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SUBORDINATION RESULTS FOR A FRACTIONAL
INTEGRAL OPERATOR

Abstract. In this paper, we establish several differential subordi-
nations regarding the operator D;*SR™" defined using the frac-
tional integral of the differential operator SR™"™, obtained as a con-
volution product of Saladgean operator S™ and Ruscheweyh deriva-
tive R". By means of the newly obtained operator, a new subclass
of analytic functions denoted by SR, 5. (0) is introduced and vari-
ous properties and characteristics of this class are derived, making
use of the concept of differential subordination.
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1. Introduction. Denote by U the unit disc of the complex plane,
U={z€C:|z| < 1} and by H(U) the space of holomorphic functions in U.

Let A(p, ) = {f € H(U): f(z) = 2+ 5> a;53, 2 € U}, A(L L) = A

J=p+l

and Hla, | ={f € H(U): f(z)=a+ a;2' + a1 +..., 2 € U}, where
p,l €N, aeC.

The well-known definitions for Sdlagean and Ruscheweyh operators
and the convolution product of these operators are also reminded:

Definition 1. (Salagean [11]) For f € A,;, and n € N, the operator S™ is
defined by S™: A; — Aj,

S°f (2) = f(2),
S'f () = 2f'(2),
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Remark 1. Iff € Aj, f(z) =2+ Y a;z?, then S"f (2) = 2+ > j"a;27,
j=1F1 j=l+1
zeU.

Definition 2. (Ruscheweyh [10]) For f € A, and n € N, the operator
R" is defined by R": A; — A,

Rf () = f(2),
R'f (z) = 2f' (),

(n+1)R"f(2)=2(R"f(2) +nR"f(2), zeU.

Remark 2. If f € Aj, f(2) =2+ Y. a;2’, then

j=l+1

(n+7) ;
—z+z ———a;?’, zecU,
—l+1 (n+1)T(y)
where I' is the gamma function.
Let f,g € A, where f and g are defined by f(2) = 2+ >, a;2/ and
g(z) = 24 > bjz7. Then the Hadamard product (or convolution) f g of

=2
the functions f and g is defined by

(f*g)(z —z—l—Zanz

Definition 3. [1| Let n,m € N. Denote by SR™": A; — A, the opera-
tor given by the Hadamard product of the Salagean operator S™ and the
Ruscheweyh derivative R",

SR™™f(z) = (8™« R") f (2), (1)
for any z € U.
Remark 3. [1|If f € A and f(z) =z + i a;z?, then
j=l+1
m,n _ -m n+]) 2.9
SR™"f (z z—l—z NCESI (])ajzj, ze U

j=I+1
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Definition 4. [7] The fractional integral of order A (A > 0) is defined
for a function f by

1
D16 =y [ gt )

where f is an analytic function in a simply-connected region of the z-
plane containing the origin, and the multiplicity of (z —t)*™" is removed
by requiring log (z — t) to be real, when (z —t) > 0.

The fractional integral is a function used intensely for obtaining new
operators that generate interesting subclasses of functions, providing use-
ful and inspiring outcome related to them [2—6]. Similar methods are used
in the present investigation to obtain results contained in the next section.

Using Definition 3 and Definition 4, we get the fractional integral
associated with the differential operator SR™". Using this operator, a
new subclass of analytic functions is introduced and investigated using
the methods of the theory of differential subordinations.

Two lemmas useful for proving the original results of the paper are
now given.

Lemma 1. (Miller and Mocanu |9]) Let g be a convex function in U and
let h(z) = g(z) + lazg'(z), for z € U, where a > 0 and | be a positive
integer.

If p(2) = g(0) + p2t + pr1 2Tt + -+, 2 € U, is holomorphic in U and

p(z) +azp'(z) < h(z), z€U,
then
p(z) <g(z), =zel,
and this result is sharp.

Lemma 2. (Hallenbeck and Ruscheweyh [8]) Let h be a convex function
with h(0) = a, and let v € C\{0} be a complex number with Rey > 0. If
p € Hla,l] and

1
p(z) + 52])’(2) < h(z), for ze€U,

then
p(z) < g(z) < h(z), for z€U,
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where g(z) = L [ h(t)t?/'"1dt, for z € U.
0

2. Main results. We introduce the fractional integral associated
with the differential operator SR™".

Definition 5. Let A > 0 and m,n € N. The fractional integral associated
with the linear differential operator SR™" f is defined by

1 [ SR™f(t
DASR™"f <Z>:m>/ <z_t>{(3dt:
0

r(lA)(o/Z(z SR Z ( nf;;%)(J))a?o/Z#dt)’

j=I+1

which is written in the following form after a simple calculation:

- 1 §"HL (n + 4) :
D )\SRm,n )\—i—l 2 j-‘r)\’
: 1@ =ro° +_zl:1 CESNIES TS A

for f(z)=z2+ Y. ajz? € A;. Note that D;*SR™"f(z) € AA+ 1,1).
=1

Another simple calculation gives the relation
2 (D7ASR™f (2)) = AD;ASR™ f (2)+ D;ASR™n f (), z € U. (3)

Firstly, we define and study a subclass of analytic functions using the
differential subordinations regarding to the differential operator
DZ_ASRm’nZ .Al — .Al.

