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Abstract. In this paper, we give a new characterization for the
Dunkl-classical orthogonal polynomials. The previous characteri-
zation has been illustrated by some examples.
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1. Introduction and preliminary results. Let 𝒫 be the vector
space of polynomials with coefficients in C. An orthogonal polynomial
set (OPS for short) {𝑃𝑛}𝑛>0 in 𝒫 is called classical (resp. ∆-classical,
𝐻𝑞-classical) if {𝐷𝑃𝑛}𝑛>1 (resp. {∆𝑃𝑛}𝑛>1, {𝐻𝑞𝑃𝑛}𝑛>1) is also an OPS,
where 𝐷 (resp. ∆, 𝐻𝑞) denotes the derivative operator 𝐷 = 𝑑

𝑑𝑥
(resp.

∆ the difference operator, 𝐻𝑞 the Hahn operator given, respectively, by
∆𝑓(𝑥) = 𝑓(𝑥+ 1) − 𝑓(𝑥) and 𝐻𝑞𝑓(𝑥) = 𝑓(𝑞𝑥)−𝑓(𝑥)

(𝑞−1)𝑥
, 𝑞 ̸= 1, 𝑓 ∈ 𝒫).

In [10], the authors characterized the so-called classical orthogonal
polynomials (Hermite, Laguerre, Jacobi, and Bessel) by a new characteri-
zation. In particular, they showed that a MOPS {𝑃𝑛}𝑛>0 is classical if and
only if there exists a polynomial 𝛼𝑛 of degree 𝑛 > 0, and a polynomial Φ
(monic) of degree less or equal to 2, such that 𝑃𝑛+1𝑢 = 𝐷(𝛼𝑛Φ𝑢), 𝑛 > 0,
where 𝑢 is the corresponding form to {𝑃𝑛}𝑛>0. Later on, this characteriza-
tion has been extended for the classical discrete and 𝑞-classical (discrete)
polynomials (see [2]).

A natural question arises: Is there a similar characterization for Dunkl-
classical orthogonal polynomials?

The aim of this paper is to answer this question. Namely, we prove
the Theorem 2 (see section 2).

We begin by reviewing some preliminary results needed in the sequel.
Let 𝒫 ′ be the dual of 𝒫 . We denote by ⟨𝑢,𝑓⟩ the action of 𝑢 ∈ 𝒫 ′ on

© Petrozavodsk State University, 2022

http://creativecommons.org/licenses/by/4.0/


30 Y. Habbachi, B. Bouras

𝑓 ∈ 𝒫 . In particular, we denote by (𝑢)𝑛 = ⟨𝑢, 𝑥𝑛⟩, 𝑛 > 0, the moments of
the form 𝑢 (linear functional).

Let us introduce some useful operations in 𝒫 ′. For any form 𝑢, any
polynomial 𝑝 and any (𝑎, 𝑐) ∈ C ∖ {0} ×C, let 𝑓𝑢, ℎ𝑎𝑢, 𝛿𝑐 and (𝑥− 𝑐)−1𝑢
be the forms defined by duality:

⟨𝑓𝑢, 𝑝⟩ = ⟨𝑢, 𝑓𝑝⟩ ; ⟨ℎ𝑎𝑢, 𝑝⟩ = ⟨𝑢, ℎ𝑎𝑝⟩ ,

⟨𝛿𝑐, 𝑝⟩ = 𝑝(𝑐);
⟨︀
(𝑥− 𝑐)−1𝑢, 𝑝

⟩︀
= ⟨𝑢, 𝜃𝑐𝑝⟩ ,

where ℎ𝑎𝑝(𝑥) = 𝑝(𝑎𝑥) and (𝜃𝑐𝑝)(𝑥) =
𝑝(𝑥) − 𝑝(𝑐)

𝑥− 𝑐
.

Then, it is straightforward to prove that for 𝑐 ∈ C and 𝑢 ∈ 𝒫 ′

(𝑥− 𝑐)−1((𝑥− 𝑐)𝑢) = 𝑢− (𝑢)0𝛿𝑐.

Let {𝑃𝑛}𝑛>0 be a sequence of monic polynomials (MPS for short) with
deg𝑃𝑛 = 𝑛, 𝑛 > 0. The dual sequence for {𝑃𝑛}𝑛>0 is the sequence {𝑢𝑛}𝑛>0,
𝑢𝑛 ∈ 𝒫 ′, defined by ⟨𝑢𝑛, 𝑃𝑚⟩ = 𝛿𝑛,𝑚, 𝑛,𝑚 > 0, where 𝛿𝑛,𝑚 is the kronecker
symbol.

