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ON THE P-HARMONIC RADII OF CIRCULAR SECTORS

Abstract. It is proved that the property of logarithmic concavity
of the conformal radius of a circular sector (considered as a function
of the angle) extends to the domains of Euclidean space. In this
case, the conformal radius is replaced by p-harmonic one, and the
fundamental solution of the Laplace p-equation acts as logarithm.
In the case of p = 2, the presence of an asymptotic formula for
the capacity of a degenerate condenser allows us to generalize this
result to the case of a finite set of points. The method of the proof
leads to the solution of one particular case of an open problem of
A. Yu. Solynin.
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1. Introduction. The concept of the inner (conformal) radius plays
an important role in the geometric theory of functions. For a simply con-
nected planar domain D of hyperbolic type, the conformal radius R(D, a)
at the point @ € D is defined as modulus of the derivative at the zero
of the conformal map of the unit disc onto D that takes zero to a. In
a more general situation, the definition of the conformal radius is given
in terms of the Green function. In the proof of Theorem 2 in [4], when
searching for the minimum of the discrete Green energy of an annulus, the
property of logarithmic concavity of the conformal radius of the circular
sector (considered as a function of the angle of a given sector) plays an
important role. Namely, we denote by R(y) the conformal radius at the
point @ of the annular sector {z = re? : t <r < T,]0] < mp}, 0 < ¢ < 1,
where t, T, 0 <t < T < 00, a,t <a<T,are fixed. Then we have the
inequality

%ZlogR(gpk) < 1ogR<%Zg0k) (1)
k=1 k=1
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for 0 < ¢1 < ... < ¢, < 1. Taking into account the continuity of the
function R(y), the inequality (1) is equivalent to the concavity of the
function log R(p), or the inequality

log R(a) 4 log R(B) <10gR<a+ﬁ)’ 2)
2 2

where 0 < o < . To prove inequality (1), the author used suitable con-

formal mappings, a radial averaging transformation, and some geometric

considerations.

A natural extension of the concept of conformal radius from the plane
to the Euclidean space R? is the p-harmonic radius introduced in [10].
For d = 2 and p = 2, the p-harmonic radius coincides with the inner
(conformal) radius. Specialists are most interested in the properties of
the harmonic (p = 2) [2| and conformal (p = d) radius [13]. The question
about the validity of the inequality (1) arises in Euclidean space when
the conformal radius is replaced by the p-harmonic radius. Since the only
conformal mappings in Euclidean space are the Mobius mappings, the
argument used to prove (1) does not apply.

In this note, we show that the analogue of (1) is also valid in Euclidean
space. In the case p = 2, the asymptotic formula for the degenerate
condenser allows generalizing (1) to the case of several points. It remains
an unsolved problem to obtain an asymptotic formula for the p-capacity
of a degenerate condenser whose plates contract into a finite number of
points.

The proofs of the theorems are based on the moduli technique for
families of curves. The key ingredient in the proofs is Lemma 1. Note also
that our approach is applicable not only to circular sectors, but also to
some other domains. For example, in this way we obtained a solution to
one particular case of an open problem of A. Yu. Solynin |3, Problem 4].

Functionals related to linear elliptic partial differential equations (such
as capacity, energy, harmonic radius, etc.) and depending on the domain
D have a large number of applications in conformal mappings, potential
theory and mechanics. Accordingly, information on the behavior of these
functionals under various perturbations of the boundary 0D is of inte-
rest (see, e.g., [6], [9], [11], and references therein). Theorem 1 of this
paper in the case of p = 2 (but not arbitrary p > 1) can be obtained
from [11, Corollary 4.1|, [6, p. 332] by choosing a suitable subharmonic
function to describe the variation of the sector boundary. The technique
we have presented also makes it possible to obtain, for p = d, an analogue
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of Laugesen’s result on the concavity of the Green energy in a ball |9, Theo-
rem 9.

