Probl. Anal. Issues Anal. Vol. 10 (28), No 3, 2021, pp. 15-30 15
DOL: 10.15393/j3.art.2021.10810

UDC 517.51
GEORGE A. ANASTASSIOU

MULTIPARAMETER FRACTIONAL DIFFERENTIATION
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Abstract. We introduce here Caputo and Riemann-Liouville type
non singular kernel very general multi parameter left and right side
fractional derivatives and we prove their continuity. These have the
advantage to describe accurately complex situations and phenom-
ena and we can measure their fractional smoothness with memory
and nonlocality. Then, we derive related left and right fractional
integral inequalities of Hardy, Opial and Hilbert-Pachpatte types,
also of Hardy type involving convexity.
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1. Background. Of great inspiration here are the articles [3], [4], [6].
But the most important for the author to write this article has been the
work of R. K. Saxena, S. L. Kalla and Ravi Saxena, 7], about the mul-
tivariate analogue of generalized Mittag-Leffler function. Their extension
allows at the same time to be treated both the univariate and multivariate
level because of the many parameters involved. That gives us the advan-
tage to record and treat lots of various data resulting from complicated
natural phenomena and from diverse socioeconomical interactions, as well
as mechanics, chemistry, etc. Also, their function serves well as a non
singular kernel.

Here we use the multivariate analogue of generalized Mittag-Leffler
function, see [7], defined for A, ~;, p;, 2z € C,Re(p;) >0 (j =1,...,m) in
terms of a multiple series of the form:

Eigia (21 ozm) = EQL00 3 (1, 2m) =

(©) Petrozavodsk State University, 2021

[G) ev-rc |


http://creativecommons.org/licenses/by/4.0/

16 George A. Anastassiou

(My -+ - omdg, 25" 2m )

o p) Fil ol

where (7;), is the Pochhammer symbol, I' is the gamma function. This
is a specialjcase of the generalized Lauricella series in several variables,
see [8, p. 454| and [10].

By [9, p. 157], (1) converges for Re (p;) > 0, j =1,...,m.

,,,,, 7mt)
..... p)A

denoted by E{7 [wit?, ..., w,t”], where 0 < p < 1 t>0,A>0 7 €R
with ('Vj)kj =y (5 + 1)...(% +kj—1),w; e R—{0},forj=1,...,m
Let f € C'([a,b]), we define the following Caputo type generalized left
fractional derivative with non singular kernel of order p, as

Dy, f(x) = (Cyf)(wj)Dg;Af (z) =

In what follows we will use the particular case of E [wit?) ... wntf],

L ) w1p P —WmP p /
._1—p/E() L_p(:p—t) e T w0 ), € o]
(2)

a

where A (p) is a normalizing constant.
Let now f € C""([a,b]), n € Z,.
We define the Caputo type generalized left fractional derivative with
non singular kernel of order n + p, as
D (2) 1= () Datof (2) =

(1) (w;)

p) / (vj) | WP —Wmp
::— Ej — (=), ... — )" oY @)dt, (3
for z € [a, b].

Similarly, we define the Caputo type generalized right fractional deriva-
tive with non singular kernel of order p, as

Dy f(2) = Gl Dy f (2) =

/E { wlpt—x)f’,... —EmP vl F(t)dt, @ € [a,b].

—p "1-p
(4)
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And, for f € C""1 ([a,b]), n € Z,, we define

n n+p,A
Dz:pf () = (C;?)(wj)Dbjp f(z) =

b
= (- A2 / E) [ SO s FAR O3

—p "1-p
(5)
x € [a,b].

The above derivatives generalize the Atangana-Baleanu fractional deri-
vative, see [3].