The linear form 𝑢 is called regular if there exists a MPS {𝑃𝑛}𝑛>0, such
that [8]:

⟨𝑢, 𝑃𝑚𝑃𝑛⟩ = 𝑟𝑛𝛿𝑛,𝑚, 𝑛,𝑚 > 0, 𝑟𝑛 ̸= 0, 𝑛 > 0.

The sequence {𝑃𝑛}𝑛>0 is then said to be orthogonal with respect to 𝑢. In
this case, we have

𝑢𝑛 = (⟨𝑢0, 𝑃 2
𝑛⟩)−1𝑃𝑛𝑢0, 𝑛 > 0. (1)

Moreover, 𝑢 = 𝜆𝑢0, where (𝑢)0 = 𝜆 ̸= 0 [13].
In what follows, all regular linear functionals 𝑢 are assumed to be

normalized, i.e, (𝑢)0 = 1.
A polynomial set {𝑃𝑛}𝑛>0 is called symmetric if and only if

𝑃𝑛(−𝑥) = (−1)𝑛𝑃𝑛(𝑥), 𝑛 > 0.
According to Favard’s theorem, a monic orthogonal polynomial se-

quence (MOPS) is characterized by the following three-term recurrence
relation [8]:{︃

𝑃0(𝑥) = 1, 𝑃1(𝑥) = 𝑥− 𝛽0,

𝑃𝑛+2(𝑥) = (𝑥− 𝛽𝑛+1)𝑃𝑛+1(𝑥) − 𝛾𝑛+1𝑃𝑛(𝑥), 𝑛 > 0.
(2)
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with (𝛽𝑛, 𝛾𝑛+1) ∈ C×C ∖ {0}, 𝑛 > 0. The first associated with {𝑃𝑛}𝑛>0 is
the MOPS {𝑃 (1)

𝑛 }𝑛>0, defined by{︃
𝑃

(1)
0 (𝑥) = 1, 𝑃

(1)
1 (𝑥) = 𝑥− 𝛽1,

𝑃
(1)
𝑛+2(𝑥) = (𝑥− 𝛽𝑛+2)𝑃

(1)
𝑛+1(𝑥) − 𝛾𝑛+2𝑃

(1)
𝑛 (𝑥), 𝑛 > 0.

(3)

Let us introduce the Dunkl operator [9]:

𝑇𝜇(𝑓) = 𝑓 ′ + 2𝜇𝐻−1𝑓, (𝐻−1𝑓)(𝑥) =
𝑓(𝑥) − 𝑓(−𝑥)

2𝑥
, 𝑓 ∈ 𝒫 , 𝜇 ∈ C.

By transposition, we define the operator 𝑇𝜇 from 𝒫 ′ to 𝒫 ′ as follows:

⟨𝑇𝜇𝑢, 𝑓⟩ = −⟨𝑢, 𝑇𝜇𝑓⟩, 𝑓 ∈ 𝒫 , 𝑢 ∈ 𝒫 ′.

In particular, this yields

(𝑇𝜇𝑢)𝑛 = −𝜇𝑛(𝑢)𝑛−1, 𝑛 > 0,

with the convention (𝑢)−1 = 0 where

𝜇𝑛 = 𝑛+ 2𝜇 𝜉𝑛, 𝜉𝑛 =
1 − (−1)𝑛

2
, 𝑛 > 0. (4)

Note that 𝑇0 is reduced to the derivative operator 𝐷.
Using the previous definitions, we get the following formula [5]:

𝑇𝜇(𝑓𝑢) = 𝑓𝑇𝜇𝑢+ (𝑇𝜇𝑓)𝑢+ 2𝜇(𝐻−1𝑓)(ℎ−1𝑢− 𝑢), 𝑓 ∈ 𝒫 , 𝑢 ∈ 𝒫 ′. (5)

Now, consider a MOPS {𝑃𝑛}𝑛>0 and let

𝑃 [1]
𝑛 (𝑥, 𝜇) =

1

𝜇𝑛+1

(𝑇𝜇𝑃𝑛+1)(𝑥), 𝜇 ̸= −𝑛− 1

2
, 𝑛 > 0.

