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Abstract. The present work focuses on the statistical Euler summa-
bility, Euler statistical convergence, and Euler summability of se-
quences of fuzzy real numbers via the generalized fractional differ-
ence operator. We make an effort to establish some relations be-
tween different sorts of Euler convergence. Further, we discuss the
fuzzy continuity and demonstrate a fuzzy Korovkin-type approxi-
mation theorem. Finally, we study fuzzy rate of the convergence of
approximating fuzzy positive linear operators through the modulus
of continuity.
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1. Introduction and Preliminaries. The theory of statistical con-
vergence was initially presented by Fast 7] and Steinhaus [21]. It has
been further designed by Connor [5], Fridy [8], Miller and Orhan [13].
For advanced developments in the field of statistical convergence and the
neighbour topics, see [15], [16]. Mursaleen and Alotaibi [17] also proved
an approximation theorem for a function of two variables by means of
statistical A—summability. For a detailed study on summability theory
and approximation results, see [1], [11], [14], [18], and many others.

In 1965, Zadeh [27] introduced the concept of fuzzy numbers. Savag [22]
studied statistical convergence for a sequence of fuzzy numbers. Later, Ay-
tar et al. [2] expanded the concept of statistical superior limit and inferior
limit to statistically bounded sequences of fuzzy real numbers. Talo and
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Bagsar ( |23], |24]) studied certain classes of sequences of fuzzy numbers;
for further study, see [6], [25], [26].

A fuzzy set u: R — [0,1] is called a fuzzy number if it satisfies the
following criteria:

(i) @ is normal, i.e., there exists an 2y € R, such that @(zg) = 1;

(ii) @ is convex, i.e., for xg,z € Rand 0 < 7 < 1:
w(tzo + (1 — 7)x) = min{u(xg), u(x)};

(iii) @ is upper semi-continuous;

(iv) supp(i) = cl{xr € R: 4(z) > 0} is compact and it is denoted by [a]°.
Throughout the paper, Ry denotes the space of all fuzzy numbers. Suppose
[4]° = {x € R: 4(z) > 0} and the i-level set is [4]' = {z € R: ax) > i},
(0 <i<1). For any 4,0 € Ry and A € R, it is positive to define uniquely
the sum u @ v and the scalar multiplication to A € R of 4 as

[a @ 0] = [a]" + [0]" and [A®a]' = N[4]".

Now, the interval [u]" is denoted by [u usr)] where 4% < aﬂ? and

u 4% e R, i € [0,1]. Then, for 4,9 € Ry define

i

<v<:>u() o and&ﬁr @Sﬁ,VO <1< 1.

Now, d: R X Rp — R is given by

O -}

Here, (Rp,d) is a complete metric space [20]. Let g, h: [a,b] — R be
fuzzy-valued functions. Then the distance between g and h is given by

d(u,v) = sup max{‘u -0 )|
1€[0,1]

¢ (o) = sy sup max{|o? = KO}, |of) — 1]}
u€la,b] i€[0,1]

Let y = (yg) be a sequence of fuzzy real numbers. Then (yy) is called
statistically convergent to a fuzzy number L, if, for every € > 0:

1
lim5|{19 <n:d(ys, L) > €} =0.
0
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By 0, we mean the space of real-valued sequences. Let § = () be any
sequence in € and h be a constant. Recently, Baliarsingh [3], [4] introduced
a new version of difference sequence space of fractional order, given by

[e.9]

(A7) Z hm gy W0 €N (1)

:0

where 7, s,t are real numbers and (7)y is the Pochhammer symbol of a
real number 7, which is defined as

- _{1, (0 = 0)
Tt =W+ 42+ 91, (9N

Here the series (1) is convergent for all ¢ > r + s (see [9]).

Definition 1. [19] A sequence y = (y) is said to be Euler statistically
convergent to [, if for each ¢ > 0

Be = {9 < (1+p)": 1" Igg — 1| > ¢}

has zero natural density, i. e.,

i Bl
m —-——--—-—
n=oo (14 p)n

Definition 2. A sequence y = (yy) of fuzzy real numbers is said to be
statistically Ap®" Euler summable (st — Ay*'SE) to a fuzzy number L, if
for every € > 0

1 1<
lim —|< 9 < n: d(— E ATy L) > 8}
=y H (1+ p)n &= "

Definition 3. A sequence y = (yy) of fuzzy real numbers is said to be
A®" Euler statistically (A)*'Sth) convergent to a fuzzy number L, if for
each e > 0

=0.

