Let ϕ ∈W1. For almost all (a, l) ∈ Ω, we have

|γ0ϕ(l)| =
∣∣∣ϕ(a, l)−

a∫
0

∂ϕ

∂a
(s, l) ds

∣∣∣ 6 |ϕ(a, l)|+
l∫

0

∣∣∣∣∂ϕ∂a (s, l)

∣∣∣∣ ds.
Integrating with respect to a (0 < a < l) leads to

∣∣∣γ0ϕ(l)
∣∣∣ 6 1

l

l∫
0

∣∣∣ϕ(a, l)
∣∣∣ da+

l∫
0

∣∣∣∂ϕ
∂a

(s, l)
∣∣∣ ds.

Hence ∥∥∥γ0ϕ
∥∥∥

Y1

6

∥∥∥∥1

l
ϕ

∥∥∥∥
1

+

∥∥∥∥∂ϕ∂a
∥∥∥∥

1

6 ‖ϕ‖
W1
,

which proves that γ0 is continuous from W1 into Y1. Since

γ1ϕ(l) = ϕ(a, l) +

l∫
a

∂ϕ

∂a
(s, l) ds,

we prove in a similar way that γ1 is continuous from W1 into Y1. �

Remark. If l1 > 0, then
∥∥1
l
ϕ
∥∥

1
6 1

l1

∥∥1
l
ϕ
∥∥

1
for all ϕ ∈ L1. In this case,

the Banach space W1 becomes

W1 =

{
ϕ ∈ L1 :

∂ϕ

∂a
∈ L1

}
, |||ϕ|||W1

:= ‖ϕ‖1 +

∥∥∥∥∂ϕ∂a
∥∥∥∥

1

,
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because both norms ‖·‖
1
and |||·|||

W1
are equivalent.

3. Unperturbed Quiescence Model. This section deals with the
unperturbed Quiescence Model (PQ)2 (with σ = δ = 0) and (PQ)4, gov-
erned by the following unbounded linear operator:

T0ϕ := −∂ϕ
∂a

on D0 :=
{
ϕ ∈W1 : γ0ϕ = 0

}
.

Note that the domain D0 is well defined because of Lemma 1.

Lemma 2. Let λ > 0. Then (λ − T0)−1 is a bounded linear operator
from L1 into itself, and satisfies for all g ∈ L1 the inequality∥∥(λ− T0)−1g

∥∥
1
6

1

λ
‖g‖

1
, (5)∥∥∥∥1

l
(λ− T0)−1g

∥∥∥∥
1

6 ‖g‖
1
. (6)

Moreover, T0 generates a C0−semigroup of contractions on L1.

Proof. Let λ > 0 and g ∈ L1. Easy computations show that

(λ− T0)−1g(a, l) =

a∫
0

e−λ(a−a′)g(a′, l) da′, (a, l) ∈ Ω.

Let G = (λ− T0)−1g. Firstly

‖G‖
1
6

l2∫
l1

{ l∫
0

[
e−λa

][ a∫
0

eλa
′|g(a′, l)| da′

]
da
}

dl.

Integrating by parts the term in brackets leads to

‖G‖
1
6

1

λ

l2∫
l1

{
−

l∫
0

e−λ(l−a′)|g(a′, l)| da′ +
l∫

0

|g(a, l)| da
}

dl 6
1

λ
‖g‖

1

which proves (5) and leads to the desired boundedness. Next,

∥∥∥1

l
G
∥∥∥

1

6

l2∫
l1

[1

l

∫ l

0

da
] l∫

0

∣∣∣g(a′, l)
∣∣∣ da′ dl = ‖g‖

1
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which shows (6).
Firstly, the boundedness of (λ−T0)−1 yields that (λ−T0) is closed and

so is T0 =λ(λ−T0). Also, T0 is densely defined because of Cc(Ω)⊂D0⊂L1,
where Cc(Ω) denotes the subspace of all continuous functions with compact
support (in Ω). Next, (5) leads, by an easy induction, to∥∥(λ− T0)−ng

∥∥
1
6

1

λn
‖g‖1 n = 1, 2, 3, . . .

