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MODIFIED JARRATT METHODS UNDER THE SAME SET
OF CONDITIONS FOR SOLVING EQUATIONS AND

SYSTEMS OF EQUATIONS

Abstract. In this paper, we compare the radii of convergence of
Jarratt-type methods under the same set of conditions for solving
nonlinear equations and systems of equations. Our convergence
analysis is based on the first Fréchet derivative that only appears
on the method. Numerical examples where the theoretical results
are tested complete the paper.
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1. Introduction. In this paper we compare the convergence radii of
Jarratt-type methods under the same set of conditions for solving nonlin-
ear equation

F(x)=0,
where F': Q C By — B, is continuously Fréchet differentiable, By, B, are
Banach spaces, and 2 is a nonempty convex set.
The methods under consideration in this paper are [14]:

b = w5 F ) F)
- xn—gF’(xn)lF(xn)),
Tnit = Yo+ (F'(20) = 3F"(2,))  (F () 4+ 2F(2,)), (1)

and [13]

2
Yy = Tp — gF/(xn>_1F(xn)a
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- :rn—%(BF’(yn)—F’(a:n))_l(3F’(yn)+ 2)

+HF () F' () 7 F (@),
Tyt = 20— 23F (ya) = F'(20)) 7 F (20).

The sixth-order convergence of iterative methods was, in general, ob-
tained in [13], [14], respectively, when B; = By = R™. Taylor expansions
were used, and conditions up to the seven order derivative restrict appli-
cability of the methods.

For example: Let B; = By =R, Q = [—%, %] Define f on € by

[ Blogt* +t° —t* ift#£0,
f(t)_{ 0 if £ = 0. 3)

Then, we have t, =1,
f"(t) = 6logt* + 60> — 24t + 22.

Obviously f”(t) is not bounded on 2. So, convergence of these methods is
not guaranteed by the analysis in these papers. Our convergence analysis
is based on the first Fréchet derivative that only appears on the method.

We also provide a computable radius of convergence, not given in
[1-22|. This way, we locate a set of initial points for the convergence of
the method. The numerical examples are chosen to show how the radii
theoretically predicted are computed. In particular, the example given
by (3) shows that earlier results cannot be used to show convergence of
the method. Our results significantly extend the applicability of these
methods and provide a new way of looking at iterative methods.

The article contains local convergence analysis in Section 2 and the
numerical examples in Section 3.

2. Ball convergence. We develop real functions to be used in
the ball-convergence analysis of method (1) and (2), respectively. Set
S =10,00). Assume

(i) Equation

has the least solution py € S — {0} for some function ¢q: S — S
continuous and nondecreasing. Let Sy = [0, po);
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(ii) equation
wl (t) - 1 — O,
has the least solution r; € Sy — {0}, for some functions ¢: Sy — S
and @1: Sy — S continuous and nondecreasing, where

1
t) =2 ;
,QZ}1( ) 1 — on(t)
(iii) equation
Pa(t) —1=0
has the least solution ro € Sy — {0}, where
1
J el t)do + = fgol (0t)do
) = 2 ;
valt) 1 — (1)
(iv) equation
p(t) —1=0,

has the least positive solution p,, where p(t) =3 (30 (V2 (t)t) +po(t)).
Let p = min{py, p,} and S; = [0, p). Assume equation

Y3(t) —1=0

has the least solution r3 € (0, p), where

Oflw((l —0)0d8 3(po(t) + golt(t) fsol

L e e N IR (== ) (s Rt
flgol (Onba(t)t)dBo(t)
+ 0
1—p(t)

The parameter r defined by
r=min{r;}, k=1,2,3, (4)

shall be shown to be a convergence radius for method (1). We have, by (4),
that for all t € [0,7)
0 < ¢o(t) <1, (5)
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0<p(t) <1, (6)

and
0 < ¥p(t) < 1. (7)

The notation C(x,a),C(z,a) is used for the open and closed balls,
respectively, in B; with center x € By and of radius a > 0.

The conditions (A) are needed with functions ¢y, ¢, and ¢; as defined
previously. Further, assume:

(al) F: Q C By — By is Fréchet-continuously differentiable; there exists
a simple z, € Q such that F(z,) = 0.

(a2) For each z € Q
1F" () " (F" (@) = F'(z:))]| < @olllz — 2.

Set Qo = QN C(xx, po).
(a3) For each x,y € Qo,

1F" () (' (y) — F'(@))]l < ¢(lly — 1),

17/ ()" F (@)l < er(lle = zl)-
(a4) C(z,,y) C Q for some v > 0 to be determined.

1
(ab) There exists b > r such that [ ¢g(0b)df < 1. Set Q = QN T (z,,b).
0

The ball convergence of method (1) follows, based on conditions (A).