{0 <+ )" gV d(A  yg, L) > €}

has zero natural density, i.e.,

li ¥ < (1 WP d(AT Yy, L) > e} = 0.
nl—>rgo (1+M) |{ ( +:u) ( no Yo, ) 8}’
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Definition 4. A sequence y = (yy) of fuzzy real numbers is said to be
A®" Euler summable to a fuzzy number L, if

1 n
lim ——— INDSy s = L —
I SO = 1
Also, y = (yg) is said to be strongly Ay®" Euler summable (A;*'SE)
to L, if
1 n
lim —— Z/ﬂ*ﬂd(AZ”y,g, L)=0.
)" =

n—oo (1 4

Definition 5. A sequence y = (yy) of fuzzy real numbers is said to be
strongly Ay*" Euler summable with order a (A}*'SE), (0 < a < o)
to L, if

lim Z,u" Yd(AT g, L) = 0.

77—>oo
2. Relation between dlfferent convergence concepts of se-

quences of fuzzy real numbers.

Theorem 1. Suppose j""d(A;*'yg— L) < M, ¥ n,9 € N. If a sequence
y = (yg) is A*" Euler statistically (A}*'StE) convergent to L, then it is
strongly Ay*" Euler summable (A}*'SE) to L.

Proof. Suppose p"d(Ay*"yy,L) < M,V 1,9 € N. By the given condi-
tion, we have

|
lim {9 < (14 )" " d(A g9, L) 2 e} = 0.

=0 (1+ p)
Consider
Gle) = {0 < (L4 p)": " d(A ys, L) > €}
and
Ge) = {0 < (14 p)": p""d(A) g9, L) < e}
Then

]' 738,
(1+—u2/f7 "d(Ay yy, L) =

9 T'St 9 r,s,t
prd(AY W d(AY e, L) <
1+,u ; 1+u ; "
¥eG(e) VEG(e)
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]' — 78,
< m(sgpﬂn Yd(Ay; Yyg,L )>‘G(5)‘ +ex
1
\WM‘G(S)‘+€—>O+€:€

as 7 — oo, which implies y = (yg) is strongly A}®" Euler summable
(AP*'SE) to L. O

Theorem 2.
(a) A sequence of fuzzy numbers y = (ys) be (A}*'SE),
to L. If
0<a<land 0<d(A "y, L) <1

or
I<a<ooand 1<dA) yy, L) < oo,

then (yg) is (A}*'Sth) convergent to L.

(b) A sequence of fuzzy numbers y = (yy) is (A" Stk) convergent to
L and
M, for all ¥ € N.

p (AL g, L) <
l1<a<ooand 0 < M < 1, then (yy)

IF0<a<land 1< M < o or
is (AP*'SE), to L.

Proof. (a) Let y = (yg) be (A7*'SE), to L, i.e.,

1
lim ——« (A = 0.
m AT ZM Yo, L)

N—00 (

Consider
Gle) = {9 < (1+p)": p" d(Ay " yy, L) > &}

and
G(e) = {0 < (1+p)": " Pd(Ay " yy, L) < €}

By the given conditions, we have
(A "y — L) < d(Ay 'y — L)
and
Pl (A e — L) < U d(AR s — L)

Then
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1 2 T8,
LS iy~ 1 >

(T4 p)" e~
n
LS s 1) -
v=1
— ; Z ’un ﬁd ATStyﬂ )+ 1 i ,ufq—ﬁd<AT,s,ty19 L) >
(L+p)n 4= () hoow
9eG(e) 9eG(e)
1 ?7
9 r,8,t
prd(A Y, L) > ——— €=
1+u ; (14 p)n ;
JeCG(e) 9eG(e)
G
Ge)l — 0 as n — o0,
(14 n)

which implies (yg) is (A}*'StE) converge to L.
(b) Let y=yy be (Ay*'Sth) convergent to L and p"Yd(A}>'yg, L) < M,
for all ¥ € N. Then