Similarly, we defie the Riemann-Liouville corresponding versions of
above fractional derivatives for f € C ([a,b]), n € Z4, 0 < p < 1, the left
one:

Dy f (2) = () Dat (@) =

Ap) d™ [ oy [—wrp —wp
=1_ E 5 — )P, ... —O?| f(t)dt
l—pdx""‘l/ (P).A l—p(x )’ ,1_p(:L‘ )| f(t)dt, (6)

a

€ [a, b], and right one:

n n+p,A X
Dy f(x) = (o) Dy ) =

b
_ (=)™ A(p) ! / (vj) | —wW1p p —WmpP p
B 1—p dxnT1 E(P)v\ 1— p(t I) v P (t 1‘) f(t)dt,
(7)
x € [a,b].

In this work we emphasize on the Caputo version. The advantage of our
fractional derivatives here is, that they have non singular and very general
kernels able to incorporate lots of various fixed data sets from complicated
physical phenomena, carried by the different sets of their parameters.

We present the following basic Hardy type inequalities:

Theorem 1. All as above withvy; >0, 7 =1,...,m; A=1. Then

n+p A
Ipzesl gl ) < G2l

() | lenlp Wy p :
X By |1 b= e T = a) | 7 < o0 (8)
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where n € Z.
Proof. We prove the first inequality, for the second one as similar the
proof is omitted. We have by (3) that

Do f (2)] <
< |fl£/?;| : (E((Z)J) “wilf;(x_t)p’ 7|wm|P( }dt) £ =
L
(o) o
] £ e
<H><<(Z)S+)1) e 0
=1 AP
oot > - (ﬁi(i :%ﬁ ()
(ﬁw) - oy &) | o
- L0 [ [lrle .., Loy ]| o) <o

proving the claim. [J

We also give
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Theorem 2. All as above with v; > 0, 7 =1,...,m, and 0 < p < 1,
A > 0, etc. Then

Dyof, Dy € O (a,b]), n € Z,.

Proof. We prove it only for the first one, the other one as similar is
omitted. Let zy,zo € [a,b] such that xx — g, as N — oco. Then

Xaen] (£) = Xiawo (), a.e. (t € [a,0]),

where y is the characteristic function.
Also it holds

g9 [_wlp TN —t ”,...,_wmp TN —t p] —
() | Zwip P —Wmp p
—>E(p)],/\{1_p(a:0—t) ,.._,1_p(x0—t)}. (10)
Therefore we get that
) [—wip ~Winp n
Xl () QI l oy 1) T (e - t)p] £ (1) =
p IL—p
() | ZWIP (e “WmP | )
> Nl () B, [ T2 (o = 0 o0 T2 (o = 0] 1049 (1)
a.e. over t € [a,b], as N — 0.
Furthermore it holds
) [—wip — W n
Xfazn) (t) ‘E((Z)JA L = (e =)o p (zn — t)p] |74 (1) <

() | lwtilp || p n+1
<E(p;,A[1_p(b—a)p,...,1_p(b_a>p 1D <00 (11)

Thus, by the denominated convergence theorem, we derive

b
Alp 3 [ —wip —WnP n
_)/XWN} (t)E((Z)j,))\ L _1 (xn — )P, ..., (zy — t)? | fOFD () dt —

L=p P L=p
(12)
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b
A(p) (v;) | —wip —WmpP
— v (D EY —tye, . — 0P| FOTD @) de

a

as N — oo, proving the continuity of DZ}* f over [a,b], for n € Z,. O

In this work we derive left and right side fractional inequalities related
to the introduced fractional derivatives (2)—(7) of non singular kernel and
multiple parameters. These are of Hardy, Opial and Hilbert-Pachpatte
types, also of Hardy type involving convexity.

2. Main results. From now on we denote by

—

/A (_wlp CR) —L (x—t)p> o (13)

1—p 1—p "1—0p
and
—dp p —wip p —Wmp p
t— = t— t— . 14
S oy = (2L T2 ay) .

