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NECESSARY AND SUFFICIENT TAUBERIAN
CONDITIONS UNDER WHICH CONVERGENCE

FOLLOWS FROM SUMMABILITY Ar, p

Abstract. In this paper, we introduce the summability method
Ar, p and obtain necessary and sufficient Tauberian conditions un-
der which the ordinary convergence of a sequence follows from its
summability Ar, p. The main results are new Tauberian theorems
for the summability method Ar, p, which are generalizations of the
corresponding Tauberian theorems for the summability method Ar

introduced by Başar.
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1. Introduction. Let p = (pn) be a sequence of non-negative numbers
with p0 > 0 and

Pn =
n∑
k=0

pk →∞, n→∞. (1)

Let 0 < r < 1. The class Ar, p = (ar, pnk ) of Toeplitz matrices is given by

ar, pnk =


pk(1 + rk)

Pn
if 0 6 k 6 n

0 if k > n.

Given a sequence x = (xn) of real or complex numbers, we define the Ar, p
transform of x by

(Ar, px)n = σrn, p(x) =
1

Pn

n∑
k=0

pk(1 + rk)xk, n = 0, 1, 2, . . .
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If
lim
n→∞

σrn, p(x) = l, (2)

we say that (xn) is summable to l by summability Ar, p.
It is clear that (1) is a necessary and sufficient condition that every

convergent sequence (xn) is Ar, p-summable to the same limit.
It is easy to check that if the limit

lim
n→∞

xn = l (3)

exists, we also have (2). However, the opposite is not true in general. Let
us define the sequence (xn) by xn = (−1)n ((1 + rn)pn)−1 and particularly
choose pn = (n+1)−1 for all non-negative integers n; then we have σrn,p → 0
as n→∞. This shows that (xn) is Ar, p-summable to zero, though it does
not converge. Note that (2) implies (3) under the certain condition on
the sequence (xn), called Tauberian condition. Any theorem that states
that convergence of sequences follows from its Ar, p-summability and some
Tauberian condition(s) is said to be a Tauberian theorem for summability
method Ar, p.

If pn = 1 for all non-negative integers n, we have the Ar method;
it has been introduced by Başar [6] (see also [1], [2], [3], [4], and [5] for
some results related to sequence spaces defined by the domain of the Ar
matrices). The recent monograph [10] is devoted to the sequence spaces,
summability theory and on the domain of certain triangle matrices in the
normed/paranormed sequence spaces. In [12], Talo and Başar have given
necessary and sufficient Tauberian conditions for the Ar method. In this
paper, we extend the results of [12] to Ar, p and obtain necessary and
sufficient conditions for the summability method Ar, p under which the
existence of the limit (3) follows from that of (2).

2. Auxiliary Results. We need the following lemmas to prove our
theorems.

Denote the integer part of the product λ and n by λn := [λn].

Lemma 1. [8], [9] If (pn) is a sequence of non-negative numbers, the
conditions

lim sup
n→∞

Pn
Pλn

< 1 for every λ > 1 (4)

and
lim sup
n→∞

Pλn
Pn

< 1 for every 0 < λ < 1 (5)
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are equivalent.

Lemma 2. Let (4) be satisfied. If a sequence (xn) is Ar, p summable to
a finite number l, then

lim
n→∞

1

Pλn − Pn

λn∑
k=n+1

pk(1 + rk)xk = l for every λ > 1 (6)

and

lim
n→∞

1

Pn − Pλn

n∑
k=λn+1

pk(1 + rk)xk = l for every 0 < λ < 1. (7)

Proof. Case λ > 1. By definition,

1

Pλn − Pn

λn∑
k=n+1

pk(1 + rk)xk = σrn, p +
Pλn

Pλn − Pn
(
σrλn, p − σ

r
n, p

)
. (8)

By (4), we have

0 < lim sup
n→∞

Pλn
Pλn − Pn

=

(
1− lim sup

n→∞

Pn
Pλn

)−1

<∞.

Now, (6) follows from (2) and (8).
Case 0 < λ < 1. By definition,

1

Pn − Pλn

n∑
k=λn+1

pk(1 + rk)xk = σrn, p +
Pn

Pn − Pλn

(
σrλn, p − σ

r
n, p

)
. (9)

From (5) we have

0 < lim sup
n→∞

Pn
Pn − Pλn

=

(
1− lim sup

n→∞

Pλn
Pn

)−1

<∞.