All required conditions of the Hille-Yosida Theorem ([1, Th. 3.5]) are now
satisfied. �

4. Unperturbed Proliferation Model. This section concerns the
unperturbed Proliferation Model (PQ)1 (with µ = σ = δ = 0 and η = 0)
and (PQ)3 governed by the following unbounded linear operator:

T
α, β
ϕ := −∂ϕ

∂a
on D

α, β
:=
{
ϕ ∈W1 : γ0ϕ = K

α, β
γ1ϕ
}

where α > 0 and β > 0 denote the average number of daughter cells viable
per mitosis. Unless otherwise stated, α and β are assumed to be fixed.
The mitosis operator K

α, β
is defined by

K
α, β
ψ(l) := αψ(l) + β

l2∫
l1

k(l, l′)ψ(l′)dl′, l ∈ (l1, l2), (7)

whose kernel k = k(l, l′) is assumed to be subject to the following assump-
tion:

(Ak) κ(l2) <∞,

where κ(ω) := ess sup
l16l′6ω

l2∫
l1

|k(l, l′)| dl. (8)

Note that the domain D
α, β

is well defined because of Lemma 1 together
with the following lemma:

Lemma 3. If (Ak) holds, then K
α, β

is a bounded linear operator from
Y1 into itself, satisfying ∥∥K

α, β

∥∥
L(Y1)
6 α + βκ(l2). (9)
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Proof. For all ψ ∈ Y1, we have

∥∥K
α, β
ψ
∥∥

Y1

6 α

l2∫
l1

|ψ(l)| dl + β

l2∫
l1

[ l2∫
l1

|k(l, l′)| dl
]
|ψ(l′)| dl′ 6

6 α

l2∫
l1

|ψ(l)| dl + βκ(l2)

l2∫
l1

|ψ(l′)| dl′,

which proves (9) and leads to the desired boundedness. �

As we have pointed out in the introduction, we must separate the two
cases l1 = 0 and l1 > 0.

Lemma 4. Suppose that l1 > 0. If (Ak) holds, then (λ − T
α, β

)−1(
λ > 1

l1
ln M

α, β

)
is a bounded linear operator from L1 into itself, satisfy-

ing, for all g ∈ L1,∥∥(λ− T
α, β

)−ng
∥∥

1
6

M
α, β
‖g‖

1(
λ− 1

l1
ln M

α, β

)n , n = 1, 2, 3, . . . (10)

where M
α, β

= max{α+βκ(l2) ; 1}. Moreover, T
α, β

generates the C0−semi-
group (T

α, β
(t))t>0 satisfying, for all ϕ ∈ L1,∥∥T

α, β
(t)ϕ

∥∥
1
6 M

α, β

(
1+ t

l1

)
‖ϕ‖

1
t > 0.

Proof. Step I. Let λ > 0 and ψ ∈ Y1. Let Kα, β, λ be such that

K
α, β, λ

ψ = αe−λ·ψ + β

l2∫
l1

e−λl
′
k(·, l′)ψ(l′)dl′. (11)

As K
α, β, λ

ψ = K
α, β

(e−λ·ψ), (9) implies that∥∥K
α, β, λ

∥∥
L(Y1)

6 e−λl1(α + βκ(l2)),

which proves that K
α, β, λ

is bounded from Y1 into itself and∥∥K
α,β,λ

∥∥
L(Y1)

< 1 for all λ > 1
l1

ln M
α, β
. (12)
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Step II. Let λ > 1
l1

ln M
α, β

and g ∈ L1. Let us find the solution of
(λ− T

α, β
)ϕ = g; that is,

λϕ = −∂ϕ
∂a

+ g, (13)

γ0ϕ = K
α, β
γ1ϕ. (14)