So, we rewrite

Dijf(w):ﬁ)) / B L‘ - <x—t>ﬂ FoO@dt, (15)

a

and

b
n (_1)”"’1 A (p) G _(Dp n
Dyt f (x) = B ea— EQS -, (t—a)"| fOrD (1) dt, (16)
V€ lab], feC™ ([a,b]),n€eEZ,.

From now on we take 0 < p < 1, A > 0, 7; > 0, w; € R — {0}, for
j=1...,m

We present the following L, Hardy type inequalities.

Theorem 3. Let f, € C"* ([a,b]), n € Zy, v = 1,...,N; p,q > 1,

l—|—%:1. Then
N
<(A(p)) y
p 1=p

p
N

[T owter

v=1
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and

S

x ( j ( j ’E((Z)J))\ L_TQZ (t—m)p} pdt) Ndx)

Proof. We prove only (17).
We have that

( >|f,s"+1>||q). (13

D f, (x) = fT(p;/E((Zf)A [—5,0 (z — t)ﬂ] D (1) at, (19)

v=1,...,N,V x € [a,b].
By Holder s inequality and (19) we obtain

<2 e %

|A(p)] ] () | —9p
< E Y —t)’
1 _ p (P),)\ 1 _ p (x )

t)”]

p

de | |lFYY, (20)

3=

and

H ’Dn-i—ﬂ

o sl

a

==

N

) izl

vV x € [a,bl.
Hence it holds

(ﬂ}ﬂ’”” fo(z )})p<

v=1
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ADONY (| [ =52 p \V [ v
< (5™ (ffee [P -] ) (LD, )

(21)

/ (ﬂ D £ ()] )pdm < (%)N y

pdt) d:v) (Hufﬁnﬂwq) @

b x
() | =P
’ </ </ ‘E(”)]’A {1 —, t)p}
We continue with fractional Opial type inequalities:

proving the claim. [
Theorem 4. Let f € C"™ ([a,b]), n € Z,; p,qg>1:
i) the left side one:

1,1 _
Z;—i-a—l. Then

T

[ 1Dz @) 70+ @] aw < 27}

() | —Wp }
% E — T w— )P
</</‘ (’))’A{l—p( )

ii) the right side one:

SN

b

[ D32 @) 70+ @) aw < 27}

b b
('Yj) _("_jp p:|
X E —(t—w
</</’ (”)’A{l—p( )

Ve lab.

2
q

pdt) dw)p</\f<"+1>(w)\qdw) :

(24)
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Proof. We prove only (23). We have that (by Holder’s inequality)

s (@) < 42 / 1Eg;;,a [# (o t)"}

P p
x—t }

Alp) 7 () | —wp
E J
—p (A |1

f(n—i—l)(t)‘ dt <

(25)
Call .
x) = / ‘f("“) (t)‘th, ® (a) =0. (26)
Then
(@) =" @) = 0, (27)
and

(@ (@) = [ @)] >0, Ve lab].
Consequently, we get

’Dner (w)‘ ‘f(n+1) (w)l <

A ()] / o) [—p p
< = N E' J _ —t P
1—p (P):A 1_p(w )

YV w € [a,bl.
Thus, by applying again Holder’s inequality:

dt)p (@ ()@ (w)F,  (28)

/ D £ ()] [ £ ()] deo <

(pli /w () | —Wp
EVD | 2 (w — )P
i A |1 = p(w )

xT

2 (oo

3=

pdt) (D(w) ' (w))7dw <

pdt) dw) p(/@(w)@'(w)dw) 5
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L fle [ 2 e[ a)) (V12)
Afpz' ( / ( / G0 ey dw) ;< / !f("“)(w)\qdw> 3,

proving the claim. [J
We continue with fractional Hilbert-Pachpatte type inequalities. First
comes the left side one:

Theorem 5. Let p,qg > 1 : ]10 % =1, p = 1,2. Let [a,b,] C R,

fu€ C™ L (Jay, b)), ny € Z1;0 < py <1, N, >0, 7, >0, w;, € R—{0},
j=1,...,m. Also we denote