2. Main results. Everywhere below, R? means the d-dimensional
Euclidean space of points x = (z1,...,24), d > 2, with the usual norm
|| - || and distance ||x; — x2||. For p > 1, we denote by p,(7) the function

Note that &£,(x) = u,(||x]|) is the fundamental solution of the p-Laplace
equation [10]
Apu = —div(|VulP2Vu) = dwed(x),

where wy is the volume of the unit ball and § is the Dirac d-function. The
function inverse to y = p,(7) is defined by the equality

y _ eXp(_y)7 b= d7
) {(Uy)‘l/“, p#d.

B. E. Levitskii in the paper [10] gave two equivalent definitions of
the p-harmonic radius: in terms of the p-harmonic Green function and in
terms of the p-capacity of a condenser. We will use his second definition.
A condenser C' = (E, F) in the space R? is a pair of nonempty, closed,
and disjoint sets. The capacity (p-capacity) of a condenser is defined as
the value

cap, C' = inf/ |VoulPdz,
Rd

where the infimum is taken over all functions v : R — R from C*°(R?)
vanishing in a neighborhood of F and equal to 1 in a neighborhood
of F. Let the domain G C R? and a € G. For a sufficiently small
7 > 0, we denote by C(7,a,G) the condenser (S(a,7),R?\ G), where
S(a,7) = {x € R¢: ||x — a|]| = 7}. We define the p-harmonic radius of
the domain G at the point a € G by the following identity:

R,(G,a) = lim v, (MP(T) — M\ (cap, C(, a, G))ﬁ), (3)

T—=0+

where A\g = (dwd)ﬁ.
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The definition of the p-harmonic radius can also be formulated in terms
of the moduli of families of curves [7]. Following Ahlfors [1], we will
understand a curve as the union of a finite number of closed or open
arcs. For a family of locally rectifiable curves I' and p > 1, the module
(p-module) is the quantity

M,(T) = inf/ppdx,

R4

where the infimum is taken over all Borel functions p : R? — [0, o], such
that f7 pds > 1 for any curve v € I" and dx denotes the d-dimensional
Lebesgue measure. The functions p in the module definition are called
admissible functions. If G is some domain in R? and all curves v € I are
subsets of G, then the definition of a module can be limited to admissible
metrics supported in G. For E C G and F C G, the symbol I'(E, F,G)
will mean the family of curves connecting E with F' in G, M,(E, F,G)
denotes its module. Recall that the curve y(¢) connects the sets F and F
in the domain G, if () is continuous on the interval (a;b), v(t) € G for
t € (a;b) and limy_,, dist(v(t), E) = 0, limy_, dist(v(t), F) = 0.

It is known that the p-capacity of a condenser coincides with the
p-module of the family of curves connecting its plates [12]. From (3)
it follows that

Ry(G,a) = Tim v, (11y(7) = Naby(7,2,G) 77 ) (4)

T—0+

or

1o(Ry (G a)) = =AM, (1,8,G) 77 + p(1) +o(1), 7—0.  (5)

Here M,(r,a,G) is the module of the family of curves connecting the
hypersphere S(a, 1) of sufficiently small radius 7 with the boundary 0G.
We obtain from (5) the asymptotic formula

mirn )= () (14 mmiGa Tl o)),

T—0, 1<p<d. (6)

Note that the equality of capacity and modulus and the properties of
the capacity of the condenser |3, Theorem 1.10] imply

Mp(T, a, Gl U Gg) + Mp(T, a, Gl N Gz) < Mp(T, a, Gl) + Mp(T, a, Gg)
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The formula (6) for 1 < p < d leads to the inequality

tp(Ry(G1 U Ga,a)) + pp(Ry,(G1 NGy, a) <
tp(Bp(Gr,a)) + 1y (Ry(Ga, @), (7)

Denote by J the (d —2)-dimensional plane {x = (0,0, z3,...,24)}. We
will need the cylindrical coordinates (r, ,x’) of the point x = (z1,...,x4)
in R?, related to the Cartesian coordinates by z; = rcosf, xo = rsiné,
x' e J.