Definition 6. Let § € [0,1) and m,n € N\ > 0. A function f € A; is
said to be in the class SR, () if it satisfies the inequality

Re (D;ASR™"f (2)) > 6, zeU. (4)

Theorem 1. Let g be a convex function in U, h(z) = g (2) + 7529’ (2),
z €U, wherec> 0. If f € SRunn (8) and

Fe) =106 =25 [erwa zeu
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then
(DASR™f(2)) < h(z), z€Ul, (5)

implies

(D;’\SRm’"F (z))/ <g(z), zeU,

and this result is sharp.

z

Proof. We have z"'F (z) = (c+2) [ t°f (¢) dt. Differentiating with re-
0
spect to z, we obtain

(c+1)F(2) +2F'(z) = (c+2) f(2) (6)
and
(c+1)D;ASR™"F(2) 4+ 2(D;ASR™"F(2)) = (c+2)D;*SR™" f(z), (7)

zeU.
Differentiating (7), we get

(D;XSR™™F(2)) +

52 (DPSRMEG)) = (DASR™ ()Y, (9

Cc

zeU.
Using (8), the differential subordination (5) becomes

(DI*SR™"F(2)) + 2DISR™F(2))" < g(2) +

c+2

If we denote
p(z) = (DPSR™F (2)', (10)

thenpe H{A+1,1].
Replacing (10) in (9), we obtain

1
2p' (2) < g(2) + c—i——ZZg/ (), =zeUl.

p(z)+c+2

Using Lemma 1, we have
p(z) <g(z) i.e. (D;’\SRm’”F(z))/ <g9(2), zeU,

and ¢ is the best dominant. [
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Theorem 2. Let h(z) = +(12_i Dz 5 0,1) and ¢ > 0. If m,n € N,

A >0, and I, is given by Theorem 1, then
I.[SRimnx (0)] CSRimnnx (67), (11)

1
vhere o7 =35 1+ S5 (<52 2) and ) = | 5t

Proof. The function A is convex; using the same steps as in the proof of
Theorem 1, we get, from the hypothesis of Theorem 2, the following:

2p' (2) < h(z),

p(z)+c+2

where p (z) is defined in (10).
Using Lemma 2, we deduce that
p(2) <g(z) < h(z),

that is
(DASR™F (2)) < g(2) < h(z),

where

dt =

c+2 [ e 14 (20— 1)t
g tl _—

c+2

c+2

-1+ (c+2) 2—25/

0

Since g is convex and g (U) is symmetric with respect to the real axis, we
deduce

Re (D;*SR™"F (z )) minRe g (z) =Re g (1) =¢" = (12)

|z[=1
o514 (c+2)§2—26)ﬁ<c—il—2 _2>‘
From (12), we deduce the subordination (11). O

Theorem 3. Let g be a convex function, ¢g(0) = 0, and let h be the
function h(z) = g(2) + 24’ (2), z € U. If m,n € N, f € A; and follows
the differential subordination

(DIASR™f (2)) < h(z) z€U, (13)
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then
D;ASR™"f (z)

z

<g(2), zeU,
and this result is sharp.

Proof. For f € A, f(z) =24 Y. a;2?, we have
j=It+1

- T (n A+ )
D—)\ m,n — A+1 J 2 j+A
SRR = vt +Zr(n+1)r(j+A+1)aﬂz ’

Jj=l+1
zeU.
Consider

D *SR™" f (2
by DR
z
S ~m+lr(n+ ) .
F(A1+2)Z/\+1 + Z F(i+1)r(j+,\J+1)a?ZJ+)\
— J:l+1 =
z
1 A = 77T (n + 5) 2 _j+A—1
- : , pEHION.
T(A+2)° +j;+11“(n+1)1“(j+)\+1)a]z pEHON
We have
/
p(2) +2p (2) = (D;ASR™"f (2)), z€U.

Then

/

(DASR™"f (2)) < h(z), z€U,

becomes

p(2)+2p(2) = h(2)=g(2)+24 (2), z€U.
By using Lemma 1, we obtain

D*SR™"f (z)

z

p(z) <g(z), zeU, ie <g(2), zeU.

O

Theorem 4. Let h € H(U), with h(0) = 0, which satisfies the inequality
Re <1—i— %é?) > —%, zeU Ifm,ne N, A\>0, f €A and is subject to
the differential subordination

(DIASR™f(2)) < h(2), =€ U; (14)
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then DASRAf(2)
= . <q(z), z€U,
where q(z) = % f tT_ldt. The function q is convex, and it is the best
dominant. "
Proof. Let JE—
o) = DESRIEG)

z

§"HT (n + ) 2_j
2 Jj+A—1
F/\+2Z+Z 'n+1)T j+>\+1)a32 ’

ze U, peHI0, .