Denoting by {𝑢[1]𝑛 (𝜇)}𝑛>0 the dual sequence of {𝑃 [1]
𝑛 (·, 𝜇)}𝑛>0, we have [14]

𝑇𝜇𝑢
[1]
𝑛 (𝜇) = −𝜇𝑛+1𝑢𝑛+1, 𝑛 > 0. (6)

Definition 1. [4,7,14] A monic orthogonal polynomial sequence {𝑃𝑛}𝑛>0
is said to be 𝑇𝜇-classical (or Dunkl-classical) polynomial sequence if
{𝑇𝜇𝑃𝑛}𝑛>1 is an orthogonal polynomial sequence. In this case, the form 𝑢
corresponding to {𝑃𝑛}𝑛>0 is called 𝑇𝜇-classical form.
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B. Bouras proved in [5] the following theorem:

Theorem 1. Let {𝑃𝑛}𝑛>0 be a MPS orthogonal with respect to a linear

form 𝑢0. For 𝜇 ̸= 1

2
and 𝜇 ̸= 0, the following statements are equivalent:

(a) The sequence {𝑃𝑛}𝑛>0 is Dunkl-classical.
(b) There exist a non-zero complex number 𝐾 and three polynomials

Φ (monic), ̃︀Φ and Ψ with deg Φ 6 2, deg ̃︀Φ 6 3 and deg Ψ = 1, such that

Ψ′(0) +
𝐾Φ′′(0)

2(1 − 4𝜇2)
(4𝜇2𝜉𝑛 − 𝑛) +

𝐾̃︀Φ′′′(0)

3(1 − 4𝜇2)
𝜇(𝜉𝑛 − 𝑛) ̸= 0, (7)

and
𝑇𝜇

(︁
Φ𝑢0 − 2𝜇ℎ−1(Φ𝑢0)

)︁
+

1 − 4𝜇2

𝐾
Ψ𝑢0 = 0, (8)

with
𝑥Φ(𝑥)𝑢0 = ℎ−1(̃︀Φ(𝑥)𝑢0). (9)

Remark 1. Symmetric Dunkl-classical forms are well described in [4]. In
particular, two canonical forms appear: the generalized Hermite and the
generalized Gegenbauer forms; however, for the non-symmetric case one
canonical case appears: it is the regular perturbed generalized Gegenbauer
form [6] ̃︀𝒢(𝛼, 𝜇− 1

2
) = 𝜆(𝑥− 1)−1𝒢(𝛼, 𝜇− 1

2
) + 𝛿1, (10)

where
𝜆 = − 2𝛼

2𝛼 + 2𝜇+ 1
, (11)

and 𝒢(𝛼, 𝜇− 1
2
) is the generalized Gegenbauer form [1], [3].

The MOPS corresponding to 𝒢(𝛼, 𝜇−1
2
), which we denote {𝑆(𝛼,𝜇− 1

2
)

𝑛 }𝑛>0,
satisfies the three-term recurrence relation (2) with [8]

𝛽𝑛 = 0 and 𝛾𝑛+1 =
𝜇𝑛+1(𝜇𝑛+1 + 2𝛼)

(2𝑛+ 2𝛼 + 2𝜇+ 1)(2𝑛+ 2𝛼 + 2𝜇+ 3)
, 𝑛 > 0, (12)

where 𝜇𝑛+1 is given in (4).

Lemma 1. [5], [7]. If {𝑃𝑛}𝑛>0 is a Dunkl-classical MOPS, then 𝑢
[1]
0 (𝜇)

satisfies

⟨𝑢[1]0 (𝜇), (𝑃 [1]
𝑛 (·, 𝜇))2⟩ =

(︁
Ψ′(0) +

𝐾Φ′′(0)

2(1 − 4𝜇2)
(4𝜇2𝜉𝑛 − 𝑛)+
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+
𝐾̃︀Φ′′′(0)

3(1 − 4𝜇2)
𝜇(𝜉𝑛 − 𝑛)

)︁⟨𝑢0, 𝑃 2
𝑛+1⟩

𝜇𝑛+1

. (13)

2. Main Result. The main result of this section is as follows:

Theorem 2. Let {𝑃𝑛}𝑛>0 be a MPS orthogonal with respect to a linear

form 𝑢0. For 𝜇 ̸= 0,
1

2
, the following statements are equivalent.

(a) The sequence {𝑃𝑛}𝑛>0 is Dunkl-classical.
(b) There exist a non-zero complex number 𝐾 and three polynomials

Φ (monic), deg Φ 6 2, ̃︀Φ, deg ̃︀Φ 6 3 and Ψ, deg Ψ = 1 and a polynomial
𝑄𝑛, deg(𝑄𝑛) = 𝑛, 𝑛 > 0, such that

𝑃𝑛+1𝑢0 =
𝐾

1 − 4𝜇2
𝑇𝜇

(︁
𝑄𝑛(Φ𝑢0 − 2𝜇ℎ−1(Φ𝑢0))

)︁
, 𝑛 > 0, (14)

Ψ′(0) +
𝐾Φ′′(0)

2(1 − 4𝜇2)
(4𝜇2𝜉𝑛 − 𝑛) +

𝐾̃︀Φ′′′(0)

3(1 − 4𝜇2)
𝜇(𝜉𝑛 − 𝑛) ̸= 0, (15)

with
𝑥Φ(𝑥)𝑢0 = ℎ−1(̃︀Φ(𝑥)𝑢0). (16)

