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A NOTE ON THE BECKER-STARK TYPE INEQUALITIES

Abstract. This note is devoted to establishing the sharp bounds
for the function x/ tg z, thus refining the well-known Becker-Stark’s
inequality.
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1. Introduction. The inequality

4a? x 7 z?
l——<—<——"—; 2€(0,m/2 1
7 ez 3 5 v €(0,m/2) (1)
is known in the literature as the Becker-Stark inequality. Here tg denotes
the trigonometric tangent function. It was proved in [6]. Z.-H. Yang et.
al. in [15] prove that
42* x x?

il S Il 9 2
7r2<tgm< 37x€(0,w/), (2)

while Chen and Cheung [7] show that

(1- 4—332) < <(1- 4—1"2)“2/12; € (0,7/2) (3)

72 tg 2

with the best possible constants 1 and 7%/12. The lower bound in all the
three inequalities listed above is one and the same. However, the upper
bound in (3) is sharper than those in (1) and (2). The upper bounds
in (2)—(3) are not sharp as * — /2. Researchers obtained different
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generalizations and refinements of inequality (1). The details can be seen
in [3-10], [13], [15-18] and the references therein.

In view of obtaining refinement of the lower bounds in inequalities
(1)—(3) and the sharp upper bound for z/tgx as © — m/2~, we propose
the following theorem:

Theorem 1. Forz € (0,7/2), we have

2 2
(1= 8 o 2o (g Aty g
v ™

The bounds in (4) are polynomial-exponential in nature. Since
(% — 3) 2® > 1, the lower bound in (4) is sharper than the one in (1)—(3).
With the help of any plotting software, it can be observed that the up-
per bound in (4) is sharper than the corresponding upper bound in (3) for
x € (&,7/2), where & ~ 0.8496. The constant (= — 1) (or a similar) one
is interesting, and as a complement to (4), we present simple polynomial

bounds for z/tanz as the following double inequality:

Proposition 1. For z € (0,7/2), we have

- (-] < < 0- DD o

As 1+ (& —3) 2 > 1, we conclude that the lower bound in (5) is
sharper than the one in (1)—(3). And again, with the help of any plotting
software, one can observe that the upper bound in (5) is sharper than the

corresponding upper bound in (3) for x € (&, 7/2), where & ~ 0.9721.

2. Preliminaries and lemmas. We recall the formula for the
simple geometric series:

. =l+z+2?+2°+..., 2] <1 (6)
—x
and (2k1 )
T > 2 (221 -1
=1 E S S < 7
sin z +k:1 (2]{3)‘ | 2k|ZE ) |‘7;| , ()

where By are the even indexed Bernoulli numbers. The expansion (7) can
be found in [11, 1.411]. We also need the following lemmas for proving our
main results. The Lemma 1 is known as I’'Hopital’s rule of monotonicity.
We refer to 2] for more details.
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Lemma 1. Let fi(x) and fs(z) be two real-valued functions that are
continuous on [a,b] and differentiable on (a,b), where —oco < a < b < 0o
and ¢'(x) # 0, for all x € (a,b). Let

_h@-h@

A = L@ = ha) €@
_fl(x)—fl(b) T a

B = r e =po) * @Y

Then we have
(i) A(z) and B(x) are increasing on (a,b) if fi(z)/f5(x) is increasing
on (a,b).
(ii)) A(x) and B(z) are decreasing on (a,b) if f{(z)/fi(x) is decreasing
on (a,b).
The strictness of the monotonicity of A(x) and B(x) depends on the strict-
ness of monotonicity of fi(x)/f}(x).

Lemma 2. For all integers k > 1, we have

202k)! 1
(2m)2k 1 — 252

(8)

’ng’ <

where 8 =2+ (In(1 — 6/72))/In2 ~ 0.6491.

Lemma 2 appears in [1] and Lemma 3 is proved by L. Zhu et.al.
in [17].

Lemma 3. For |z| < 7/2, we have

t 00
(n? —42?) 2L =2 1 qa®; (9)
L k=1
22k+2(22k+2 _ 1)7.‘.2 4 . 22k(22k o 1)
where a;, = (2k n 2)' |ng+2| — (2]{})' |sz| < 0,
k=1,2.3,...

3. Proofs of the main results. In this section, we prove our main
results.
Proof of Theorem 1. Consider

2

1) = () o=
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i 7T2

where fi(z) = In (——) and fy(z) = 2% with f1(04+) = 0 and

tgx w2 — 4a?
f2(0) = 0. Differentiation of the numerator and denominator with respect
to x gives

tgx — wsec’w 8z
fi(zx) B rtgx + w2 — 422
falz) 2 B
_ ltgz —xsec’x 4
T2 r2tgx 2 — 422

1sin2x — 2x 4 1

T4 22sin2z +7T2( 4:):2)

1_?
11 2 4 1
422 422 sin2x w2 [1_ (2_$>2]
T

Using (6) and (7), we write

fll) 1 1 L 92k+1(92k=1 ) o] 4 22\
fo(z)  4r? 422 [1 +Z (2k)! | Barl ] * 2 kZ:o ( v ) N