]' 738,
T o 1y =

1 T8, CY 7,8,
=T Z = d( Ay L) 1+u Z Pl (A g, L) =
9=1

ﬂgG(l) VEGE (&)
= Vi(n) + Va(n),
where .
1
‘/1(77) T N /'Ln ﬂd ATSt Y9, )au
T 2=
9eG(e)
-
Va(n) Pl d(AY g, L)
(L4 p)r 4=
VEG(e)

If ¥ € G(e), then

L N" g anst, pe
Vi(n) = (e D (AT s, L) <
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Z P (A g, L) <
19EG( )
1

< -
(14 p)n

If ¥ € G(¢), then

=Y A(AT . L) G ) < M—| —0 — 0.
(S%pr ( h Yy, )’ (€)| (1 + M)" as 1

n
S AT D) <

Va(n) =
1+u —
1961967‘1(5)
"
G
< Z p"0d( A”t ,L)—€| )l =casn — 0.
1+u — (1+p)
DEGE(e)

Thus, (1+u’7 Z " Pd(AF yy — L)* — 0 as n — oo. Hence, (y,) is
(ARP'SEY, to L. O

3. Korovkin-type theorem and rates of equi-statistical con-
vergence. In this section, we use the concept of statistical A)*'— Euler
summability method (st — AZ’S’tsg ) to prove a Korovkin-type approxima-
tion theorem. A fuzzy number valued function g : [a, b] — Rp is said to be
fuzzy continuous at yo € [a, b], iff y, — yo; then d(yy, yo) — 0 as ¥ — oo.
In other words, we can say that on an interval [a, b] ¢ is fuzzy continuous
if it is fuzzy continuous for any u € [a,b], and we denote the space of all
fuzzy continuous functions on the interval [a,b] by Cg[a,b]. In this case,
Crla,b] is just a cone, not a vector space. Now let £ : Crla,b] — Crla,b]
be an operator. We say that ¢ is fuzzy linear, if for every (;,(; € R,
g1, 92 € Cpla,b], and u € [a,b]:

(O DGLOgsu)=C O©&g15u) ® e E(g;u).

Also, ¢ is called fuzzy positive linear operator, if it is fuzzy linear and

£(g1;u) < &(g2;5 1)

for any g1, g2 € Cpjap and for any u € [a, b] with

g1(u) < ga(u).
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In this paper, we use the test function e;, which is given by e;(u) = u/;
here 7 = 0,1, 2.

Theorem 3. Consider the fuzzy sequence {§,,} of positive linear opera-
tors from Cp la, b] into itself. Suppose that there exists a corresponding
sequence {,,} of positive linear operators from C|a,b] into itself s.t.

{€nlg: )}y = &nlgl;u), (2)
for all u € [a,b], g € Crla,b] and m € N. Suppose also that

(j=0,1,2). (3)

st — lim H
n—oo |l (1 4 p

Zun 19Arst€§(ej)

Then, for all g € Crla,bl,

1 77
1 * n—19 A T,S,t —
st — lim d (—(1 FAE ;:1 wU AT 9 (g), 9) 0. (4)

n—00
Proof. Suppose g € Crla,b], u € [a,b] and i € [0,1]. Since ¢3) € Cla,b],
for every £ > 0, there exists a number p > 0, such that ]ggf)(y)—ggf) (x)] <€
whenever |v — u| < p. Since g is fuzzy bounded, we get |g$ (u)] < Rgi).
Then, for all v € [a,b], we have

i i i (v —u)?
|9§[)(U) - gi)(u)| <e+ 2R(i)T7

which implies

2R ; i 2R
- pf(v—U) (gi)( ) — g (u )) <e+ pj(v—u)z.

Using the positivity and linearity of the operators &,,, we have

n 2Rl
Y A TS, ,
Wzlun A 5(1 U)(—g_ p (U—U))<
1 - r,8,t & i i
< 2 e () ) <
1 - 7,8,0 & 2Rz
< mZun 19A Eo(1, u)<5+ pzi(v_u)2>.