—_wupﬂ — WPy —WmuPu
_t pM:: [k _t ,0;4”‘— —t ou
1—p, (Tp — ty) ( 1—p, (T — )", Ty (x, —t,) (?:0)
w=12.
Then
b1 b
f / | Dt fi ()] !D:;;r% (2)| dary iz _

1 (’7]'1) —d1p1 P ‘ | (v42) —& ‘q
— 1 ] Zwaps —$5)P2
a1 az {al (lel[ T—py (T171) ] dh QJ; E(”zMz[ T—py (#2712) ] dtz
+
p q

[As (p) A2 (P2)] ) 1)) | plna+)
< (b — by — ! ? . 31
( 1 al)( 2 a2) (1 —,01) (1 _p2) ||f1 Hqu? Hp ( )
Proof. Here we have (u=1,2)
DMt f (2,) (15) Ay (Pu) i) —GuPu (2, — )" | foutD (2,) dt
ap* H H o 1 — pp] (Pu)v)‘u 1 J— pu H M 1 H 2k
(32)

vV x, € la,, b, n, € Z,.
Then
’D:H:—p”fu (xu)‘ <

’ g Wupﬂ
1 _ Pu pi;)L Au ( — )

D ()| dt, (33)
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pw=12.
By applying Hélder’s inequality twice we get:
A
|D;z1:-p1f (z )‘ < | 1(/01)’X
1 1 — 01
Wip1 P 7 1 q :
(P [ ()
(34)
V x1 € [a1, by, and
n |42 (p2)|
|Da22j02f2 (z2)| < .

X
N
\E‘i
S
-
L=
[ V)
—
—
| N
RS
N
—~
8
)
|
~
N
N
e
N
1
<
QL
~
N
N——
Q=
7~
\H
o
3
I
+
=
—~
~
S—
QL
=
)
N—
i1

(35)
Y 29 € [ag,bg].
Hence we have (by (34), (35))
|Dn1+P1 ‘ ‘Dm-&-m | < |A1 (P1)| |A2 (P2)| x
“w @ (L=p1) (1= p2)
1 . » %
i1 —Wip1
X (/ E((Zl),)xl {1 o (1 —tl)pl} dt1> X (36)
ai
2 . q %
(v42) —W2pP2 o (n1+1) (n2+1)
o e [T ] ) i,

11 b
<using Young’s inequality for a,b > 0, ar b < ¢ + —)
p q

Z1

< A ()] 142 (p2)| a{
S (=p1) (1= p2)

1 —3 p
B, |72 = 0)] | dn

_|_

p
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i

) _a q
E((Z;),))\z [1_—2,;’)22 (z2 — t2)p2}

e ; b,
Vo, €la,,b,), p=12.
So far we have that
| Do f (2 HD::;J% (2)]
e e[ Pl [ emam]a

P q
A A n n

< (AN ) =, (3)

Vo, €la,,b,), p=12.
The denominator in (38) can be zero only when 21 = a; and x5 = as.
Therefore we obtain (31) by integrating (38) over [a1, b1 X [ag,bs]. O

The counterpart of Theorem 5 follows (the right side inequality)

Theorem 6. All as in Theorem 5, but now we denote

t, —x,)P" (t,—x)™, ..., (t _l»)/’u)7
1—pu K 1_pu I B 1_pu u w
(39)
uw=172.
Then
by by . .
// Dblljpl (1)) ‘Db;jmf 2)| dzydzs _
AN
ai a2 (P1)>\1 1W1Pp11 (tlixl)pl]‘pdtl f |E(P2) >‘2|: 1“221:;2 (t2712)p2”th2
p q
A Ay ( N .
< (= ) b = ag) (OO e

(1—p1)(1- g
Proof. As similar to the proof of Theorem 5 is omitted. [
We need

Notation 7. Let (21, %1, p1) and (s, X, 2) be measure spaces with pos-
itive o-finite measures, and let k : Q1 x Qs — R be nonnegative measurable
functions, k (z,-) measurable on s, and