Proof. (𝑎) ⇒ (𝑏) From the assumption, we have

𝑢𝑛 = (⟨𝑢0, 𝑃 2
𝑛⟩)−1𝑃𝑛𝑢0, 𝑛 > 0 (17)

and
𝑢[1]𝑛 (𝜇) = (⟨𝑢[1]0 (𝜇), (𝑃 [1]

𝑛 (·, 𝜇))2⟩)−1𝑃 [1]
𝑛 (·, 𝜇)𝑢

[1]
0 (𝜇), 𝑛 > 0. (18)

Substitution of (17) and (18) in (6) gives

𝑇𝜇(𝑃 [1]
𝑛 (·, 𝜇)𝑢

[1]
0 (𝜇)) = −𝜇𝑛+1

𝑟
[1]
𝑛

𝑟𝑛+1

𝑃𝑛+1𝑢0, 𝑛 > 0, (19)

where 𝑟[1]𝑛 = ⟨𝑢[1]0 (𝜇), (𝑃
[1]
𝑛 (·, 𝜇))2⟩ and 𝑟𝑛+1 = ⟨𝑢0, 𝑃 2

𝑛+1⟩.
For 𝑛 = 0, equation (19) becomes

𝑇𝜇𝑢
[1]
0 (𝜇) = −1 + 2𝜇

𝛾1
𝑃1𝑢0. (20)

Using formula (5), equation (19) is transformed to

𝑃 [1]
𝑛 (·, 𝜇)𝑇𝜇𝑢

[1]
0 (𝜇) + (𝑇𝜇𝑃

[1]
𝑛 (·, 𝜇))𝑢

[1]
0 (𝜇) + 2𝜇(𝐻−1𝑃

[1]
𝑛 (·, 𝜇))×
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×
(︁
ℎ−1𝑢

[1]
0 (𝜇) − 𝑢

[1]
0 (𝜇)

)︁
= −𝜇𝑛+1

𝑟
[1]
𝑛

𝑟𝑛+1

𝑃𝑛+1𝑢0, 𝑛 > 0. (21)

For 𝑛 = 1, equation (21) becomes

𝑃
[1]
1 (·, 𝜇)𝑇𝜇𝑢

[1]
0 (𝜇) + 𝑢

[1]
0 (𝜇) + 2𝜇ℎ−1𝑢

[1]
0 (𝜇) = −2

𝑟
[1]
1

𝑟2
𝑃2𝑢0. (22)

Substitution of (20) in (22) gives

𝑢
[1]
0 (𝜇) + 2𝜇ℎ−1𝑢

[1]
0 (𝜇) = 𝐾Φ𝑢0, (23)

where

𝐾Φ =
1 + 2𝜇

𝛾1
𝑃1𝑃

[1]
1 (·, 𝜇) − 2

𝑟
[1]
1

𝑟2
𝑃2, (24)

and the non-zero constant 𝐾 is chosen to make Φ monic.
Applying the operator ℎ−1 to (23), we get

ℎ−1𝑢
[1]
0 (𝜇) + 2𝜇𝑢

[1]
0 (𝜇) = 𝐾ℎ−1(Φ𝑢0). (25)

Multiplying (25) by 2𝜇 and subtracting the result from (23), we get

𝑢
[1]
0 (𝜇) =

𝐾

1 − 4𝜇2
(Φ𝑢0 − 2𝜇ℎ−1(Φ𝑢0)). (26)

Substitution of (13) and (26) in (19) gives

𝐾

1 − 4𝜇2
𝑇𝜇

(︁
𝑃 [1]
𝑛 (·, 𝜇)(Φ𝑢0 − 2𝜇ℎ−1(Φ𝑢0))

)︁
=

= −
(︁

Ψ′(0)+
𝐾Φ′′(0)

2(1 − 4𝜇2)
(4𝜇2𝜉𝑛−𝑛)+

𝐾̃︀Φ′′′(0)

3(1 − 4𝜇2)
𝜇(𝜉𝑛−𝑛)

)︁
𝑃𝑛+1𝑢0, 𝑛 > 0.

Thus, (14) follows, where

𝑄𝑛 = − 𝑇𝜇𝑃𝑛+1(︁
Ψ′(0)+

𝐾Φ′′(0)

2(1 − 4𝜇2)
(4𝜇2𝜉𝑛−𝑛)+

𝐾̃︀Φ′′′(0)

3(1 − 4𝜇2)
𝜇(𝜉𝑛−𝑛)

)︁
𝜇𝑛+1

, 𝑛 > 0.