Now, (7) follows from (2) and (9). �

3. Main Results. First, we consider sequences of real numbers and
prove the following one-sided Tauberian theorem.

Theorem 1. Let (4) be satisfied, (xn) be a sequence of real numbers,
Ar, p-summable to a finite limit l; then (3) holds if and only if the following
two conditions are satisfied:

sup
λ>1

lim inf
n→∞

1

Pλn − Pn

λn∑
k=n+1

(
pk(1 + rk)xk − pkxn

)
> 0 (10)
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and

sup
0<λ<1

lim inf
n→∞

1

Pn − Pλn

n∑
k=λn+1

(
pkxn − pk(1 + rk)xk

)
> 0. (11)

A sequence (xn) of real numbers is said to be slowly decreasing if

lim
λ→1+

lim inf
n→∞

min
n<k6λn

(xk − xn) > 0. (12)

Note that condition (12) can be equivalently reformulated as:

lim
λ→1−

lim inf
n→∞

min
λn<k6n

(xn − xk) > 0. (13)

The right-hand limit in (12) exists and can be equivalently replaced by
supλ>1. The concept of slow decreasing was introduced by Schmidt [11].

For sequences (xn) and (yn) of real or complex numbers, we write
xn = O(yn) if there exists some positive numberM , such that |xn| 6M |yn|
for all sufficiently large n.

We have the following corollary for Theorem 1.

Corollary 1. Let (4) and Pn = O(npn) be satisfied. If a sequence (xn)
of real numbers is slowly decreasing, (2) implies (3).

Remark. If conditions (2) and (3) or, equivalently, the conditions (2),
(10), and (11) are satisfied, then we necessarily have

lim
n→∞

1

Pλn − Pn

λn∑
k=n+1

(
pk(1 + rk)xk − pkxn

)
= 0 (14)

for every λ > 1 and

lim
n→∞

1

Pn − Pλn

n∑
k=λn+1

(
pkxn − pk(1 + rk)xk

)
= 0 (15)

for every 0 < λ < 1.

Remark. Theorem 1 remains true if conditions (10) and (11) are replaced
by their symmetric counterparts:

inf
λ>1

lim sup
n→∞

1

Pλn − Pn

λn∑
k=n+1

(
pk(1 + rk)xk − pkxn

)
6 0 (16)
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and

inf
0<λ<1

lim sup
n→∞

1

Pn − Pλn

n∑
k=λn+1

(
pkxn − pk(1 + rk)xk

)
6 0, (17)

respectively.

Second, we consider sequences of complex numbers and prove the fol-
lowing two-sided Tauberian theorem.

Theorem 2. Let (4) be satisfied, (xn) be a Ar, p-summable sequence of
complex numbers; then (xn) converges to the same limit if and only if one
of the following two conditions is satisfied:

inf
λ>1

lim sup
n→∞

∣∣∣∣∣ 1

Pλn − Pn

λn∑
k=n+1

(
pk(1 + rk)xk − pkxn

)∣∣∣∣∣ = 0 (18)

or

inf
0<λ<1

lim sup
n→∞

∣∣∣∣∣ 1

Pn − Pλn

n∑
k=λn+1

(
pkxn − pk(1 + rk)xk

)∣∣∣∣∣ = 0. (19)

A sequence (xn) of complex numbers is said to be slowly oscillating if

lim
λ→1+

lim sup
n→∞

max
n<k6λn

|xk − xn| = 0. (20)

The concept of slow oscillation was introduced by Hardy [7]. An equivalent
reformulation of (20) can be given as follows:

lim
λ→1−

lim sup
n→∞

max
λn<k6n

|xk − xn| = 0. (21)

The right-hand limit in (20) can be equivalently replaced by infλ>1.
We have the following corollary for Theorem 2:

Corollary 1. Let (4) and Pn = O(npn) be satisfied. If a sequence (xn)
of complex numbers is slowly oscillating, (2) implies (3).

4. Proofs. In this section we present the proofs.
Proof of Theorem 1.
Necessity. Assume that (2), (3), and (4) are satisfied. Then Lemma 4
yields (10) in case λ > 1 and (11) in case 0 < λ < 1.
Sufficiency. Assume that (2), (4), (10) and (11) are satisfied.
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First, consider the case λ > 1. Let ε > 0 be given. By (10), there
exists some λ > 1, such that

lim inf
n→∞

1

Pλn − Pn

λn∑
k=n+1

(
pk(1 + rk)xk − pkxn

)
> −ε. (22)

It follows from (8) that

xn − σrn, p =
Pλn

Pλn − Pn
(
σrλn, p − σrn, p

)
−

− 1

Pλn − Pn

λn∑
k=n+1

(
pk(1 + rk)xk − pkxn

)
. (23)

By (4), we have

lim
n→∞

Pλn
Pλn − Pn

(σrλn, p − σ
r
n, p) = 0. (24)

Combining (23) and (24) gives

lim sup
n→∞

(xn − σrn, p) 6 lim sup
n→∞

Pλn
Pλn − Pn

(σrλn, p − σ
r
n, p)+

+ lim sup
n→∞

(
− 1

Pλn − Pn

λn∑
k=n+1

(
pk(1 + rk)xk − pkxn

))
6

6 − lim inf
n→∞

( 1

Pλn − Pn

λn∑
k=n+1

(
pk(1 + rk)xk − pkxn

))
6 ε.