K(x) = / ke, y)dua (y) . for any z € . (41)

Qo
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We suppose that K(x) > 0 a. e. on €y and by a weight function u (shortly:
a weight), we mean a nonnegative measurable function on the actual set.
Let the measurable functions g; : & — R, j =1,...,r, with the represen-
tation

6 (@) = / Ko, y)f(0)dia () (42)

Qo
where f; : Qo — R are measurable functions, j =1,...,7.
Denote by ¥ = z = (z1,...,2,) € R", § = (¢1,...,9,) and
f = (fl)"'af?")'
We consider here ® : R7 — R a convex function, which is increasing
per coordinate, i.e. if x; <y;, 7 =1,...,r, then

S (z1,...,2.) <P (y1,...,Yr).

In [2, p. 588|, we proved that

Theorem 8.  Let u be a weight function on €, and k, K, g;, f;,
j=1,...,r € N, and ® defined as above. Assume that the function

r — u(x) kg(;:y)) is integrable on Q; for each fixed y € Q5. Define v on )y
by
k(z,
v (y) = / u (z) [g (;;) dyu (z) < oo (43)
Q1
Then
|91 ()] |9r ()]
P e d <
[rae (G e ) o
951
< oAW1 W) diaty) (14)
Qo
under the assumptions:
(1) f;, ®(|f1l, .-, |fr]), are k(z, y)dpso (y)-integrable, p-a. e. inx € Qy,
forall j=1,...,7;
(i) v (y) @ ([fr W]+, |fr (¥)]) is po-integrable.

We give under convexity a left fractional generalized Hardy type in-
equality.
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Theorem 9. Let u; be a weight function on |a, bl

A(p)

p ;| W
ka* (%y) = 1—pX[am] (y> E?),)\ |:1 _ (l’ - y)P‘| )

Kur @) = 3 [ 0 B s | 720 = )

a

for any = € [a,b]. Also consider DII?f, and e O (Jay b)),

p=1...,re N, n € Zy, and ® : R, — R a convex function, which

is increasing per coordinate. Assume that the function x — uy () %

is integrable on [a, b] for each y € [a,b]. Define v, on |a,b] by

n(y) = /ul(x)Tx(f)dx < 00, (46)

and v is assumed to be integrable on [a, b].

Then
a/ul(m (P e e

< / (‘ £

a

N

A (y)D dy. (47)

Proof. See Notation 7 and apply Theorem 8. []
Also we give the right side corresponding to (47) Hardy type inequality.
Theorem 10. Let uy be a weight function on [a,b],

(=D)"" A(p)

kb— (:B?y) = 1_p

. —wp
Xiet) (V) B 5 [rp (v — iﬂ)p] :
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for any x € [a,b]. Also consider DI""f, and f""" € C([a,b)),

p=1...,re N, ne€Zy and ® : R, — R a convex function, which
is increasing per coordinate. Assume that the function x — usy () %
is integrable on [a, ] for each y € [a,b]. Define v5 on [a,b] by
[ ooy 0)
b—\T, Y
= ————=dzr < 49
n(0) = [ ) G e < . (19)
and vy is assumed to be integrable on [a, b].
Then
b
[ Dy fi ()] D7 fr ()]
us ()P b= L dr <
[t ( Ky (@) Ky (1)
b
< [rwe (# @]o 1 W) dy (50)

a

Proof. See Notation 7 and apply Theorem 8. [

Note 11. One can create a vast number of similar very interesting theo-
rems using (3) and (5) and based on the author’s monographs [1], [2]. To
stay short we choose to skip this task.

Conclusion 12. The highlight of this work is the introduction of the frac-
tional derivatives (2)—(7) with non singular kernel and many parameters,
able to incorporate lots of data, so they can describe complex settings and
situations in complete ways.
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