Probl. Anal. Issues Anal. Vol. 11 (29), No2, 2022, pp. 3-23 3
DOL: 10.15393/j3.art.2022.11190

UDC 517.518.86, 517.218.244, 517.927.2
B. BAYRAKTAR, J. E. NAPOLES, F. RABOSSI

ON GENERALIZATIONS OF INTEGRAL INEQUALITIES

Abstract. In the present study, several new generalized integral
inequalities of the Hadamard and Simpson-type are obtained. The
results were obtained for functions whose first and third derivatives
are either convex or satisfy the Lipschitz condition or the conditions
of the Lagrange theorem. In a particular case, these results not only
confirm but also improve some upper bounds, well known in the
literature for the Simpson and Hermite-Hadamard-type inequali-
ties.
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1. Introduction. One of the notions that attracts more attention
in mathematics today is probably that of the convex function. Its the-
oretical repercussions and multiple applications have made it the center
of multiple works and research. Many of these continuous extensions and
generalizations can be found in [23].

Definition 1. The function ¢ : [o,v] — R is said to be convex if inequal-
ity

p Az +(1=Ny) <)+ (1 -V ep(y)
holds V x,y € [o,v] and X € [0, 1].

Definition 2. A function ¢ : [o,v] — R is said to be quasi-convex if the
inequality

e (A + (1= Ny) < max{p(z), p(y)}
holds ¥V x,y € [o,v] and X € [0,1].
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One of the most important inequalities is called the Hermite — Hadamard
inequality ( [12], [11]):

o(T37) < o [l <« 2022 )

2

which is valid for any function ¢, convex on the interval [o, v].

Along with the Hermite - Hadamard type of inequality, a well-known
Simpson type of inequality is provided in the literature as follows: if
©: [o, V] V —> R is a four times continuously differentiable function on (o, v)

H — sup ’90(4 ‘ < 00, then
— [ - >
- “[90(0);9”(”)+2¢(U;”)]—/¢<s>ds‘<% | ¢, @

g

In the last few decades, many researchers in the field of inequalities have
refined, extended, and obtained new inequalities of the Hadamard and
Simpson types for various classes of convex functions; for example, see [4],
[6], [7], [10], [13], [24] and the references therein. A number of previous
studies were devoted to obtaining new inequalities of the Simpson type us-
ing derivatives of a lower order than the fourth (for example, in [4], [10]).
In addition, in many previous articles, Simpson-type inequalities were re-
fined and obtained for various classes of convexity of functions. For exam-
ple, see Alomari and Hussain in [2]. For quasi-convex functions, Hussain
and Qaisar in [14] obtained the inequalities through preinvexity and pre-
quasiinvexity. See Hua et al. in [13] and Chun et al. in |7] for s-convex and
Bayraktar in [4] for r-convex functions: these authors obtained inequalities
by using special means. Butt et al. in [6] also obtained Hadamard-type
inequalities for n-quasi-convex and s-Godunov-Levin convex functions in
terms of fractional integral operators. Ozdemir et al. [24] obtained new
integral inequalities for (a, s, m)—convex functions. The following three
inequalities are known well in the literature. In [26] (Corollary 1), Sarikaya
et al. proved the following inequality:

S ()] - et <
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<Sv- )"l 907’(20)| + W] (3)

The estimate (3) was confirmed in some recent articles (see, for exam-
ple, Corollary 2.5 in [16] for w = 1) as a special case of the obtained
result. Dragomir and Agarwal in [9] (Theorem 2.2) proved the following
inequality:

p(o) +¢(v) 1 ] (v —o) [l¢' (o) + ¢ ()]
— dé| < ) 4
N LGk ‘ (@)
This inequality was confirmed in some recent papers (see, for example
Corollary 3.1(4) in [20].In [17] (Theorem 2.2), Kirmaci obtained the fol-

lowing inequality:

14

Vig/s@(iﬂ&—@@i”)

o

< w=all¢ (g)\ +l W] (5)

The inequality (5) was confirmed in some recent articles (see, for exam-
ple, Remark 2 in [27] and Remark 2 in [5]). The classical definition of
a Riemann — Liouville fractional integral in the literature is given in the
following way:

Definition 3. Let ¢ € L[o,v]. The Riemann—Liouville integrals J% ¢
and J ¢ of order a > 0 with o > 0 are defined by

T (z) = ﬁ / (x— & p(e)de,  w>o,

o
v

1

T2 (@) = Fi / (-0 pe)de,  a<w,

respectively, where I'(«) = [ e “u®"'du. Here J2 o(x)=J p(z)=p(z).
0

In the case of a = 1, the fractional integral reduces to the classical integral.