For 0 < ¢ < 1, the symbol S(¢) will denote the circular sector
of angle 2mp. More precisely, S(p) = S(p,t,T) = {x = (r,0,x) :
t<||x|| <T,|0] < mp}, where t, T, 0 <t < T < oo are fixed.

Theorem 1. Suppose that 1 < p < d, a = (a1,0,...,0) € S(p) and
R,(p) is the p~harmonic radius of the sector S(y) at point a. Then the
function f(¢) = p,(R,(¢)) is convex on 0 < ¢ < 1.

For p = 2, Theorem 1 can be generalized to the case of a finite set
of points. To formulate our next result, we need the Green function for
the Laplace operator vanishing at the points of the boundary 0B of the
domain B. This Green function with a pole at the point xo € B will be

denoted by gp(x,Xg). In the neighborhood of xg, the following expansion
holds:

98(x,%0) = ((d = 2)54-1) " ([lx = %0[** = (Ra(B, %0))*~%) + o(1),
X — Xg, d =3,

9B(x,%0) = —log ||x — xo|| + log(R2(B,x0)) + o(1), x — xq, d=2,

where s;_; = 27%2/T'(d/2) is the area of the unit hypersphere. Note
that the definition of the Green function in different sources differs up
to a multiplicative factor. Here we adhere to the definition of the Green
function adopted in the [5], [3].

Theorem 2.  Assume that ai,...,a,, € S(y) belong to the axis
{x € R : x = (21,0,...,0)}, gs()(ar,a;) is the Green function of the
circular sector S(p) evaluated at the point a; with the pole at the point
ay,

Glp) =) Ra(S(p),an)* " — (d — 2)sa- 12293@; ay,ay), d >3,

=1 I1=1
£k
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= log Ra(S(9),ar) = > g (@ ar), d = 2.
k=1 k=1 =1
14k

Then the function G(p) is convex on 0 < ¢ < 1.

To prove these theorems, let us compare the moduli of some families of
curves. The family I'y is said to be longer than the family I'y if each curve
from v, € I'y has a subcurve 77 € I'y. In this case, M,(I'y) < M,(I'y).

Let L be some hyperplane that splits R? into two closed half-spaces
At and A~. For any set A C R%, we denote At = ANA+, A=~ = AnNA—;
and let A* be the set symmetric to A with respect to L.

Lemma 1. Suppose that the hyperplane L intersects some bounded
Jordan measurable domain G C R? (G7)* C G, and curves from
the families I' = {v}, I'' = {m}, 2 = {12} satisty the conditions:
v C GF, 1 C G\ (G7)*, 72 C G. Let Iy denote the family of curves
Yo =7U(yN(G7)*)*, v €. If T is longer than I'y and Iy is longer than
[y, then

2M,(T) < My(Ty) + My(T) 8

We apply Lemma 1 to the circular sectors in the Theorem 1. If in-
stead of circular sectors we consider curvilinear trapezoids, we obtain a
solution to the special case of the open problem [3, Problem 4]. This
problem was posed by A. Yu. Solynin in the following formulation: let
fi(z) > 0, fo(x) > 0 be continuous functions on the interval a < x < b,
—00 < a <b< oo, folx) = (fi(z) + fo(z))/2, and let r(By, z) be con-
formal radius of By = {z :a < Rez < b, |[Imz| < fi(2)}, £ =0,1,2. It is
conjectured that

(B, z) = \/7(By,2)r(Bs, ) (9)

for all z € (a;b). In Theorem 3, it is proved that under the additional
condition fy(z) = const, the inequality (9) is also valid in Euclidean space
of any dimension.

Theorem 3. Assume thatp € (1,d], x=(x1,...,241) R f1(x) >0
fa(x) > 0 are continuous real-valued functions on some bounded Jor-
dan measurable domain D € R¥1 fo(x) = (f1(x) + f2(x))/2 = ¢ = const
and By = {(x1,...,24-1,24) € R : (z1,...,04.1) € D,|zq| < fr(%)},
k=0,1,2. Then

21 (Ry(Bo, a)) < pip(Ry(Bi,a)) + pip(Rp( B, a)) (10)
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for each a € D.

