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REFINEMENT OF SOME BERNSTEIN TYPE
INEQUALITIES FOR RATIONAL FUNCTIONS

Abstract. In this paper, we establish some Bernstein-type in-
equalities for rational functions with prescribed poles. These re-
sults refine prior inequalities on rational functions and strengthen
many well-known polynomial inequalities.
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1. Introduction. Let P, denote the space of complex polynomials

f(z) := 3 ajz? of degree at-most n > 1. Let T := {z : |z| = 1}, D_
j=0

denote the region inside 7" and D the region outside 7". For o; € C with

j=12,...,n,let w(z) = [[(z — a;) and let
j=1

Bz) =] (1 —UE) Ry = Ralon,0n, ) = {@, pe Pn}.

w(z)

Then R, is the set of rational functions with poles aq, as, ..., a, at
most and with finite limit at infinity. B(z) € R,, is known as the Blaschke
product. From now on, we shall assume that the poles ay, as, ..., o, are
in D, . For the case when all the poles are in D_, we can obtain analogous
results with suitable modifications of our method.

For r € R, let ||r|| = max |7(2)| be the Chebyshev norm of r on T

and m = min |r(z)].
z€T
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Definitions and Notations:

n
1) For p(z) := 3 a;2’, the conjugate transpose (reciprocal) p* of p is

pi(z) = zn]@.

defined by
Therefore, if p(z) = [[ (2 — z;), then p*(z) = H(l —Z;2).

J=1

n

i=1

2) Forr(z) = € R, the conjugate transpose r* of r is defined by

p*(2)

w(z)

p(z)

Note that if r(z) = w(®)

r*(2) € Rp.

€ R,, then r*(z) =

and, hence,

n

3) For w(z) = [[ (2 —«;), we denote by b the product of roots of w(z),
j=1
e, b=a1 Xay X+ X q.

4) If p(z) := 3 a;2?, then p(z) is defined as
i=0

P(2) =G+ @z + a2 + - + a2
Note that p(z) = p(2).
If p € P, then, concerning the estimate of |p’(z)| on the unit circle T,
we have the following well-known result due to Bernstein (see [6], p. 508,
Theorem 14.1.1), which relates the norm of a polynomial to that of its
derivative.

11l < nllpll (1)

The inequality (1) is sharp and equality holds for polynomials having all
zeros at the origin.

Since equality in (1) holds if and only if p(z):=¢z", one would ex-
cept a relationship between the bound n and the distance to the zeros of
the polynomial from the origin. This fact was observed by Erdés, who
conjectured the following fact later proved by Lax [3]:
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If pe P, and p(z) # 0 in D_, then
n

I < 2ol 2)

Turan [7] considered the polynomial having all zeros in 7'U D_ and

proved the following reverse inequality:
If p € P, has all zeros in T'U D_, then

n
11> 1l (3)

Dubinin [2] proved the following strengthened version of inequality (3).
Theorem A. If p(z) := Y a;27 is such that p(z) # 0 in D, then

j=1
1 Van| = /laol
1l > 5 [n+ N 121l (4)

In 1995, Li, Mohapatra, and Rodriguez 5] extended inequality (2) to
rational functions with prescribed poles. Besides other things, they proved

the following results:
Theorem B. If r € R,,, such that r(z) # 0 for z € D_, then, for z € T

@) < E e ().

Equality holds for r(z) = aB(z) + § with || = |8] = 1.
Theorem C. Suppose r € R,, and all the zeros of r lie in T"U D_. Then,
for z €T,

() > 5 1B — (n— 1)) max|r(2)

where ¢ are the number of zeros of r(z).
Recently, Wali and Shah [8] used the lemma of Dubinin [2| and proved
the following result:
p(2)

t .
Theorem D. Suppose that r(z) = wz) € R,, where p(z) = > a;2,
w\z j=0
t < n, r has exactly n poles aq,as,...,q, and all the zeros of r lie in
TUD_. Then, for z €T,

wvn>§%3wn—m—w+“ﬁiﬁf%qvu»
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The result is sharp and the equality holds for r(z) = B(z) + A with
A = 1.

In this paper, we find some inequalities for rational functions, which,
in particular, refine Theorem B and Theorem D for a particular class of
rational functions. We also deduce some polynomial inequalities, which
strengthens the prior inequalities, including inequality (4) and improves
many other inequalities concerning the polar derivative of a polynomial.

Our first result gives a refinement of Theorem B for a particular class
of rational functions.

Theorem 1. Ifr(z) = p2) € R, where p(z):=>" a;2%, r(z) # 0 for
i=0

w(2)
all z € D_ and |ag| < |b] - |ay|, then for z € T,

a0l = V/lan| | )?

P < B - S = m)

where ||r|| = rgleajg(|r(z)|.

Equality is obtained for r(z) = B(z) + ke'®, with k¥ > 1 and real
«. Since r(z) does not vanish in D_, |ag| = |a,|. Also, m > 0; hence,
Theorem 1 is an improvement of Theorem B.