This study was motivated by the work [8], in which the authors ob-
tained an estimate of the Hadamard-type midpoint inequality in terms of
the Lipschitz constant.
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The aim of the article is to construct new generalized integral inequal-
ities using the first and the third derivatives of a function and, using these
inequalities, to obtain inequalities of the Hadamard and Simpson types
by taking into account the fact that the derivatives of the function satisfy
the conditions of either convexity, or satisfy the Lipschitz condition, or
the conditions of the Lagrangian theorem.

1. Results obtained by using the first derivative. For the sake
of brevity, we will use the following notation for some expressions:

U(Je.,Jo ) e 2a1F(a+1)[ g+¢(a+y)+J5:¢(a+u>]7

o v (v — o) 2 2

1

W(w,p) = /w'({) [@(1;504— 1_2|—£l/> +90(1_2F£0+ 1;€V>}d§.
0

Lemma 1. Let ¢ : [ C R — R and p € C'(I°) (I° be the interior of
I)and o,v € I with0 < 0 < v < oo. If ¢ € Ly[o,v] and w(§) is a
continuous function on the interval [0, 1], then we have

AL ) (T2 - tew.p) = L (1 - 1) @

2 2 2 4
where
1
L= [w©e (5 e+ ),
0
1
Igz/w(ﬁ)np'(l—;ga—l—l;gV)dg.
0

Proof. Integrating by parts for I; and I, we get

jy = 2el) — w0pl57)] 2 /lw,@@(l s
I = 2[w(0)go(”+70)_— wi)elol] E jw’(ﬁ)tp(l;gwr 1;§u)d£.



Some integral inequalities 7

By subtracting the second equality from the first, dividing both sides of the
resulting equality by expression A, and taking into account the accepted
designations, we obtain equality (6). The proof is completed. O

Remark. By choosing the function w(§) in the left-hand side of (6),
we can get various Hermite — Hadamard or Simpson-type expressions, for
example:

1)

7)

If w(¢)=cé+dand ((d<0andc>|d|)or(c<0and|c|l>d>0))
then, in the left-hand side of identity (6), we get an expression of
the Simpson type:

2 fer S (0] o

_(w—o) (I, — I
S 1—12).
Ifw(§) = ¢, we get the identity obtained by Alomari in [1] (Lemma
2.1), Igbal in [15] (Lemma 2, for A = p), Latif in [18] (Lemma 2.1),
and in [19] (Lemma 1, for x = o or x = v).
If ¢-d < 0 and |d| = |c|, we get the identity obtained by Igbal in [15]
(Lemma 3, for A = u);
Ifw(€) = c€“+d, then, under one of the conditions (d < 0 & ¢ > |d|)
or (¢ < 0&|c| > d) on the left-hand side of (6), we will always have
an expression like Simpson by using the fractional operator

v HDE (250 - )

+ -
(o v
C

=2 (Lh—L). (7

If w(¢) =% - 5, we get the identity obtained by Matloka in [21]

(Lemma 5);

If w(§) = &, we get the identity obtained by Mihai in [22](Lemma
1, for x = v) and Awan et al. in [3] (Lemma 2.5, for n = 1 and
r=v).

If c¢-d<0and|d| =|c|, we get the identity, which is equivalent to
the identity obtained by Sarikaya in [27](Lemma 3).



8 B. Bayraktar, J. E. Napoles, F. Rabossi

8) If w(§) = (1 —&)*, we get the identity obtained by Sarikaya and
Yildrim in [27](Lemma 3).

Theorem 1. Let o : [ — R and ¢ € C'(I°). For 0 < o < v, suppose
that o,v € I° and |¢'| is convex on [o,v|. Then the equality

o Z DA oo (75| - e <

A O /|w e s

holds. Here ¥(w, ) has been defined above.