4 > 22k e 22k71 22k71 -1
Z _2kl,2k . ( ) |sz|x2kf2 _
m

2 l
T p (2k)!
& 22k+2 0 22k:+1 22k+1 -1
= i (Q(k: +2)! )| o tal2™ =
k=0 T k=0 ’
0 2) (22k+1 -1 0
=) 9tl [ _ B } 2k ._ 2k
£ Rty Pl ; w

2 (22k+1 . 1) ’B |
w2tz (k4 2) AR
From (8), we have

where ¢, = 22F+1 [

2(2k +2)! 1 2(2k +2)! 1
02 +2n2kt2 ] — 9F-2-2 p2ktz  (22k+2 _ 25)’

|BQI<:+2| <

where 8 =2+ (In(1 — 6/7%))/In2 ~ 0.6491.
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Clearly, 27 — 1 < 2%+ for k > 0, i.e., 20 — 1 < 22k+2 _ 92k+1
22k+1 1 < 22642 _ 98 From this, we write:

1 1
22k+2 _ 9B < 22k+1 _ 1‘

Then

2(2k +2)! 1 2(2k +2)! 1
2k+2 (22k+2 _ 2B> < 2k+2 (22k+1 _ 1)’

|BQk+2| <

which leads to ¢ > 0 for £ > 0. Hence, f(z)/f3(x) is strictly increasing
on (0,7/2). By Lemma 1, f(z) is also strictly increasing on (0,7/2).
So, f(0+) < f(z) < f(w/2—). The limits f(0+) = 4/7* — 1/3 and
f(7/2—) = 41In(7?/8)/7? prove the assertion. [

Proof of Proposition 1. Let

g(z) = <m — 1>/x2, z e (0,7/2).

T

By Lemma 3, we get

- 2k
2 - Z axT
k=1

0= (1) o
T+ ZZL agr?* w252 + i akx2k+27
k=1

where ap < 0 for k =1,2,3,... Then

[oe)
k
, 2z + kz::I a2t . 2
= = = = —x“°.
g(m) _ Z apk E apw2h—2
k=1 k=1

This implies that g(z) is strictly increasing on (0,7/2). So, we have
g(0+) < g(z) < g(r/2—). With the limits g(0+) = 4/7% — 1/3 and
g(r/2—) =1/2 — 4/7% we end the proof. [J

A graphical illustration of the lower and upper bounds of x/tgx ap-
peared in (1)—(5) is given in Figure 1 and Figure 2.
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Figure 1: Graphs of the lower Figure 2: Graphs of the upper
bounds of (1)—(5), z € (0,7/2). bounds of (2)—(5), z € (0,7/2).

4. Extended inequalities via monotonically stratified func-
tions. We extend inequalities (4) and (5) to a wider range of parameters
using the technique of the minimax approximant given in [12]. For this,
consider the family of continuous functions

x 42

dp(x) = - <1 - —2>e’”2 secx

sinx s

on (0,7/2) for every p € R*. Clearly, the family of functions ¢,(z) is
decreasingly stratified for p € R*. If

4 1 41n (72

A=L 1 gom1051.. and B = O/

w2 3 72
then we have ¢4(0+) = ¢p(0+) = ¢p(n/2—) = 0 and ¢pa(7/2—) € R™.
Moreover, the functions ¢, (z) are continuous with respect to p € (A, B) for
every ¢ € (0,7/2) and ¢,(m/2—) is continuous with respect to
p € (A, B). So, using Theorem 1’ and Theorem 2’ of [12|, we have the
following statements:

Statement 1. Ifp € (0, A], where A = & —

= 0.085117. . .,

= 0.071951..., then

1
3
Gp(T) = Pa(r) = a —(1—4—6)6<” é>IQSecx>0

for x € (0,7/2).
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n 71'2
Statement 2. Ifp € [B,0), where B = 4 (WQ /) _ 0.085117..., then
x A1\ 4ln(x2/8) o
< = _ — e <2 *
op(7) < ¢pp(T) prap <1 — )e secz < 0

for z € (0,7/2).
Similarly, if we consider

x 4z
- (1 - —) 1+ pa? +
() o ( — (1+pz)secx, pe R
and
4 1 1 4
C=——-=0071951..., D=—-—— =10.094715. ..
w2 3 ’ 2 72 ’

then it is again obvious that the family of functions ¢,(z) is decreasingly
stratified and satisfies the assumptions of Theorem 1’ of [12]. So, using
Theorem 2’ of [12], we state the following:

Statement 3. Ifp € (0,C] where C = % — 5 =0.071951..., then

1
3

V() = Yo(z) = S (1 - 47T_x22> [1 + (i - 1)1‘2] secx > 0

sin x w2 3
for z € (0,7/2).
Statement 4. If p € [D,o0), where D = % — % =0.094715. .., then

Yp(z) < ¢p(x) = SR <1 - %> [1 + (1 - i)xﬂ sec T

sin x 2 2 w2

for x € (0,7/2).
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