Corollary. Suppose that 1 < p < d h >0, P(h) is a parallelepiped in the
space RY, P(h) = {(z1,...,24) € R |2y < bsyi=1,...,d—1,|xgq| < h},
rp(h) is the p-harmonic radius of tbe parallelepiped P(h) at the point a,
a = (a1,...,a4-1,0) € P(h). Then the function p,(r,(h)) is convex on
0 < h<oo.

In conclusion, we note that a similar approach is applicable to the
study of the properties of the p-harmonic Robin radius [3], [8]. For a set
@, lying in the closure of the domain G, we define the p-harmonic Robin
radius as

Ry(G,Q.a) = Tim v, (ip(7) = MMy (,2,Q.G) 77 ),
where M,(7,a,@Q,G) is the module of the family of curves connecting
the hypersphere S(a, 7) with the set @ in the domain G. Repeating the
proof of Theorem 1 with obvious changes, we obtain the convexity of the
function w(p) = p,(R,(S(p), Q(¢),a). Here a = (a1,0,...,0) € S(p)
and Q(¢) means the part of the boundary S(¢) lying on the hyperplanes
6] = me.

3. Proofs.

Proof of Lemma 1. Let p; and p; be admissible metrics for I'y and
[, respectively. If all curves of the family under consideration lie in some
set, we assume that admissible functions are extended by zero outside this
set. Consider the following metric defined on G

p1(x) + p2(x) + p2(x7)
5 ,

p(x) =

where x* denotes the point symmetric to x with respect to the hyperplane
L. By the hypothesis of the lemma, for any curve v € I' there are sub-
curves y; € I'y and o € Ty, such that y4 C 7, 72 C YU (v N (G7)*)*.
Then

Q/p(x)ds:/ ds—l—/pg ds+/ o(x*)ds
:/ ds+/p2 )ds + / p2(x*)ds =

N(G)*
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:/pl(x)d8+/p2(X)d8+ / p2(x)ds >

v v (YN(G7)*)*
> [ s+ [ mixids =2,
71 Y2

which means that p(x) is admissible for T". It follows from the definition
of the modulus and convexity of the function f(z) = 2 for p > 1 that

. Q/pp(x)dx _ 2/ (m(X) +p2(2X) +P2(X*))pdx <

< [0+ mxyyixt [ mxrax. (1)

G+ G+

Note that the metric p;(x) is nonzero only on the set G\ (G7)*, and
the metric po(x*) = 0 for x € G+ \ (G7)*. Calculating the right-hand side

(11), we get
/ x)Pdx + / p2(x*)Pdx + / p2(x)Pdx =
GH\(G)* (G- G+
:/’<V@+ pﬁ+/ mm_/lwmk+/m@mm
Rd R?

Passing to the infimum with respect to admissible metrics p; and ps com-
pletes the proof. [

Proof of Theorem 1. Let D(p) = {x = (,0,x) : t < |[x|| < T,
0 < 6 < mp} be "the upper half" of the circular sector S(¢). Sup-
pose that F(p) is the part of dD(y) that does not contain points of
the hyperplane 0 = 0, F(p) = 0D(¢) N 9S(¢). The symbol I'(y) will
denote the modulus of the family of curves connecting the hemisphere
Slar)t ={x=(r,0,x) : ||x —a|| = 7,0 < 0} with the set F(p) in the
domain D(p), I'(p) =T'(S(a,7)", F(p), D(¢)). o

Suppose 0 < o < f < 1. Take 7 > 0 so small that D(«) con-
tains the S(a,7)". In Lemma 1, we set G = D(f); the hyperplane L
is the hyperplane containing {x = (r,0,x) : 0 = (o + f)/2}, a € AT,
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families of curves are I'y = I'(a), I'y = (), I' = I'((a + B)/2). Because
D(a) € D((a+8)/2), we see that the family of curves I' is longer than I'y.