Proof. Since |¢/| is convex, then, from (6) for (I; — I5), we can write:

1
I — L] < |I| + | I </!w(§)|{
0

o (3t 15 e =1 @1 o /|w )lde.

oS5 )|

+

The proof of the theorem follows from this inequality. [

1
Remark. If we accept that w(§) = 3~ g, then, from (8), we obtain

(3). If we choose w(§) = ¢& with ¢ # 0, then, from (8), we obtaine the
inequality (4). If w(§) = ¢(1—¢&) with ¢ # 0, then, from (8), we obtaine the

@ 1 @ 1 1
inequality (5). Take w(§) = 5 3 and take into account 573 < 3
V¢ € [0,1]; then, from (8), we get the inequality obtained by Matloka
in [21] (see Corollary 7).

Remark. If w(§) = c£, then (8) gives for ¢ = 2 the inequality obtained
by Mihai in [22] (Theorem 1, for x = v) and Set et al. in [28] (Theorem 8,
forn=1,x=v,m=1).

Remark. If w(§) =1— &%, then, from (8), we get

[o(T5) ~ 2002 2| < S I @+ 16 .
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Remark. If w(§) = (1—¢&)%, then, from (8), we get

‘ (a+u>_2af(a+1) J )+90(1/)+J<U;)¢(0)H<

2 (v—o) L (7~
(1 (@) + ¢ )]

S 7
4(a+1)
For oo = 1, this inequality gives (5).

Corollary 1. Let ¢ : [ = [o,v] = R and ¢ € CY(I°). If ¢’ satisfies the
Lipschitz condition on I with respect to K, then the following inequality
holds:

oA ()] - S| <

K-(v—o) /
<2 e wlds, ()

where W(w, @) was previously defined.

Proof. For the I, — I; from (6) and by taking into account the Lipschitz
condition, we can write

Ao L) o (e 5 e

1
[ = L] < |w(€)]
[

1+§V_1+§U_1—§V‘d§:
2 2 2

1
<K0/|w<»s>|\1gfa+

— K- (=) [ ¢ ulo)]de

This inequality obviously implies (9). OJ
Remark. If we take into account the fact that the functions ¢’ are Lip-

schitz with the constant K < m[a:z:] l" ()| = || < 00, then
x€E|o,V

//H
[ee]

' [w(l)w — w(O)go(U ;L V)] - %\Il(w,go)‘ <
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(v =0 ¢l |
<= [ ulde (o)

1
Remark. If we accept that w(§) = 3~ %, then from (9) and (10) we get

the inequality obtained by Delavar et al. in [25] (see Remark 1(2)).
Remark. If w(&) = ¢, then from (9) and (10) we obtain the inequality

2 v—o 12 = 12

(e

JLELR Y L L

Remark.

(10) If w(&) =1 —¢&, then we get the inequality obtained by Delavar and
Dragomir in [8] (Corollary 2.4).
« « 1

1 1
(1) If we take w(§) = % ~3 and take into account % -3 < g,VE € [0,1],
then from (9) we obtain the inequality

‘%[@(U)‘FSD(V)_F%O(U—QI—VH _ue a)’<

2 oty Yy

K- -(v—o) : K (v—o)
<2 [ quiglae < B2
0

(i2) If w(§) = c£*, then from (9) we get

el K - (v — 01)°
4 (o +2)

‘SO(U)‘HO( v)

U, I <

(i3) If w(§) = 1 — £, then from (9) we get

‘sa(mru) —2U(Jgs, Jo- )’ < %‘

(i4) If w(&) = (1 — £)®, then from (9) we get

gy () 4+ Ty 0l0)] | < 4@4(5)@?2)'

() -
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Theorem 2. Let ¢ : I — R and ¢ € C'(I°). For 0 < 0 < v; suppose
that o,v € I° and ¢’ is a continuous function on the closed interval [o, V]
and differentiable on the open interval (o,v). Then there exists some ¢ in
(o,v), such as:

\ (22 ) (ZE2)] - 1w<w,so>\ <

2 2

< L= Ol [ eyt < C= e [uieiae, )

where W(w, ) has been previously defined and ||¢"|| . = m[ax] | (x)] .
xE|o, Vv

Proof. From (6) and Lagrange’s theorem, we can write

90/<1;£0+1+§1/> —90/<1+£0+ ! _gu)‘df <

1
I, — | <
L-nl< [ e ' o
0
1

¢ =

1-— 1 1 1-—
<@l -a) ol G+ Sy - e - 125y
0

1

— 16"()| (v - 0) / £ Juw(e)] de.