53
Il

1
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Suppose u is fixed; then gg)(u) is a constant number and we have:

S Zu" T (1)

2RZ 1
Zpﬁ ﬂArst ’U—u) U)<

aﬁzm ARG (91 (v),u)—

Ty Zu" PAR G (1) <

c Z Pl AR E (1, 1)+
(1+ u)” o

21 1 - 7,8, &
S Do A G (0 = ),

T
P (1+Mn19:1

Also,

1

n ' '
T ARG ) 0) — () =

=1
1

T & Z WA G (92 (0), )

_ggz)( ZMH ﬁA’I‘Stgﬂ(l u)

7

(1_}_—772'[/] ﬂArstf (1,u) = 1),

(1+M
+ g% (u)

which gives:

nZ/ﬂ TN E (0 (v)u) — g () <

(1 +u —

— 1 . 7,8,
e o A G L)t
v=1
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e LS gy (o — P u)
2 h )
p* (L+p)" <=

(3) 1 ! n— 7,8t & w) —
92 (W g +M)n§2u AL (L u) = 1). (5)

Next, consider the second part of the above inequality:

1 — 8, &
T (At Z“n TR (v + P = 2uv,u) =
=1

M

Using the above equality with (5), we have

T Zu“ TAR (6 (0) ) — () <

1 —9 ATS,EF
S A (1wt
(1+ p)7 £~

2R} 1 ! .
o L 2o A G ) — ]~

+
1+ p) 4~

Ul

—2u [ﬁ Z MniﬁAZ’s’tgg(’U, U) - U:| +

v=1
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n
nﬂArst 1 _1
[1-1-”?7792:;“ §o(1, u) }+
(i 1 ¢
v rst
1 O g arsts
= e 2 A AR G (L) — 1] et
5[(1+u)n;u W Eo(1,u) }
2Rii —1 - n—9 AT:StE ()2 2
+ p? [(1—1—#)772” A} 519(”7“)‘“]—
1
— - - n—=19 A TSt .
2u[(1+,u Z'“ AL Es(v,u) U%—
1 n
2\ _ - n—>_9 ATt & .
i s 1
(1) - n—y9 A T8t -
—|—g:t<u>[(1+M Z“ AREN (1, u) 1]
Now,
1 i o ‘
- n—>9 A TSt () . (4)
‘(1+M)W;M A9z (v).u) — g (U)’<
2R, ¢ . 1 i L .
<et(e+ + R ‘_ PONTSIE (] _1)+
o (o4 2 R [ A0
4Ritc‘ 1 - n—1 te
ATVS’S v, u —U‘+
T 2t A )
QRQZ _1 . -9 ATS,E 2 )
w AV (v u —u‘,
7 T 2t A

. . . .
where ¢ = max{|al,|b|}. Let Ni(¢) = max (6 + QRP% + R;,Mj—gcy%)-

Taking supermum over u € [a, b], we transform the above inequality to

1 - — 7,8, ~ 7 i
H T+ )" > oA E (98 ) — g (w) H S
=1
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<e+ N;;(g){H (1 4‘1M)’7 ;i;,uﬁ_ﬁAZS,tgﬂ(eo’u) B 60H+
+ H (14 p) £ i“n_ﬁAzs’tgﬂ(BMU) —eq||+
N H Z/ﬂ TN €y (ea ) — ez } (6)

Then, from (2), we have

( ni/ﬂ IATSE )79)

¥=1

u€la,b] (1 + ,u)n 9=1
1 n
—9 AT,S,t 7 )
— sup sup max{| WA E (g (v)) — g (u).
u€la,b] i€[0,1] (14 p)n ﬁz "
S AT (g () - g )]} =
(1+M)" — h S9\Y4 +

1 2 Y AT,S,t & i ]
= sup max{” E AT (gt (V) — QZ_(U)H,
i€0,1] (L+ p)7 <= "

From (6) and (7), we get

< nzn:’un ﬂArstgﬁ (9), )<

¥=1
n
<e+ N(€){Hm Z/LniﬁAzs’t5ﬂ<€0,u> B eOH+
9=1
1 il ~
' H (14 p)n D AR (e u) — e ||+
9=1
S uroage
+ H IunfﬂAZS,t@(eQ,u) — ey }7
(1+p)n &=
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where N(g) = sup max{|NZ(5)|, |Ni(5)|} For a given &1 > 0, take a
1€[0,1]
number € > 0, such that ¢ < ;. Consider