Differentiating, we obtain
(DPSR™ (=)' = p(2) + /(2), 2 €U,
and (14) becomes
p(2) +2p'(2) < h(z), z€U.

Using Lemma 2, we have

p(z) < q(2) =

D—)\ m,n 1 1
CASR™f(2) <q(z) = _1/h(t)tl1dt7 zeU,

A lz7
0

and ¢ is the best dominant. []

Corollary 1. Let h(z) = Q/iri)z be a convex function in U, 0 < < 1.

If m,n € N, A >0, f € A; and satisfies the differential subordination
(DIASR™f(2)) < h(2), z€U, (15)

then
DZ‘ASRm’”(z)

. <q(2), z€U,
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1

28—1 z

Iz

17:dt, z € U. The function q is convex

where q is given by q(z) =

o~
O%N

and it is the best dominant.

Proof. Following the same steps as in the proof of Theorem 4 and con-

- m,n . . . . .
w, the differential subordination (15) is trans-

Using Lemma 2 for v = 1, we get p(z) < q(z), i.e.,

sidering p(z) =
formed to
, zelU.

z

DZ—ASRm,nf(Z)<q(Z): 11/h(t)t?‘1dt=

1 [ .. (28-1)t 28—1[
:—/tzl(ﬁ Vg~ 2~ / _dt, zeU.
1+1¢ lz7 1+1¢
0 0

O

Theorem 5. Let g be a convex function, such that g (0) = 0, and let h
be the function h(z) = g(z) + 1529 (2), z € U, myn € N, A > 0. If
f € A, and the differential subordination

A DZ—ASRm—H,nf (Z) N 1 DZ—ASRm+2,nf (Z)
1—A z 1—A z

holds, then

< h(z), z€eU, (16)

(DASR™f(2)) < g(2), z€U,
and this result is sharp.

Proof. With notation

o0

J™T (n + j) ;
- m,n 2 j+A—1
p(2) = (DR f(2)) = A+1Z+Z T(n+ 10 + N~

and p (0) = 0, we obtain for f(z) = z+ > a;2/, taking account rela-
j=I+1
tion (3),

/\D;)\SRm—H,nf (Z) N DZ—ASRm—i-Z,nf (Z) .

p(z)+2p' (2) = Ap(2) + . .
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We have

[
1—A

2p (2) < h(z) =g (2) + 2¢'(z), z€U.

p(2)+ 71—

Using Lemma 1, we obtain
p(2)=g(z), z€U, ie. (D;*SR™f (z)), <g(2), z€eUl,

and this result is sharp. [J

Theorem 6. Let h € H(U) with h(0) = 0, which satisfies the inequality

Re [1 + ZZES)} >—1 2ecU. IfmneN, X\>0, f €A and satisfies the
differential subordmamon

A DZ—/\SRm—f—l,nf (Z) N 1 DZ—ASRm—&-Z,nf (Z)

< h(z), zeU, (17)

1—A z 1—A z
then
(DASR™f (2)) < q(2), z€U,
where q is given by q(z) = 12 [h(t)t T *~1dt. The function q is convex
lz T

and it is the best dominant.

Proof. Using the properties of operator D;*SR™" and considering
p(z) = (D;)‘SRm’nf (2))/, we obtain

A D ASR™HLf(2) N 1 D;ASR™2nf(z) 1

p(z) +

/
1— A B 1— A P - TP

zeU.
Then (17) becomes

1
1—A

p(2) 2p'(z) < h(z), z€eU.

Since p € H|[0, A], using Lemma 2 for v =1 — A, we deduce

p(2) = q(z), 2 €U,

where
z

1- A _
g(z) = —— / WOt T dt, €U,
0

lz1
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! 1 — f 1—
(D;ASR™"f(2)) < q(2) = l%/h(t)tlk_ldt, zeU,
0

AN

and ¢ is the best dominant. [

Corollary 1. Let h(z) = (2f+z be a convex function in U, 0 < < 1.

Ifm,ne N, A >0, f € A and satisfies the differential subordination

Y D;/\SRerl,nf (Z) N 1 D;ASRm+2,nf (Z)

T . T . < h(z), zeU (18)

then
(DIASR™ f (2))" < q(z), z €U,

z 1—

A
where q is given by q(z) = U=22-1 f tl dt, = € U. The function q is
0

lz l

convex and it is the best dominant.

Proof. Following the same steps as in the proof of Theorem 5 and con-
sidering p(z) = (D;*SR™" f (z))/, the differential subordination (18) is
transformed to

(26 -1)z

) eU.
1+~ ®

2p(2) < h(z) =

p(2) + 17—

Using Lemma 2 for v = 1 — A, we have p(z) < q(2), i.e.,

z

1-A

(DASR™(2) < () = =5 [ WO de =
zZ 1
1A [ 10 (28—1)t 1-N(28—-1) [t
_ 1A S @b, (A-X 28 )/ —dt, zeUl.
0 0
O
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