Consequently, we have
lim sup
n→∞

xn 6 l + ε. (25)

Second, consider the case 0 < λ < 1. It follows from (9) that

xn − σrn,p =
Pn

Pn − Pλn

(
σrn, p − σrλn, p

)
+

+
1

Pn − Pλn

n∑
k=λn+1

(
pkxn − pk(1 + rk)xk

)
. (26)
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Using a similar argument as above, we conclude by (5) and (11) for any
given ε > 0 that

lim inf
n→∞

(xn − σrn, p) > lim inf
n→∞

Pλn
Pn − Pλn

(
σrn, p − σrλn, p

)
+

+ lim inf
n→∞

(
1

Pn − Pλn

n∑
k=λn+1

(
pkxn − pk(1 + rk)xk

))
> −ε.

Consequently, we have
lim inf
n→∞

xn > l − ε. (27)

Combining (15) and (27) yields

l − ε 6 lim inf
n→∞

xn 6 lim sup
n→∞

xn 6 l + ε.

Choose ε arbitrary small; hence (3) follows. �
Proof of Corollary 1. For λ > 1, we have the following inequality:

1

Pλn − Pn

λn∑
k=n+1

(
pk(1 + rk)xk − pkxn

)
> min

n<k6λn

(
(1 + rk)xk − xn

)
>

> min
n<k6λn

(xk − xn) + min
n<k6λn

(rkxk).

We have

xn =
Pnσ

r
n, p − Pn−1σ

r
n−1, p

pn(1 + rn)

and

xn
n

=
Pn(σrn,p − σrn−1, p)

npn(1 + rn)
+

σrn−1, p

n(1 + rn)
.

Since (xn) is summable Ar, p and Pn = O(npn), we have
xn
n
→ 0 as

n → ∞. Therefore, rnxn → 0 as n → ∞. Hence, condition (12) clearly
implies (10). Similarly, (13) implies (11). By Theorem 1, we have (3). �

Proof of Theorem 2.
Necessity. The proof is similar to the proof of the necessity part of
Theorem 1.
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Sufficiency. Assume that (2) and one of the conditions (18) and (19) are
satisfied. Let any ε > 0 be given. By (18), there exists some λ > 1, such
that

lim sup
n→∞

∣∣∣∣ 1

Pλn − Pn

λn∑
k=n+1

(
pk(1 + rk)xk − pkxn

) ∣∣∣∣ < ε. (28)

By (23), we have

lim sup
n→∞

|xn − σrn, p| 6 lim sup
n→∞

Pλn
Pλn − Pn

|σrλn, p − σ
r
n, p|+

+ lim sup
n→∞

∣∣∣∣ 1

Pλn − Pn

λn∑
k=n+1

(
pk(1 + rk)xk − pkxn

) ∣∣∣∣. (29)

By (19), there exists some 0 < λ < 1, such that

lim sup
n→∞

∣∣∣∣ 1

Pn − Pλn

n∑
k=λn+1

(
pkxn − pk(1 + rk)xk

) ∣∣∣∣ < ε. (30)

By (26), we have

lim sup
n→∞

|xn − σrn, p| 6 lim sup
n→∞

Pn
Pn − Pλn

|σrn, p − σrλn, p|+

+ lim sup
n→∞

∣∣∣∣ 1

Pn − Pλn

n∑
k=λn+1

(
pkxn − pk(1 + rk)xk

) ∣∣∣∣ (31)

By (29) or (31), in either case we obtain

lim sup
n→∞

|xn − σrn, p| = 0 (32)

whence, it follows that

lim
n→∞

|xn − σrn, p| = 0. (33)

Now, we conclude (3) from (2) and (33). �

Proof of Corollary 1. For λ > 1, we have the following inequality:∣∣∣∣ 1

Pλn − Pn

λn∑
k=n+1

(
pk(1 + rk)xk − pkxn

) ∣∣∣∣ 6 max
n<k6λn

|(1 + rk)xk − xn| 6
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6 max
n<k6λn

|xk − xn|+ max
n<k6λn

|rkxk|.

As in the proof of Corollary 1, we have
xn
n
→ 0 as n → ∞. Therefore,

rnxn → 0 as n→∞. Hence, condition (20) clearly implies (18). Similarly,
(21) implies (19). By Theorem 2, we have (3). �
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[3] Aydın C., Başar F. Some new difference sequence spaces. Appl.
Math. Comput., 2004, vol. 157, no. 3, pp. 677–693.
DOI: https://doi.org/10.1016/j.amc.2003.08.055
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[11] Schmidt R. Über divergente Folgen und lineare Mittelbildungen. Math. Z.,
1925, vol. 22, pp. 89–152. DOI: https://doi.org/10.1007/BF01479600
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