S = {n eN: d* (m i/ﬂ_ﬂAZ’S’tfﬁ(Q),g> = 81}7
9=1

5= frem |t

2 2
where j = 0,1,2. Therefore, S C > S;. Thus, §(5) < > §(5;). Hence,

j=0 7=0

n
n—ﬂAns,t* . — el > €1 — 5}

using (3), we obtain (4). O

Definition 6. Consider the positive non-increasing sequence (s,) of real
numbers. A sequence (yy) of fuzzy number is said to be statistically A};’s’t
Euler summable (st — A}*'SE) convergent to L with the fuzzy rate o(s,)
for every € > 0, if we have

1
o Lfo ot S i) )|
and, therefore, we can write it as
yo — L= (st = A™'SE) ofsy).
Now, the modulus of continuity of g € Cr[a, b] is given by

2(gip) = sup d(g(u), g(v))

uvve[avb]7|u77)|<¢
for any 0 < ¢ < b — a that satisfies

|u — v

g, Ju—ol) < (1452 2(g:0).

Next, we have the following result:

Theorem 4. Consider the fuzzy sequence {&,,} of positive linear oper-
ators from Crla,b] into itself. Suppose that there exists a corresponding
sequence {&,,} of positive linear operators from C|a, b] into itself, such that
{&m(g: )t = (g w), for all u € [a,b], g € Cpla,b] and m € N. Con-
sider two positive non-increasing sequences (s,) and (p,) of real numbers.
Further, suppose that
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(i) 1l&m(e0) — eoll = st — MRS ofsy),
(ii) 2(g, VI Lin((v = w)2)|l) = st — A'SE o(py).

Then we have

d*(gm(g)7 g) = st — A:{S’tsg O(an)a
where o = max{s,, p,}.

Proof. Consider g € Cr[a,b] and u € [a,b]. Then, using positivity and
linearity of the operator &, with the continuity of fuzzy modulus, we have

1

’(1+—uzlﬂ ﬂAmtf (g:l:v u) — g;(u)’ <

< gl (u ZM” YA Eg(eo;u) — 60‘4-

l‘ (1+ p)n

1 . — 7,8, & 7 i
T oA (ko) — b)) <

n
Zun ﬁArSt&g(eo, )—60‘+

< R
* (1+u"q9:1
"

X
+ 1 277: U—ﬁArstg <<1+ ‘U—U‘) ( i ) )<
ZERY SRS 9+, P)u
(1+ p)n &= " r . -

1 ! — 7,8t &
e S i)
v=1

e Jrlu)n ;Mn_ﬁ%’s’tgﬁ«l * |U;“|2> (9% 2); ) S

< RL

L +

~

n
ZM” YA Eg(eosu) — e

(1 + )"
1 ! .
E 1P ARTE (03 u) — e

=1

+2(gk, ) + USE) ( Zu" TALE (v — ) U)>,

@

+

+ Z(inw)‘m

where R, = ||¢’.||. Taking supermum norm of both sides of the above
inequality, we have
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H(1+u Zu” PR (g u) — gl (u)Hg

n
< RY WZM" YAy (eo;u )_€0H+
9=1
’,7 —
+ 2(g, H— TINISE S (e 1) — eo|+
29k, (1 oy 4 1u n So(eoiu) — e
] (gi - W ty 2
+ 29 ) + H T o Al =) )|

Now, take ¢ = u'; then we have

H(1+u ZM" YA (g u) — gl (u)Hg

i

+

(1+u Z”n A Eaeoi) = ol |+

n

ZM” A, Stfﬁ(eo, u) — €

=1

+ 2(g 1) + 22(g', ).

(1+M

Therefore, we have
1 ,r]
& (m Z WAL E(g), g) <

n
<R ZMU 0ATStfﬂ (eo;u )—€0H+
=1

)"
1
+ 2(9%, 1) (14‘—”2 pr ﬁAmtfﬂ(eo, —eoH +22(g, 1) <

9=1

n
< 1| sy S A alens) — |+ 2ok
¥=1

U
+ (g%, 11g) ‘ ) ZM" YA E g (eg;u) — e

=1

3

where H = max{R’_,2}. Using Definition 6 and conditions of Theorem 4,
we have desired result. O
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