(27)
Now, putting 𝑛 = 2 in (21), we obtain
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𝑃
[1]
2 (·, 𝜇)𝑇𝜇𝑢

[1]
0 (𝜇) + (𝑇𝜇𝑃

[1]
2 (·,𝜇))𝑢

[1]
0 (𝜇)+

+ 2𝜇𝐻−1𝑃
[1]
2 (·,𝜇)

(︁
ℎ−1𝑢

[1]
0 (𝜇) − 𝑢

[1]
0 (𝜇)

)︁
= −𝜒2𝑃3𝑢0. (28)

Taking into account (20) and (26), we get

−2𝜇𝐾

1 − 4𝜇2

(︁
𝑇𝜇𝑃

[1]
2 (·, 𝜇) − (1 + 2𝜇)𝐻−1𝑃

[1]
2 (·, 𝜇)

)︁
ℎ−1(Φ𝑢0) =

=
(︁1 + 2𝜇

𝛾1
𝑃1𝑃

[1]
2 (·, 𝜇) − 𝐾

1 − 4𝜇2
Φ𝑇𝜇𝑃

[1]
2 (·, 𝜇)+

+
2𝜇𝐾

1 − 2𝜇
Φ𝐻−1𝑃

[1]
2 (·, 𝜇) − 𝜒2𝑃3

)︁
𝑢0. (29)

Applying the operator ℎ−1 to the last equation and taking into account
the fact that

(𝑇𝜇𝑃
[1]
2 (·, 𝜇))(𝑥) − (1 + 2𝜇)(𝐻−1𝑃

[1]
2 (·, 𝜇))(𝑥) =

= (𝑃
[1]
2 )′(𝑥, 𝜇) − (𝐻−1𝑃

[1]
2 )(𝑥, 𝜇) = 2𝑥

and the formulas

ℎ−1(𝑥𝑣) = −𝑥ℎ−1𝑣 and ℎ−1(ℎ−1𝑣) = 𝑣, 𝑣 ∈ 𝒫 ′,

we obtain (15), where

̃︀Φ(𝑥) =
1 − 4𝜇2

4𝜇𝐾

(︁1 + 2𝜇

𝛾1
𝑃1(𝑥)𝑃

[1]
2 (𝑥, 𝜇) − 𝐾

1 − 4𝜇2
Φ(𝑥)(𝑇𝜇𝑃

[1]
2 )(𝑥, 𝜇)+

+
2𝜇𝐾

1 − 2𝜇
Φ(𝑥)(𝐻−1𝑃

[1]
2 )(𝑥, 𝜇) − 𝜒2𝑃3(𝑥)

)︁
. (30)

(𝑏) ⇒ (𝑎) Putting 𝑛 = 0 in (14), we get

𝑃1𝑢0 =
𝐾

1 − 4𝜇2
𝑄0𝑇𝜇

(︁
Φ𝑢0 − 2𝜇ℎ−1(Φ𝑢0)

)︁
. (31)

Then, according to Theorem 1, the sequence {𝑃𝑛}𝑛>0 is Dunkl-classical

with Ψ = −𝑃1

𝑄0

. �

3. Examples. In this section, we will illustrate Theorem 2 by giving
some examples. For this, we need the following results.
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Let {̃︀𝑆(𝛼,𝜇− 1
2
)

𝑛 }𝑛>0 be the sequence of orthogonal polynomials with re-
spect to the form ̃︀𝒢(𝛼, 𝜇− 1

2
) (see (10)).

The sequence {̃︀𝑆(𝛼,𝜇− 1
2
)

𝑛 }𝑛>0 satisfies the recurrence relation

̃︀𝑆(𝛼,𝜇− 1
2
)

0 (𝑥) = 1, ̃︀𝑆(𝛼,𝜇− 1
2
)

1 (𝑥) = 𝑥− ̃︀𝛽0,̃︀𝑆(𝛼,𝜇− 1
2
)

𝑛+2 (𝑥) = (𝑥− ̃︀𝛽𝑛+1)̃︀𝑆(𝛼,𝜇− 1
2
)

𝑛+1 (𝑥) − ̃︀𝛾𝑛+1
̃︀𝑆(𝛼,𝜇− 1

2
)

𝑛 (𝑥), 𝑛 > 0,
(32)

with [12]

̃︀𝛽0 = −𝑎(𝛼)0 = 1 + 𝜆, ̃︀𝛽𝑛+1 = 𝑎(𝛼)𝑛 − 𝑎
(𝛼)
𝑛+1, ̃︀𝛾𝑛+1 = −𝑎(𝛼)𝑛 (1 + 𝑎(𝛼)𝑛 ), > 0,

where 𝑎(𝛼)𝑛 is given by Maroni [12]

𝑎(𝛼)𝑛 = −
𝑆
(𝛼,𝜇− 1

2
)