Theorem 1. Assume conditions (A) with v = r hold and choose
xg € C(xy,r) — {x.}. Then, iteration {z,} generated by method (1)
is well-defined in C(x,,r), remains in C(x,,r) for alln =0,1,2,..., with

hmn%oo Tp = Tx,

[yn — 2| < V1|20 — el Dl|20 — 2| < 200 — 28| < 77, (8)
|20 — 2|l < Vol — 2| |20 — 24| < |20 — 2] 9)

and
[Zn11 — |l < U3([|l2n — Zell|[2n — 2| < |20 — 2] (10)

where the functions vy, k = 1,2,3 are given previously and r is given
by (6). Moreover, x. the only solution of equation F(x) = 0 in the set ()
given in (ab).
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Proof. Estimates (8)—(10) are proved by induction on . Using (4), (5),
(al) and (a2), we get, in turn, for u € C(x,,r) — {x.}:

1/ ()7 (F'(u) = F'@ )l < polllu— zl) < polr) < 1. (11)

Then, the Banach lemma on invertible operators [8] and (11) gives
F/(U)fl c L(Bg,Bl), with

1
1= go([lu— )

1F" () F (@) < (12)

It follows that iterates yo and 2z are well-defined by method (1) for n = 0.
We can also write

Yo — Tw = (2o — T — F'(10) ' F(20)) + %F/@O)_lF,(xO) (13)

and

2
20— x" =x9— 2" — §F/(x0)*1F(x0). (14)

In view of (4), (7) (for k = 1,2), (a3), (12) (for u = () and (13), we have,
in turn:

lyo — @l < F' (o) ™" F (.|| %
1

| /F’(a:*)‘l(F’(gs* 0o — ) — F'(20))d0(o — 2.)+

2P ) P I (o) el <

1

(J o((1 = O)lzo — )6 + 1 jsol(euxo e

0

< lzo — || =

1 —@o(||lro — z.])

= 1([lzo — 2 |)|wo — 2| < f[wo — 2| <7, (15)
and
|20 — x*||

fso (1= 0)llzo — 2.[)dO + 3 fwl 0llwo — .[])db)

1 — po([|wo — ff*||)
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< Pa(llzo =zl lwo — 2l < [l — .[f; - (16)

this shows that yo, 20 € C(x.,r) and (8), (9) hold for n = 0, respectively.

Next, we show that (F'(zg) — 3F'(zp)) is invertible; this will imply
the existence of iterate z1. Indeed, using (4), (6) and (16), we obtain, in
turn, that

I(=2F"(z.)) ™ (F'(z0) — 3F(20) + 2F'(x.)) || <

< %(3HF’(ZE*)_1(F'(Z0) — F'(@))|l + [1F'(2.) 7 (F' (o) — F(z))l]) <
< %(3900(|!Zo — z.f]) + @o(llzo — 2l)) <
< plllwo — 2l < p(r) <1, (17)

SO
1

2(1 = p(llwo — =)
It follows from (4), (7) (for k = 3), (15), (16) and (18), and

I(F" (o) = 3F"(20)) ' F'(.)]| <

T1 — Ty = XTog— Ty — F/<£C0)71F(.'L'0) +
1
5 F'(20) " F (o) +

+(F'(x0) — 3F (20)) " F' (o) + 2(F'(x0) — 3F'(20)) ' F(20) =
= o — 2. — F'(20) " F(z0) +
+2F'(5C0)1(F/(20) — F'(0)) (F'(20) — 3F'(20)) ™ F (o) +
F2(F(20) — 3F(20)) " F(20). (19)

We have, in turn,

l2y = .|| <

1
J (1= 0)lxo — w.l)db]|zo0 — .|
0

< +
1 — po(||wo — 2.||)

3(wo(||zo — z4||) + wo(llz0 — 2«])) Ofl%(@”xo — x,||)dO|zo — .||
" 1 = pollmo — 2. 1) (1 = p(I[z0 — 1)) "
(21(60]]20 — 2.} d0] 12 — .|
1= (o — 2.

~
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< Ps(llzo — zl)llwo — 2.l < llwo — 2], (20)

showing (10) for n = 0 and z; € C(x., 7). Then, repalce xq, yo, 20, z1 by
Ziy Vi, Zi, Tiv1 in the preceding calculations to complete the induction for
items (8)—(10). In view of the estimation

[zipr = 2| < Bl — | <7, (21)

where 5 = ¥3(]|zg — z.]|) € [0,1), we conclude that lim x; = z, and

1— 00
Tir1 € C(z4, 7). The uniqueness part is left to complete the proof. Con-

1
sider v € Q; with F(v) =0. Let G = [ F'(x. +6(v — z,))df. Then, using
0
(a2) and (a5), we obtain

1 1
1F () (G = Pl < [ eolOlle. — o)ldb < [ ooty < 1
0 0
so G7' € L(By,B;). Consequently, from 0 = F(v) — F(z,) = G(v — x.),
we obtain v = x,. O
Remark.