So, the general solution of (13) is given by

ϕ(a, l) = (e−λ·⊗ψ)(a, l) + (λ− T0)
−1g(a, l), (a, l) ∈ Ω, (15)

where ψ ∈ Y1. Integrating (15) and then using (5) lead to

‖ϕ‖
1
6

l2∫
l1

[ l∫
0

e−λada
]
|ψ(l)| dl +

1

λ
‖g‖

1
6

1

λ
‖ψ‖

Y1
+

1

λ
‖g‖

1
<∞

which gives, by virtue of (13),∥∥∥∂ϕ
∂a

∥∥∥
1

6 λ‖ϕ‖
1

+ ‖g‖
1
6 ‖ψ‖

Y1
+ 2‖g‖

1
<∞.

Similarly,

∥∥∥1

l
ϕ
∥∥∥

1

6

l2∫
l1

[1

l

l∫
0

e−λada
]
|ψ(l)|dl + ‖g‖

1
6 ‖ψ‖

Y1
+ ‖g‖

1
<∞

where we have used (6). Hence, ϕ ∈W1.
Next, ϕ satisfies (14) iff ψ = K

α,β,λ
ψ + K

α, β
γ1(λ−T0)

−1g which leads,
by (12), to ψ = (I−K

α,β,λ
)−1K

α, β
γ1(λ−T0)

−1g. Putting this into (15), we
finally get

ϕ = e−λ·⊗(I −K
α,β,λ

)−1K
α, β
γ1(λ− T0)

−1g + (λ− T0)
−1g (16)

which is the unique solution of (λ− T
α, β

)ϕ = g. Hence,

(λ− T
α, β

)−1g = ϕ for all λ > 1
l1

ln M
α, β
. (17)

Step III. Firstly, let us consider the following norm on L1:

|||g|||
1

=

∫
Ω

|g(a, l)|M
a
l
α, β

da dl,
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which is equivalent to the norm ‖·‖
1
because of

‖g‖
1
6 |||g|||

1
6 M

α, β
‖g‖

1
for all g ∈ L1. (18)

Next, let λ > 1
l1

ln M
α, β

and g ∈ L1. Multiplying both sides of (13) by

(sgnϕ)(a, l)M
a
l
α,β and then integrating over Ω lead to

λ|||ϕ|||
1
6
∫
Ω

M
a
l
α,β

∂|ϕ|
∂a

(a, l)da dl + |||g|||
1

:= I + |||g|||
1
. (19)

Integrating by parts, the term I is transformed to

I = −
∫
Ω

∂
(

M
a
l
α,β |ϕ|

)
∂a

(a, l)d adl + ln M
α,β

∫
Ω

1

l
M

a
l
α,β
|ϕ(a,l)|d adl 6

6 −M
α, β

l2∫
l1

|γ1ϕ(l)|dl +

l2∫
l1

|γ0ϕ(l)|dl +
1

l1
ln M

α,β
|||ϕ|||

1
,

which leads, by virtue of (14) and then (9), to

I 6 (
∥∥K

α,β

∥∥−M
α,β

)‖γ1ϕ‖Y1 +
1

l1
ln M

α, β
|||ϕ|||

1
6

1

l1
ln M

α,β
|||ϕ|||

1
.

Combining this together with (19) and then (17) yields

∣∣∣∣∣∣(λ− T
α,β

)−1g
∣∣∣∣∣∣

1
6

|||g|||
1(

λ− 1
l1

ln M
α,β

)
which leads, by an easy induction on the integer n > 1, to

∣∣∣∣∣∣(λ− T
α, β

)−ng
∣∣∣∣∣∣

1
6

|||g|||
1(

λ− 1
l1

ln M
α,β

)n n = 1, 2, 3, . . .

and by (18),

∥∥(λ− T
α,β

)−ng
∥∥

1
6

M
α, β(

λ− 1
l1

ln M
α,β

)n‖g‖1 n = 1, 2, 3, . . .
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Hence, (10) follows and proves the boundedness of (λ−T
α, β

)−1 for n = 1.