𝑛+1 (1) + 𝜆(𝑆
(𝛼,𝜇− 1

2
)

𝑛 )(1)(1)

𝑆
(𝛼,𝜇− 1

2
)

𝑛 (1) + 𝜆(𝑆
(𝛼,𝜇− 1

2
)

𝑛−1 )(1)(1)
, 𝑛 > 0. (33)

The relationship between {̃︀𝑆(𝛼,𝜇− 1
2
)

𝑛 }𝑛>0 and {𝑆(𝛼,𝜇− 1
2
)

𝑛 }𝑛>0 is (see [12])

̃︀𝑆(𝛼,𝜇− 1
2
)

𝑛+1 = 𝑆
(𝛼,𝜇− 1

2
)

𝑛+1 + 𝑎(𝛼)𝑛 𝑆
(𝛼,𝜇− 1

2
)

𝑛 , 𝑛 > 0. (34)

Lemma 2. The coefficient 𝑎(𝛼)𝑛 is given by

𝑎(𝛼)𝑛 = − 𝜇𝑛+1

2𝑛+ 2𝛼 + 2𝜇+ 1
, 𝑛 > 0. (35)

Proof. We will prove (35) by induction on 𝑛. Using (3), (11), (12), and
(33), we get

− 𝑆
(𝛼,𝜇− 1

2
)

1 (1) + 𝜆(𝑆
(𝛼,𝜇− 1

2
)

0 )(1)(1)

𝑆
(𝛼,𝜇− 1

2
)

0 (1) + 𝜆(𝑆
(𝛼,𝜇− 1

2
)

−1 )(1)(1)
= −(1 + 𝜆) = − 𝜇1

2𝛼 + 2𝜇+ 1
. (36)

Hence, (35) is true for 𝑛 = 0.
Assume that (35) is true until 𝑛 and let us prove it for 𝑛 + 1. From

(33), the recurrence hypothesis, and the three-term recurrence relation
fulfilled by {𝑆(𝛼,𝜇− 1

2
)

𝑛 }𝑛>0, we have

𝑎
(𝛼)
𝑛+1 = −

𝑆
(𝛼,𝜇− 1

2
)

𝑛+2 (1) + 𝜆(𝑆
(𝛼,𝜇− 1

2
)

𝑛+1 )(1)(1)

𝑆
(𝛼,𝜇− 1

2
)

𝑛+1 (1) + 𝜆(𝑆
(𝛼,𝜇− 1

2
)

𝑛 )(1)(1)
=
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= −
(︁

1 − 𝛾𝑛+1

𝑆
(𝛼,𝜇− 1

2
)

𝑛 (1) + 𝜆(𝑆
(𝛼,𝜇− 1

2
)

𝑛−1 )(1)(1)

𝑆
(𝛼,𝜇− 1

2
)

𝑛+1 (1) + 𝜆(𝑆
(𝛼,𝜇− 1

2
)

𝑛 )(1)(1)

)︁
= −

(︁
1 +

𝛾𝑛+1

𝑎
(𝛼)
𝑛

)︁
=

= −
(︁

1 − 𝜇𝑛+1 + 2𝛼

2𝑛+ 2𝛼 + 2𝜇+ 3

)︁
(by (12)) =

= −𝑛+ 2 + 𝜇− 𝜇(−1)𝑛

2𝑛+ 2𝛼 + 2𝜇+ 3
= − 𝜇𝑛+2

2𝑛+ 2𝛼 + 2𝜇+ 3
.

This completes the proof. �

Remark 2. From (35), it is easy to see that 𝑎(𝛼)𝑛 satisfies the following
relation:

𝜇𝑛+1 × 𝑎
(𝛼)
𝑛+1 = 𝜇𝑛+2 × 𝑎(𝛼+1)

𝑛 , 𝑛 > 0. (37)

Lemma 3. We have the following results:

1) The generalized Hermite polynomials ℋ(𝜇)
𝑛 satisfy [11]

𝑇𝜇ℋ(𝜇)
𝑛+1(𝑥) = 𝜇𝑛+1ℋ(𝜇)

𝑛 (𝑥), 𝑛 > 0. (38)

2) The generalized Gegenbauer polynomials 𝑆(𝛼,𝜇− 1
2
)

𝑛 satisfy [4]

𝑇𝜇𝑆
(𝛼,𝜇− 1

2
)

𝑛+1 (𝑥) = 𝜇𝑛+1𝑆
(𝛼+1,𝜇− 1

2
)

𝑛 (𝑥), 𝑛 > 0. (39)

3) The sequence of orthogonal polynomials ̃︀𝑆(𝛼,𝜇− 1
2
)

𝑛 satisfy

𝑇𝜇 ̃︀𝑆(𝛼,𝜇− 1
2
)