1. In view of (a2) and the estimate

1F" (") F (@) = [1F" (")~ (F(2) = F'(2) + 1| <
ST+ |[IF' (@) (F' () = F'@)] < 1+ go(lle = 27])

the second condition in (h3) can be dropped and ¢, can be replaced
by
p1(t) =1+ po(t)
or
e1(t) =1+ @o(po),
since t € [0, po).
2. The results obtained here can be used for operators F' satisfying

autonomous differential equations |2| of the form

F'(z) = P(F(x))

where P is a continuous operator. Since F'(z*) = P(F(z*)) = P(0),
we can apply the results without actually knowing x*. For example,
let F(x) = e* — 1. Then we can choose P(x) =z + 1.
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3. Let ¢o(t) = Lot, and p(t) = Lt. In |2|, |3], we showed that

ra= QLO% is the convergence radius of Newton’s method:

Tpi1 = Ty — F'(2,) ' F(x,) for each n=0,1,2,... (22)

under the conditions (al)—(a3). It follows from the definition that
the convergence radius r of the method (1) cannot be larger than the
convergence radius r 4 of the second-order Newton’s method (22). As

already noted in [2|, 3], ra Is at least as large as the convergence
radius given by Rheinboldt 18]

2

TR:3_Ll’

where L is the Lipschitz constant on D. The same value for rp was
given by Traub [19|. In particular, for Ly < L; we have

rp<TAg
and | L,
TR
— = = = 0.
a3 YL

That is, the radius of convergence r, is at most three times larger
than Rheinboldt’s.

4. We can compute the computational order of convergence (COC)

defined by
¢ (lzz=rl) / (Llmamrl
|z — 2| [
or the approximate computational order of convergence
51 —In (Hxn-‘rl xn”) /1 < Hxn - xn—l” )
Hxn_wn 1” ’ﬁn—l _xn—2||

~ The ball convergence of method (2) follows in a similar way. Let
1 = 1 and define functions

(po(t) + @o(U1 (D))
(1= o()(1 —q(t))’

=
[}
—~
~
N—
I
+
oo
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() = 3 polt) + 3ol )e)1),
and

0f1¢((1 — 0)iho(t)t)do

valt) = 1 — @o(e(t)t) "

Bealda(t)) + 2au(Ba00) + pu(t) [ 1000
* 21— o201 —a(0) Joco
Assume the equations

Uo(t) —1=0and ¥s(t) — 1 =0

have the minimal positive solutions 7y and 73 in Ag, respectively. Let

r= min{TQ, fz, 773}.
We need the estimates under conditions (A) for v = 7:

[yn = 2]l < alllon = zul)l2n — 2.l =
= illlen — zalDllzn — 2ol < flon — 2]l <7,
Ty — Ty = Ty — Ty — F'(2,)  F () +
= 2B () = F'(@)) BF () + F @) o) F(a,) =
=2, — 2y — F'(2,) ' F(z0)+

(BF(yn) = F' ()~ (F' (yn) — F' (@) F' ()" F (),

l\'JICO

SO

f@ (1= O)[xn — .][)d6

Hzn_x*” < +
h L= wo([lzn — 2|

(@1(lyn = zl]) + @o(llzn — 2.])) flsm(@Hxn — .[|)df

T (1 = polllzn — =) (1 = q(|lzn — .]])) [z — @l <
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< Oalllon — 2Dz — 2] < 2w — 2l < 7,

Tpil — Tn = 2n — Tx — F'(20) T F (20)+
+ (F'(2) ™" = 2(3F (ya) = F'(0))) " F(20) =
= 2p — Tw — F'(2,) 7 F (20) + F'(2,) 7 (3F (y) — F'(,) — 2F'(2,)) %
X (3F"(yn) — F'(2,)) " F(2),

SO
1

J (1 = 0)llzn — .[l)do

0

_'_
1= go(llzn — 1)

Beollyn — zll) + 200(ll2n — 4ll) + @o(llzn — 2.1))
(1= olllzn — 2.l = q(llzn — .]1))

[Tne1 — 2] < [

1

x / o1(0]n —w*u)de] ln — 2] <
0

< Us(llon — zul)llwn — 2l < o — ],
where we also used as in (18) (for y, = z,)

1
2(1 = q(llzn — =.])))

IBE (yn) — F'(wn)) " F'(2)]] <

Hence, we arrive at:

Theorem 2.  Assume conditions (A) with v = 7 hold and choose
zg € C(x.,7) — {x.}. Then, the conclusions of Theorem 1 hold for
method (2) with g, 13, T replacing 1,13 and r, respectively.

3. Numerical Example. Consider the kinematic system

Fi(x) =", Fy(y) = (e — Ly + 1, Fj(z) = 1

wit F1<O) = F2 0) = Fg(O) =0. Let F' = (Fl,FQ,Fg). Let Bl == BQ = R3,
Q=U(0,1), xz. = (0,0,0)T. Define the function F on Q for w = (z,y, z)"
by
e—1, T
Fw)=(e"=1,——y +y,2)".

2
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Then we get
e’ 0
F'lv)=1 0 (e—1y+1 0 |,
0 0 1

1

so po(t) = (e = 1)t, p(t) = et ¢1(t) = e==1. Then the radii are

r1=0.0402645, 1o =0.154407, 73 =0.688759, 7o = 0.138442, 73 =0.112838;

so, we conclude that r = r; and 7 = 73.
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