Step IV. The boundedness of (λ−T
α, β

)−1 yields that (λ−T
α, β

) is closed
and so is T

α, β
= λ − (λ − T

α, β
). T

α, β
is densely defined because of

Cc(Ω) ⊂ D
α,β
⊂ L1. Now, all required conditions of the Hille-Yosida

Theorem ( [1, Th. 3.5]) are satisfied. �

The previous study of the case l1 > 0 can not be extended to the
case l1 = 0 because, for instance, (12) is no longer valid when l1 = 0.
Accordingly, the study of the case l1 = 0 needs an additional assumption.
Let us consider

(A′k) ∃ ω0 ∈ (0, l2) : α + βκ(ω0) < 1

where κ is defined by (8). As α + βκ(ω) 6 α + βκ(l2) for all ω ∈ (0, l2),
(A′k) holds whenever (Ak) holds and α + βκ(l2) < 1 (the contractiveness
case). However, in the general case we have

Lemma 5. Suppose that l1 = 0. Also suppose that (Ak) holds. If (A′k)

holds, then (λ − T
α,β

)−1
(
λ > 1

ω0
ln M

α,β

)
is a bounded linear operator

from L1 into itself and satisfies

∥∥(λ− T
α, β

)−ng
∥∥

1
6

M
α, β
‖g‖

1(
λ− 1

ω0
ln M

α,β

)n n = 1, 2, 3, . . . (20)

for all g ∈ L1, where M
α,β

is defined in Lemma 4 and ω0 is given in (A′k).
Moreover, T

α, β
generates a C0−semigroup (T

α, β
(t))t>0 on L1 satisfying for

all ϕ ∈ L1 ∥∥T
α, β

(t)ϕ
∥∥

1
6 M

α, β

(
1+ t

ω0

)
‖ϕ‖

1
t > 0.

Proof. Step I. Let λ > 0 and ψ ∈ Y1. Since (11), we can write

∥∥K
α, β, λ

ψ
∥∥

Y1

6 α

l2∫
0

e−λl|ψ(l)| dl + β

l2∫
0

l2∫
0

e−λl
′|k(l, l′)||ψ(l′)| dl′dl 6

6 α

ω0∫
0

|ψ(l)| dl + αe−λω0

l2∫
ω0

|ψ(l)| dl + β

ω0∫
0

[ l2∫
0

|k(l, l′)| dl
]
|ψ(l′)| dl′+
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+ βe−λω0

l2∫
ω0

[ l2∫
0

|k(l, l′)|dl
]
|ψ(l′)| dl′ 6

6 max
{

(α + βκ(ω0)), e−λω0(α + βκ(l2))
}
‖ψ‖

Y1
,

which proves that K
α, β, λ

is bounded from Y1 into itself and∥∥K
α, β, λ

∥∥
L(Y1)
6 max

{
(α + βκ(ω0)), e−λω0(α + βκ(l2))

}
.

Now (A′k) yields that∥∥K
α, β, λ

∥∥
L(Y1)

< 1 for all λ >
1

ω0

ln M
α, β
. (21)

Step II. Let λ > 1
ω0

ln M
α, β

and g ∈ L1. Firstly, following step II of the
proof of Lemma 4 and using (21) instead of (12), we can similarly prove
that (16) is the unique solution of the equation (λ − T

α, β
)ϕ = g and,

therefore,

(λ− T
α, β

)−1g = ϕ for all λ >
1

ω0

ln M
α, β
.