𝑛+1 (𝑥) = 𝜇𝑛+1
̃︀𝑆(𝛼+1,𝜇− 1

2
)

𝑛 (𝑥), 𝑛 > 0. (40)

Proof. We aim at proving (40); from (34) and (39), we have:

𝑇𝜇 ̃︀𝑆(𝛼,𝜇− 1
2
)

𝑛+2 (𝑥) = 𝑇𝜇𝑆
(𝛼,𝜇− 1

2
)

𝑛+2 (𝑥) + 𝑎
(𝛼)
𝑛+1𝑇𝜇𝑆

(𝛼,𝜇− 1
2
)

𝑛+1 (𝑥) =

= 𝜇𝑛+2𝑆
(𝛼+1,𝜇− 1

2
)

𝑛+1 (𝑥) + 𝑎
(𝛼)
𝑛+1𝜇𝑛+1𝑆

(𝛼+1,𝜇− 1
2
)

𝑛 (𝑥) =

= 𝜇𝑛+2

(︁
𝑆
(𝛼+1,𝜇− 1

2
)

𝑛+1 (𝑥) + 𝑎
(𝛼)
𝑛+1

𝜇𝑛+1

𝜇𝑛+2

𝑆
(𝛼+1,𝜇− 1

2
)

𝑛 (𝑥)
)︁

=

= 𝜇𝑛+2

(︁
𝑆
(𝛼+1,𝜇− 1

2
)

𝑛+1 (𝑥) + 𝑎(𝛼+1)
𝑛 𝑆

(𝛼+1,𝜇− 1
2
)

𝑛 (𝑥)
)︁
by (37) =

= 𝜇𝑛+2
̃︀𝑆(𝛼+1,𝜇− 1

2
)

𝑛+1 (𝑥), 𝑛 > 0.

Moreover, it is clear that 𝑇𝜇 ̃︀𝑆(𝛼,𝜇− 1
2
)

1 (𝑥) = 1 + 2𝜇 = 𝜇1
̃︀𝑆(𝛼+1,𝜇− 1

2
)

0 (𝑥).



38 Y. Habbachi, B. Bouras

Hence the desired result. �

Example 1. Generalized Hermite polynomials. The sequence of
generalized Hermite polynomials {𝐻(𝜇)

𝑛 }𝑛>0 is symmetric Dunkl-classical
and its associated form ℋ(𝜇) satisfies (7)–(9) with [5]

Φ(𝑥) = 1, ̃︀Φ(𝑥) = −𝑥, Ψ(𝑥) = 2𝑥, 𝐾 = 1 + 2𝜇. (41)

Using (27), (38), and (41), we can easily prove that

𝑄𝑛(𝑥) = −1

2
𝐻(𝜇)
𝑛 (𝑥), 𝑛 > 0.

The form ℋ(𝜇) is symmetric, i.e, ℋ(𝜇) = ℎ−1ℋ(𝜇). Then

ℋ(𝜇) − 2𝜇ℎ−1ℋ(𝜇) = (1 − 2𝜇)ℋ(𝜇).

According to Theorem 2, the sequence {𝐻(𝜇)
𝑛 }𝑛>0 satisfies the following

relation:
𝐻

(𝜇)
𝑛+1ℋ(𝜇) = −1

2
𝑇𝜇(𝐻(𝜇)

𝑛 ℋ(𝜇)), 𝑛 > 0.

Example 2. Generalized Gegenbauer polynomials. The sequence
of generalized Gegenbauer polynomials {𝑆(𝛼,𝜇− 1

2
)

𝑛 }𝑛>0 is symmetric Dunkl-
classical and its associated form 𝒢(𝛼, 𝜇− 1

2
) satisfies (7)–(9) with [5]

Φ(𝑥) = 𝑥2 − 1, ̃︀Φ(𝑥) = −𝑥(𝑥2 − 1),

Ψ(𝑥) = (2𝛼 + 2𝜇+ 3)𝑥,𝐾 = −
(1 + 2𝜇)(𝛼 + 𝜇+ 3

2
)

𝛼 + 1
. (42)

From (27), (39) and (42), we can easily prove that

𝑄𝑛(𝑥) = − 𝛼 + 1

(𝛼 + 𝜇+ 3
2
)(𝑛+ 2 + 2𝛼 + 𝜇(1 − (−1)𝑛))

𝑆
(𝛼+1,𝜇− 1

2
)

𝑛 (𝑥), 𝑛 > 0.