Let us show that the auxiliary family I'y is longer than I's. Any curve
from T" connects S(a, )" either with a point lying on the boundary of the
annulus {¢t < ||x|| < T'} or with a point of the hyperplane {6 = w(a+£)/2}.
In the first case, the curve v belongs to I'; and the corresponding curve
Y =7 U (yN(G7)*)* € T'y has the subcurve v € I's. In the second case,
7y contains a curve 3 connecting in the (G7)* = D((a + 8)/2)) \ D(«)
a point ¢ € {§ = m(a + B)/2} with a point b € {# = ma}. Note that
b* € {§ = n5}. So (yU~3) connects S(a,7)" with F(3). It means that
(yU~3) € Iy, Since (YU~E) C (vU (v N (G7)*)*) = 70, the family I'y is
longer than I'y. Now, Lemma 1 implies the inequality

2M,,(T(a + 5)/2) < My(T()) + My(L(5))-
Due to symmetry, M,(7,a, S(p)) = 2M,(I'(¢)). Therefore, we have
2M,(1,a, S(a+ 5)/2) < My(r,a,S(a)) + M,(1,a,S(B)).

To obtain the required inequality

pp(Rp(S(a+ B)/2,a)) < (up(Ry(S(e),a)) + pp(Rp(S(8),a))/2,

it remains to apply the asymptotic formula (6). O
Proof of Theorem 2. Replacing S(a, )" in the proof of Theorem 1
by S(a;, 7))t US(ag, 7)...US(an,7)T, we obtain the inequality

oMy (1,2, S(a + B)/2) < My(7,a,S(a)) + My(r,a,S(8)).  (12)

Here M,(7,a, S(p)) stands for the p-module of the family of curves con-
necting the boundary 95(y) with S(a;, 7)US(ag, 7)...US(am,, 7). Equal-
ity of the p-capacity of a condenser and the p-modulus of the families of
curves connecting its plates allows us to use the asymptotic formula for
2-capacity of a condenser with degenerate plates (see |5, Proof of Theo-
rem 1| in the case of d > 3 and [3| in the case of d = 2). The required
asymptotic has the form

MQ(Ta a, S(SD))

— o L 22 2(d—2)
T mre T (p) +o(T ),

70, d>3, (13)
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MQ(Tv a, S(SD))
27

= —m(log )" + (log ) G(p) + o((log 7)),
T—=0,d=2. (14)

The inequality (12) and the asymptotic formulas (13), (14) imply the
convexity of the function G(¢). The theorem is proved. [

Proof of Theorem 3. We use the following notation:
Rt = {(z1,...,0q_1,74) € R : 24 > 0}, ST(a,7) = S(a,7) N R,
Gp = B, NR", F, = 0B, NIGy, k=0,1,2. In the case of f1(x) < fa(x)
forx € D, weset G =Gy, L={(x1,...,24-1,7q) ERY: 24 =c},a€ AT,
' =T(S"(a,7), Fo,Go), 1 =T(St(a, 1), F1,G1), 2 =T(S(a, 1), F3, Gs).
As in the proof of Theorem 1, we can verify that the chosen parameters
satisfy the conditions of Lemma 1. From (8), symmetry considerations,
and the asymptotic formula (6), we obtain the required inequality

21 (Rp(Bo, a)) < p(Ry(B1,a)) + pip(Ry( Bz, a)).

The condition fi(x) < f2(x) can be removed by considering, for x € D,
the functions

g91(x) = min(f1(x), f2(x)),

92(x) = max(f1(x), fo(x)).
Denote Dy = {(x1,...,24-1,7q) € R : (21,...,24-1) € D, |7q| < gr(%)},
k= 0, 172 SiIlCG gl(X) < gg(X), Do = BQ, D1 = B1 N BQ, D2 = B1 U BQ,
from the above and the inequality (7) we obtain the following chain of
relations:

2up(Ry(Bo, a)) = 2p1,(Rp(Do, a)) < pap(Rp(D1,a)) + pip(Rp(D2,a)) <
< wp(Rp(Br,a)) + pp(Ry(B2,a)). (15)

The theorem is proved. [
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