Next, let us consider the following norm on L1:

|||g|||
1

=

∫
Ω

|g(a, l)|M
α, β

min
{
a
ω0
, 1
}

da dl

which is equivalent to the norm ‖·‖ because of

‖g‖
1
6 |||g|||

1
6 M

α, β
‖g‖

1
for all g ∈ L1. (22)

Following the step III of the proof of Lemma 4, we get

∣∣∣∣∣∣(λ− T
α, β

)−ng
∣∣∣∣∣∣

1
6

|||g|||
1(

λ− 1
ω0

ln M
α, β

)n n = 1, 2, 3, . . .

and ∥∥(λ− T
α, β

)−ng
∥∥

1
6

M
α, β
‖g‖

1(
λ− 1

ω0
ln M

α, β

)n n = 1, 2, 3, . . .
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due to (22). Hence, (20) follows and proves the boundedness of (λ−T
α, β

)−1

for n = 1.

Step III. This step is similar to the step IV of the proof of Lemma 4. �

5. Unperturbed Proliferation-Quiescence Model. This section
deals with the unperturbed Proliferation-Quiescence Model (PQ)1 (with
µ = σ = δ = 0 and η = 0), (PQ)2 (with σ = δ = 0), (PQ)3 and (PQ)4

governed by the following unbounded linear operator:

U
α, β

:=

(
T
α, β

0

0 T0

)
on the domain D

α, β
×D

α, β
,

where T
α, β

and T0 are already studied in the previous sections. Let X1 be
the following Banach space

X1 := L1 × L1 whose norm is
∥∥∥∥(ψφ

)∥∥∥∥
X1

:= ‖ϕ‖
1

+ ‖φ‖
1
.

The first aim of this section deals with the case l1 > 0.

Theorem 1. Suppose that l1 > 0. If (Ak) holds, U
α, β

generates a
C0−semigroup (U

α, β
(t))t>0 on X1; it satisfies∥∥U

α, β
(t)
∥∥
L(X1)

6 M
α, β

(
1+ t

l1

)
t > 0, (23)

where M
α, β

is defined in Lemma 4.

Proof. Let λ > 1
l1

ln M
α, β

. Lemmas 4 and 2 yield

(λ− U
α, β

)−1 =

(
(λ− T

α, β
)−1 0

0 (λ− T0)
−1

)
and by induction

(λ− U
α, β

)−n =

(
(λ− T

α, β
)−n 0

0 (λ− T0)
−n

)
n = 1, 2, . . .

Let n > 1 be an integer and let
(
ψ
φ

)
∈ X1. Since (10) and (5), we get∥∥∥∥(λ− U

α, β
)−n
(
ψ
φ

)∥∥∥∥
X1

=
∥∥(λ− T

α, β
)−nφ

∥∥
1

+
∥∥(λ− T0)

−nφ
∥∥

1
6
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6
M

α, β(
λ− 1

l1
ln M

α, β

)n∥∥∥∥(ψφ
)∥∥∥∥

X1

and, therefore,

∥∥(λ− U
α, β

)−n
∥∥
L(X1)

6
M

α, β(
λ− 1

l1
ln M

α, β

)n n = 1, 2, 3, . . .

As (λ − U
α, β

)−1 is bounded, (λ − U
α, β

) is closed, and so is
U
α, β

= λ−(λ−U
α, β

). Furthermore, D
α, β
×D0 = D

α, β
×D0 = L1×L1 = X1.

Now all the required conditions of the Hille-Yosida Theorem ( [1, Th. 3.5])
are satisfied. �

The second aim of this section deals with the case l1 = 0.

Theorem 2. Suppose that l1 = 0. Suppose, furthermore, that (Ak)
holds. If (A′k) holds, U

α, β
generates a C0−semigroup (U

α, β
(t))t>0 on X1;

it satisfies ∥∥U
α, β

(t)
∥∥
L(X1)

6 M
α, β

(
1+ t

ω0

)
t > 0,

where M
α, β

is defined in Lemma 4 and ω0 is given in (A′k).

Proof. The proof is similar to the proof of Theorem 1. Due to (20) and
(5), we easily get

∥∥(λ− U
α, β

)−n
∥∥
L(X1)

6
M

α, β(
λ− 1

ω0
ln M

α, β

)n n = 1, 2, 3, . . .