Moreover, since 𝒢(𝛼, 𝜇− 1
2
) is symmetric, then we have

𝒢(𝛼, 𝜇− 1

2
) = ℎ−1(𝒢(𝛼, 𝜇− 1

2
)),

Multiplying the last equation by 𝑥2 − 1, we obtain

(𝑥2 − 1)𝒢(𝛼, 𝜇− 1

2
) = ℎ−1((𝑥

2 − 1)𝒢(𝛼, 𝜇− 1

2
)),
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Therefore,

(𝑥2−1)𝒢(𝛼, 𝜇−1

2
)−2𝜇ℎ−1((𝑥

2−1)𝒢(𝛼, 𝜇−1

2
)) = (1−2𝜇))(𝑥2−1)𝒢(𝛼, 𝜇−1

2
).

Thus, according to Theorem 2, the sequence {𝑆(𝛼,𝜇− 1
2
)

𝑛 }𝑛>0 satisfies the
following relation:

𝑆
(𝛼,𝜇− 1

2
)

𝑛+1 𝒢(𝛼, 𝜇− 1

2
) =

1

𝑛+ 2 + 2𝛼 + 𝜇(1 − (−1)𝑛)
×

× 𝑇𝜇(𝑆
(𝛼+1,𝜇− 1

2
))

𝑛 (𝑥2 − 1)𝒢(𝛼, 𝜇− 1

2
)), 𝑛 > 0.

Example 3. Non-symmetric Dunkl-classical orthogonal polyno-
mials. The sequence {̃︀𝑆(𝛼,𝜇− 1

2
)

𝑛 }𝑛>0 is non-symmetric Dunkl-classical and
its associated form ̃︀𝒢(𝛼, 𝜇− 1

2
) satisfies (7)–(9) with [5]

Φ(𝑥) = (𝑥− 1)(𝑥+
1 + 2𝜇

1 − 2𝜇
), ̃︀Φ(𝑥) = 𝑥(𝑥− 1)(𝑥− 1 + 2𝜇

1 − 2𝜇
),

Ψ(𝑥) =
(1 + 2𝜇+ 2𝛼)2

2𝛼

(︁
𝑥− 1 + 2𝜇

1 + 2𝜇+ 2𝛼

)︁
, 𝐾 =

(2𝜇− 1)(1 + 2𝜇+ 2𝛼)

2𝛼
(43)

for 𝛼 ̸= 0.
On the one hand, we use (27), (40), and (43) and we get

𝑄𝑛(𝑥) = − 2𝛼

(2𝛼+2𝜇+1)(𝑛+ 1 + 2𝛼 + 𝜇(1 +(−1)𝑛))
̃︀𝑆(𝛼+1,𝜇− 1

2
)

𝑛 (𝑥), 𝑛 > 0.

On the other hand, from (10) we have

(𝑥− 1)̃︀𝒢(𝛼, 𝜇− 1

2
) = 𝜆𝒢(𝛼, 𝜇− 1

2
). (44)

Since 𝒢(𝛼, 𝜇 − 1
2
) is symmetric, we have 𝒢(𝛼,𝜇 − 1

2
) = ℎ−1(𝒢(𝛼, 𝜇 − 1

2
)),

or, equivalently, in (44):

(𝑥− 1)̃︀𝒢(𝛼, 𝜇− 1

2
) = ℎ−1((𝑥− 1)̃︀𝒢(𝛼, 𝜇− 1

2
)).

Multiplying the last equation by 𝑥− 1+2𝜇
1−2𝜇

, we obtain

(𝑥−1)
(︁
𝑥− 1+2𝜇

1−2𝜇

)︁̃︀𝒢(𝛼, 𝜇− 1

2
) = −ℎ−1((𝑥− 1)

(︁
𝑥+

1 + 2𝜇

1 − 2𝜇

)︁̃︀𝒢(𝛼, 𝜇− 1

2
)).

(45)
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Now, from the first equality in (43) and (45), we have

Φ(𝑥)̃︀𝒢(𝛼, 𝜇− 1

2
)− 2𝜇ℎ−1(Φ(𝑥)̃︀𝒢(𝛼, 𝜇− 1

2
)) = (1 + 2𝜇)(𝑥2− 1)̃︀𝒢(𝛼, 𝜇− 1

2
).

(46)
Consequently, according to Theorem 2, the sequence {̃︀𝑆(𝛼,𝜇− 1

2
)

𝑛 }𝑛>0 satis-
fies the following relation:

̃︀𝑆(𝛼,𝜇− 1
2
)

𝑛+1
̃︀𝒢(𝛼, 𝜇− 1

2
) =

1

𝑛+ 1 + 2𝛼 + 𝜇(1 + (−1)𝑛)
×

× 𝑇𝜇(̃︀𝑆(𝛼+1,𝜇− 1
2
)

𝑛 (𝑥2 − 1)̃︀𝒢(𝛼, 𝜇− 1

2
)), 𝑛 > 0.
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