0

This inequality obviously implies (11). [
1

Remark. If we accept that w(§) = = —

§
372

, then from (11) we get

v

y;a[@(UQ);LSD(U) +2¢<0‘2“/>] _/w(g)dg‘ <

[

_20e"@)- (v = o)’ e i P o)’

< S (12
81 81 (12)

g , 11

Remark. If we take w(§) = 373 and take into account 5 73 < 3

V¢ € [0,1], then from (11) we obtain the inequality
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2 oty Yy~

(v — )’ |¢" (&) el - (v = o)’
12 = 6 ‘

[w(a)gw(w”@(aﬂ)] _ue a)‘<

<
Remark. If w(§) = c£*, then from (11) we get

lelle” (I =) _ ld(¥ = 0)*[l¢" ]l
4+ 2) h 4(a+2)

EUEURSA

Remark. If w(§) =1 — &2, then from (11) we get

‘SO(U‘Q‘V> —2U(J%, 3*)’ < Q(V;(Z)+|;II<€)| < a(Vg_(Z)_’_H;)OHHoo'

Remark. If w(§) = (1—¢&)%, then from (11), we get

’SD(J+V) ~2°T(a+ 1)[

2 (v—o)e JEY";”)“'O(U)""J((T;)SO(U)H <

(v=a)1e"@) _ (v=0)ll¢"ll

Sia+)(a+2) Star)(ar2)

It was established that for some functions ¢, defined on the interval
[0, v], for all £ € [0, 1], the following inequality holds:

(€ + (1 = &v) — (v + (1 = o) <1 =2 |p(v) —p(o)].  (13)

For example, the function p(z) = 2", © € [0,v] satisfies the inequality
(13) for all n € N.

For many functions that are convex on a given interval, it is impossible
to prove analytically whether (13) holds or does not hold, but it is easy
to prove numerically by using the MS Excel spreadsheet software (for
example: for functions f(z) = —In(z + 1), g(z) = €*, w(z) = sinz +
cosz + 2% and h(x) = V2?2 +1).

From (6), it is easy to establish the validity of the following corollary:

Corollary 1. Let ¢: I — R and ¢ € C'(I°). For 0 < o < v, suppose
that o, v € I° and ¢’ satisfies the inequality (13) on [o,v]. Then the
inequality
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13
oW AP o) T5Y)] - o) <
<L=le =20 [e juelas aa)

holds. Here, ¥(w, ) has been previously defined.

Proof. By taking into account the inequality (13) for the right-hand side
of (6), we can write

w’(lgfw 1+§0> —w’(1+£u+ 1_£u>)dg<

1
I, — | <
L= i< [ (o) : o
0

< [l 300+ 1550 - 5500 - 15

d:
2 2 2 ¢

ZWWﬂ—¢@H/£MMOM§

This inequality obviously implies (14). OJ

Remark. If we accept that w(§) = = —

1
3 , then from (14) we get

S—gp 1)=& (15

Remark. Obviously, the error of estimate (15) is more than 2,5 times
better than the estimate (3).

Remark. If w(§) =&, then from (14) we obtain the inequality

vV —

2 - Via/ﬂf)df‘ S 120 ' () =& (@)].  (16)
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Remark. If w(§) =1—¢, then from (14) we obtain the inequality

14

[ - o(757)

(o2

v—o
<
24

o' (v) =& (o)].  (17)

« « 1

1 1
Remark. If we take w(§) = % —3 and by take into account % —3 < 3
V¢ € [0,1], then from (14) we obtain the inequality

DA g (TE)] v g <

<V—O’
D)

¥ (v) = ¢'(o)].
Remark. If w(§) = ¢£, then from (14) we get

(o) +o(v)
2

el (v = o) |¢' (v) = ¢'(0)|

-9 <
U( oty I/) 4(&+2)

For a =1 and |c| = 1, this inequality gives (17).
Remark. If w(§) =1—£%, then from (14) we get

(75 - 200z, )] < I

For ae = 1, this inequalitys gives (17).
Remark. If w(§) = (1 —¢)", then from (14) we get

‘90<<7+u> U, )| < J%(O;(i)lg(si’f);).