Now the Hille-Yosida Theorem ( [1, Th. 3.5]) ends the proof. �

6. Full Proliferation-Quiescence Model. The aim of this section
is the well posedness of the full Proliferation-Quiescence Model (PQ)1–
(PQ)4 governed by the following unbounded linear operator:

V
α, β

:= U
α, β

+ B on the domain D
α, β
×D0

with

B :=

(
−σI− µI+ R δI

σI −δI

)
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where I denotes the identity operator in L1 and

Rϕ(a, l) :=

l2∫
l1

η(a, l, l′)ϕ(a, l′) dl′, (a, l) ∈ Ω.

Suppose that the rates µ, σ and δ, and the kernel r are subject to the
following assumptions

(Aσ) : ess sup
(a, l)∈Ω

|σ(a, l)| <∞,

(Aδ) : ess sup
(a, l)∈Ω

|δ(a, l)| <∞,

(Aµ) : ess sup
(a, l)∈Ω

|µ(a, l)| <∞,

(Aη) : ess sup
(a, l′)∈Ω

l2∫
l1

|η(a, l, l′)|dl <∞. (24)

Lemma 6. Suppose that the assumptions (Aσ), (Aδ), (Aµ) and (Aη)
hold. Then B is a bounded linear operator from X1 into itself.

Proof. Firstly, the assumption (Aµ) yields that the multiplicative op-
erator µI is bounded from L1 into itself. Similarly, the multiplicative
operators σI and δI are also bounded from L1 into itself. It remains to
prove that R is a bounded linear operator from L1 into itself. So, for all
ϕ ∈ L1, we have

‖Rϕ‖
1
6
∫
Ω

∣∣∣ l2∫
l1

|η(a, l, l′)| |ϕ(a, l′)| dl′
∣∣∣ da dl 6

6
[

ess sup
(a,l′)∈Ω

l2∫
l1

|η(a, l, l′)| dl
] ∫

Ω

|ϕ(a′, l′)| da′ dl′,

which proves the desired boundedness because of (Aη). �

Now, due to Lemma 6, we can say that the unbounded linear operator
V
α, β

is well defined and for we have

Theorem 3. Suppose that l1 > 0. Suppose, furthermore, that (Ak),
(Aσ), (Aδ), (Aµ) and (Aη) hold. Then V

α, β
generates a C0−semigroup

on X1.
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Proof. It suffices to remark that V
α, β

= U
α, β

+ B is a linear perturbation
of the generator U

α, β
(Theorem 1) by the bounded operator B (Lemma 6).

Now [1, Th. 4.9] ends the proof. �

However, if l1 = 0, we have

Theorem 4. Suppose that l1 = 0. Suppose, furthermore, that (Ak), (A′k),
(Aσ), (Aδ), (Aµ) and (Aη) hold. Then V

α, β
generates a C0−semigroup

on X1.

Proof. The proof is similar to the proof of Theorem 3 (with Theorem 2
instead of Theorem 1). �

Remark. It is easy to prove that the generated semigroups in Theorem 3
and Theorem 4 are positive provided that k, µ, σ, δ and η are positive.

Remark. Our choice of X1 = L1 × L1 was natural because

‖f(t, · ,·)‖
1

=

∫
Ω

|f(t, a, l)| da dl

denotes the number of cells at time t > 0. Nevertheless, we can extended
this work to the phase space Xp := Lp(Ω) × Lp(Ω) (p > 1). In this case,
it suffices to replace (8) and (24) by

κ(ω) :=

ess sup
l16l′6ω

l2∫
l1

|k(l, l′)|dl


1
p
ess sup
l16l6l2

ω∫
l1

|k(l, l′)| dl′
(1− 1

p
)

ess sup
(a, l′)∈Ω

l2∫
l1

|η(a, l, l′)| dl


1
p
ess sup

(a, l)∈Ω

l2∫
l1

|η(a, l, l′)| dl′
(1− 1

p
)

.
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