Remark 1. Letoj=a>1Vj=12..., n; then w(z) = (z — a)”

1—
and r(z) = ﬂ, so that B(z) = az| — 2" as o — 00. Also,
(z —a)” z—a |
B'(z) = nz""! as a — .
Further, let
Il = max | 21
2€T (Z Oé)n

be obtained at z = €', 0 < ( < 27, and

p(2)

(z —a)"

m = min |r(z)| = min
2€T 2€T

be obtained at z = €'®, 0 < B < 2x; then, clearly,

1ol — e | P) p(e) | _ mabEL )
€ [z =y | | o) S e =a)] T e -y
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and
o min p(2) _ p(e?) mel%l p(2)]| _ m,
r | (z—a)r| (e —a)| T (e —a)r] (e —a)n]
where m,, = Izllelzg Ip(2)].
Therefore, taking a; = a > 1, for all j = 1,2,...,n in Theorem 1,

using the above observations, and letting o — oo, we get the following
result:

Corollary 1. Ifp(z) := Y a;z’ € P, and p(z) # 0 in D_, then, for
j=0

zeT,

o< L, Viol = Vel
|P(Z)|<§[”— N ]IIpll—mp)-

Equality is obtained for p(z) = 2" + 1.

Since m, > 0 and |ag| > |a,|, it follows that Corollary 1 is an im-
provement of the result by Aziz and Dawood ( [1|, Theorem 2).
As a refinement of Theorem D, we present the following result:

Theorem 2. Ifr(z)= p((z)) € R, where p(z):= Zaj s 0]+ |an| <Jaol,
w(z
r has exactly n poles at ay, ag, ..., oy, and r(z) # 0 for all z € D, then,

forzeT:

) LVl = \/la_o
Van]

Equality is obtained for r(z) = B(z) + ke®, with k < 1 and real C.

FE) > |18

; ()] +m).

For a complex number « and for p € P, let
Dap(2) :==np(z) + (a — 2)p'(2),

where D,p(z) is a polynomial of degree at most n — 1 and is known as
the polar derivative of p(z) with respect to a.. It generalizes the ordinary
derivative in the sense that

D,
lim p(z)

a—00 6]

=p/(2).
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Assume that o; = a for all j = 1,2,...,n, with |a| > 1 and
p(z) :== " a;27 is a polynomial of degree n. Then it can be easily shown
j=0
-D, 1—az)" Ylaf* -1
that 7/(z) = —Daplz). and B'(z) = n(1—az)" (o )

— o)t (z — a)"tl
Using the above facts and those discussed in Remark 1, we get the
following result from Theorem 2:

Corollary 1. Ifp(z) = > a;27 with |a|"|a,| < |ao| is a polynomial of
i=0

degree n having all zeros in T'U D_, then, for every finite complex number
« satisfying |a|™|a,| < |ag| and |af > 1,

o] =1 Vlan| = v/laol
[Dap(2)| 2 —5—|n+ N (Pl +my).

2. Lemmas. To prove these theorems, we need the following
lemmas. The first lemma is due to Li, Mohapatra, and Rodrigues [5]:

Lemma 1. Ifr € R, and z € T, then
[P ()] + r'(2)] < |B'(z) [ max [r(2)]

Equality holds for r(z) = uB(z) withu € T.
The next Lemma is due to Li [4]:

Lemma 2. Letr,s € R, and assume that s(z) has all zeros in T'U D_
and
Ir(2)| < |s(z)] for zeT.

Then,
Ir'(2)| <|s'(2)]  for z€T.

The next two lemmas are due to Wali and Shah [8]:

Lemma 3. Ifr(z)=

p(2) € R, where p(z) := Y a;2/ and all zeros of
w(z) j=0

r lie in D, , then, for z € T,

Re (Z:(SU < %[\B’(zﬂ - \/“‘_OLL_O\(W .
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Lemma 4. Ifr(z) = p((z)) € R, where p(z) := Y a;27, and r has
wl\z =0

exactly n poles at «ay,aq,...,q, and all zeros of r lie in D_, then for

zeT,

Re (ifé?) > %[|B'(2)] + \/m_”\l/‘;_n\‘/m .

3. Proofs of the Theorems.

Proof of Theorem 1. Assume that all zeros of r(z) lie in D, ; then m > 0
and
m < |r(z)]

for z € T. Let o and /8 be two complex numbers, such that |a| < 1 and
|8] < 1; then

mlaf] < |r(z)]
for = € T. Since all the poles of r(z) are in D, r(z) is analytic in
D_. Also, r(z) has no zero in T'U D_, therefore, by Rouche’s Theorem,
R(z) = r(z) — afm has no zero in T'U D_. Therefore, by Lemma 3, for
zeT:

SR L[y VI I a0m0] — /fan =l
Re (g ) <5 | IB - VISR

z)
Since |ag| < |b] - |an|, then
|ao| - o] - [B] - m <[] - [B] - m- [b] - ],
|an| ’ ’a0| + |a0| ) ’CY| : ’B| “m < |an’ ) |(1,0’ + ’a’ ’ |ﬁ’ m - |b’ ' |CLn|,
|| |an| + | - [B] - m
= .
lag| ~ fao| + |af - [B] - [b] - m
Choosing argument of 3 in such a way that

lag + (—1)" - B-b-m| = |ao| + |af - |8] - [b] - m,
we get
|| la, —a- [ -m)|
lao] = lag+ (=)™l B b-m|

Hence, it follows from inequality (5) that

T

)
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g
—~
N
=

(2)

gl

Now, R*(2) = B(z)@ = B(Z)FG), where R(z) =

Differentiating both sides gives
—/(1 B(Z)—/ 1

R*(2)) =B ()R| - ) — R|-).

ey =seR(1) - 2R (L)

Since z € T', we have Z = 1/z, and so
| = |B'(2)/B)RE) - 2R ()] (7)

|(R*(2))
By ( [5], Lemma 1), we have
zB'(z)  |zB'(2)| | L B
B | BG) | T |B'(2)]-

Thus, from equation (7), we have
[(R*(2))'] = [|B'(2)|R(2) — 2R'(2)].

Since R(z) # 0 on T, we have for z € T using inequality (6)

‘| zR’ (2)? _
R(:)
. ZR/ ) _ /Z e ZR/(Z)
T e -2 e () >
ZRI()2 (N2~ B (» /Z—M_\/m_
> [ s |B<>|[|B<>| Vel
_ 2R/ (= \/!CL_Q \/‘a_n|B ().
R(z) \/|a_0|

This implies that for z € T',
1
V |a0 V ‘(ln *
[B' IR < [(R(2))]. (8)

R/ 2
[| (I + L
z) —afmbB'(z).

Now, R*(z) = 7*(z) — apmB(z), so that R*(z) = r*'(z)
Since all zeros of r(z) lie in D, all zeros of r*(z) lie in D_. Also,
mpBB(z)| < |r*(z)| for z € T. Hence, by Lemma 2, we have

(7 (2))'| = ImpB'(2)|
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for z € T. Therefore, we can choose argument of o such that

|(r*(2))" —@BmB' ()| = |(r"(2))'| = |B] - |a| - m - | B'(2)].

Hence, from inequality (8), we have for z € T

r 2 4 \/]a_g \/la_" r(2)| —m - |af - 2|®
[|<| L B ) |||@|)]<

-

< @) =181 laf - m - [B'(2)].

Letting |a] — 1 and |5] — 1 gives

r(2)* + Viaol = /la] r(z mQ% r*(2))'| — m|B'(z
[|<| v OGO >}<r<<>>| B(2).

Applying Lemma 1, we have, for z € T

Y s NN £
[H\ LB ) - >}<

< IB')] - el = 17(2)] = m| B(2)].

Equivalently, for z € T

()2 \/W_\/WB/Z r(2)] —m)? <
()" + Tl [B'(2)[(Ir(2)] = m)” <

<[IB'()] - lIrll = [r'(2)] = m| B'(2)[].
A simple manipulation gives, for z € T"
/ < 1 B vV |a0‘ V |a’n |T
()l < 5 |1B'(2)] (|| | —m).
vV laol (H?‘H )

This proves the result when r(z) # 0 for z € T; but if r(z) =0 for z € T,
then the inequality is trivially true. This proves the result completely. []

Proof of Theorem 2. Assume that » € R, has all zeros in D_, so that
m > 0. Hence, for every complex numbers «, 5 with |a] < 1 and |5| < 1,

mlaf| < |r(z)| for zeT.



Bernstein type inequalities for rational functions 131

Therefore, by Rouche’s Theorem, all zeros of R(z) = r(2z) + maf lie in
D_. Hence, using Lemma 4, we have for, z € T"

)

2R (2)
R(z)

>Re(

o Vlan+afml = Vlag + (~)"a-5-b-m[|
Van + afm]|

> 5 1B+

l\JI»—

(9)
Since |b| - |a,| < |agl, it can we easily shown (as in Theorem 1) that

lag + (—1)"a- B -m - b| < |ao|
< .
|a, + afm)| ||

Therefore, from inequality (9), we have

IR'(z)| > [IB’( \/m_n\/|—n\|/m_0]|R =
:>|7’/(Z)|>2{’B( \/|a_\/|—|m_0}

Choosing argument of a, such that |r(z) + afm| = |r(2)| + || - |8] - m,
we get

r'(z \/|a_” Vlaol a
N 2 5| 1B+ D () 81 m)

Letting |a] — 1 and |B] — 1 gives, for z € T

()l = 5 {\B( \/W_n\/|_n\|/|_o}

which proves the result when r(z) # 0 for z € T. But the inequality
above is trivially true if r(z) = 0 for z € T this proves the theorem
completely. O]

)+ afm)|.

2)| +m),
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