For ae = 1, this inequality gives (17).

For convex functions, provided that inequality (13) holds, the obtained
estimates (16) and (17) for the right and left Hermite - Hadamard inequa-
lities are undoubtedly better than estimates (4) and (5) available in the
literature.

2. Results of using the third derivative. The literature includes
some studies where the inequality estimate is obtained on subintervals of
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the interval [o,r]. The formulated lemma gives us an identity depend-
ing on the parameter h. This parameter allows us to get estimates on
subintervals of the interval [o, v].

Lemma 2. Let ¢: I C R — R, and ¢ € C3(I°), and o,v € I with
0<o<v<oo If"” € Ly|o,v] and h € (0,1], then we have:

v+c

(/2 w(f)d€+/ w(&)dé)— h(y; 2) [WD ; 2l +s0<a ;r d) +90<CJ; V)}Jr

c o+d

2

+ hQ(g; ?)° [w’(cgy> —w’(a;rdﬂ _ 120)4 (L —12), (18)

where ¢ = ho + (1 — h)v, d = (1 — h)o + hv and ¢,d € [0, V],

L= [ (b= 20¢"(1 = b+ )+ (b= s

I = / E(h — 260" ((h— )0 + (1 h+ €) V).

Proof. By integrating both integrals by parts thrice, and, finally, by ma-
king the change of variables, we get:

. / E(h - 26)¢"((1— h+€) 0 + (h — E)v)dE =

a+d>+( 4h 3(p<a+d>+

h2
20— o)2" ( 2

h? ,(c—l—y>_( 4h
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v
By taking into account v — h = 5 for the difference between the

integrals, we obtain

> o(57))]+

ctv
2

= [/d df+/s@(€)d€}-

(v—o0)

By dividing both sides of this equation by the expression 12

(18). The proof is completed. O

Remark. In (18), if we choose h = 1 and change the variables 1—2¢ = z,
then we get identity from [7] (see Lemma 2.1).

, we get

Theorem 3. Let ¢: [ — R and ¢ € C3*(I°). For 0 < 0 < v, suppose
that o,v € I° and ¢" satisfies the Lipschitz condition on |o,v] with
respect to K. Then the following Simpson-type inequality holds:

v+c

]( / olE)dE + / ()i ) -

c o+
2

=D o 4ot 42 (o(T50) +e(S5E))] [+

6 2 2
h*(v —o)? c+v o+d
/ R <
M Y [90( 2 ) SD( 2 )H\
R (|Th —5]) (v —0)® K
5760
where h € (0,1], c=ho + (1 — h)v and d = (1 — h)o + hv.

Proof. For the I — I, from (18) taking into account the Lipschitz condi-
tion, we can write:

, (19)

~X

L — L] < / E(h—2) " (1~ h+ &) o+ (h— ) —
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" ((h— &)+ (1 — h+€) )| dE <
<K-<u—a>/252<h—25>|2h—2s—uds.
0

2h—26—1<0, hel0;0,5)

. h
Since V¢ € [0,2]7 { 2h —26—-12>20, he|05;1]

|[1_IQ|<K‘(V_O-

~—

/52(h —26) (26 —2h +1) df‘ =
0

o\
[Ny

=K-(v—o) [—(Qh—1)h§2+2(3h—1)§3—4g4}d§‘:
:K-(V—U)%.

(v—o)*

Multiplying both sides of the last inequality by the expression THR

we get (19). Proof is completed. O

1
Remark. In (19), if we take h = 5 e get

| [ s+ o550 ()

A ()~ )] < e @

Remark. In (19), if we take h = 1, then we obtain an analogue of the
well-known inequality (2):

f v—o o+v (v—0) - K
e PG [P A, R gt
[t - 5 o )+ 000+ 40T T o)
From (18) and Lagrange’s theorem, it is not difficult (see the proof of
Theorem 2) to prove the following theorem:

Theorem 4. Let : [ — R, and ¢ € C3(I°). For 0 < o < v, suppose
that o,v € I° and ¢" is a continuous function on the closed interval [o, V]



18 B. Bayraktar, J. E. Napoles, F. Rabossi

and differentiable on the open interval (o,v). Then there exists some
¢ € (o,v), such as:

v+c
2

]( [ vt + /d so(f)d&)—

2
C

D gty 2 (D) e (S5

6 2 ?
B () - /(4]
O (L | AT .
< 5760 ’

where h € (0,1], c=ho + (1 —h)v and d = (1 — h)o + hv.

Theorem 5. Let ¢ : [ — R and ¢ € C3(I°). For 0 < o < v, suppose
that o,v € I° and |¢"| is convex on [o,v|. Then the inequality:

v+c

]( / oE)dE + / ()i ) -

c ot

2

ez e+ (74 o)

6
() - ()] <

<V o)+ o) (29

holds. Here h € (0,1], c=ho+ (1 — h)v and d = (1 — h)o + hv.

Proof. Because |¢"| is a convex fuction, then (18) gives, for the (I — I5):

+

[y — L] < || + [ = /52(h —2)[l¢"(1=h+& o+ (h=Ev)| +
0

+1"(h=&o+ (1 —h+&)v)[]d§ =

h

= "]+ 19" [ 1600~ 20)| de = oo 1" 0)] + 1" o)1)
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(v—o0)*

12 7

Multiplying both sides of the last inequality by the expression
we get (23). Proof is completed. O

Remark. In (23), if we take h = 1, we have:

'/ygo@ds—% so<a>+so<u>+4so("§”)}] <

=0y
1152

" @)+ 1" ()]l (24)

Remark. This estimate was obtained by Hussain and Qaisar in [14] (The-
orem 2) and Bayraktar in [4] (see Remark 4.1)

1
Remark. In (23), if we take h = 5 we obtain

o+3v

[ e (P o () (]

30+v
4

(v — o)

| () e ()] <

(V — 0>4 " "

< —= . (25
C= @)+ )] (2)
Theorem 6. Let o: [ — R and ¢ € C*(I°). For 0 < ¢ < v, suppose
that o,v € I° and ¢" satisfies the inequality (13) on [o,v]|. Then the
inequality:

v+c

M= st (o(75) (5]

+‘h2(u—a)2 [¢,<c+y> —90'<0+d>H <

24 2 2
0" (v) — " (0)] (26)

< MR =5) (v = 0)*
= 5760
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holds. Here, h € (0,1}, c=ho+ (1 —h)v and d = (1 — h)o + hv.
Proof. For the (I; — 1) from (18), by taking into account (13), we get

-1 < / E(h—28) [o"(1L—h+ &) o + (h— E)v) -

(b= o+ (1 — h+€) )| dE =
— " (v) - ¢"(0) / T e(h—20) |20 — 26 — 1] d.
0

2h—26—1<0, hel0;05)

: h
Since V¢ € [0, 2], { 2h—26—1>0, hel051]

L= L) = () — " (0)] \ [ et -29 26— an -+ 1)te| =
0

h* |7h — 5| " "
o . . . . (v—o0)!
Multiplying both sides of the last inequality by the expression T

we get (26). Proof is completed. O
Remark. In (26), if we take h = 1, we obtain

’/Vso@dg_vgg so<a>+so<u>+4¢(agym )

<" T 10) o)l (@

Proposition 1. Estimate of the upper bound (27) for Simpson’s inequal-
ity is better than estimate (2).

Proof. Indeed, from Lagrange’s theorem, for the right-hand side of (27),
we have:

(v—0)* (v—0)*

5
1 _om _ (4) N <<V_U) (4) 28
sss0 12" ) =¢" () =5 eV Ol —0) <o = 0+ (28)

where £ € (o,v). O
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1
Remark. In (23), if we take h = 50 e have

1

o+3v

—

@(g)dg_Vg0[90<30+y>+SO<O’+I/>+%O<O'+3I/>H+

4 2 4
3o+4v
4
(v —o0)? o+ 3v 30 +v
+‘ 96 [90/< 2 >_¢/< 2 )” S
(V — 0)4 " "
< — — . (29
U1 0) ~ )] (29
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