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GENERALIZATIONS OF CERTAIN WELL-KNOWN
INEQUALITIES FOR RATIONAL FUNCTIONS

Abstract. In this paper we generalize and refine a result of Wali
and Shah concerning the estimate of the derivative of the maxi-
mum modulus of rational functions with prescribed poles and re-
stricted zeros. The obtained results generalize and sharpen some
well-known inequalities for the derivative of rational functions be-
sides the refinement of some polynomial inequalities.
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1. Introduction. For each positive integer n, let P,, denote the linear
space of all polynomials p(z) = ) a;27 of degree at most n over the field
j=0
C of complex numbers. If p € P, and p’ is its derivative, then we have the
following;:
Let p € P,, and suppose |p(z)| < M on |z| = 1. Then, for |z| = 1:

p'(2)] < nM. (1)

Inequality (1) is referred to as Bernsteins’s inequality. Riesz [11] (see
also [12, p. 557]) was probably the first to formulate this inequality in
the present form. However, in a stronger version it was first proved by
Smirnoff [13] (see also [7]). Equality holds in (1) if and only if p has all its
zeros at the origin. However, if we impose restrictions on the location of
zeros of p, then Erdos conjectured and latter Lax [8] proved the following:
If p € P, has all zeros in |z| > 1, then
n

/
< = .
max [p'(2)] < 5 max |p(z)
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On the other hand, if p € P, has all zeros in |z| < 1, then Turdn [14]
proved:

max |p = —max |p(z)|.
nax p/(2) > 5 max p(2)
The above inequality of Turdn was further refined by Dubinin [5], who
obtained, under the same assumptions:

1 |an| — |ao|
ﬁqm<n>2@+mﬂ+mgggm@«
Recently, Kompaneets et al. [7] considered the problem for polynomials
with zeros outside a disk and obtained some results related to classical
inequalities of Bernstein and Smirnoff. These inequalities were further
generalized in another paper of Kompaneets et.al [6], where it is assumed
that all but one zero of p(z) lie inside the disk.

We write
IRmn = Rmn(Oélonv s 70571) = {p(Z) ‘pe Pm}a m < n,
’ ’ w(z)
where .
wiz) =[[z—a), loyl>1, j=1,2,...,n

j=1
Thus, R,,, is the set of all rational functions with poles ay,aq,..., a,
and with finite limit at co. Throughout this paper, we shall assume that
all poles aq, g, ..., lie in |z| > 1. We also observe that the Blaschke

product B(z) € R, ,,, where

n

1 —a;z\  w*(z)
]1_[<z—ozj ) ow(z)]

with w*(z) = 2"w(2) = [](1 — @;z), satisfying |B(z)| = 1 for |z] = 1,

<.
Il
_

and zB z)

= |B'(z)|. Li, Mohapatra, and Rodriguez |9] proved the fol-

lowmg results for a rational function r(z) € R, , with prescribed poles
aq,Q, . .., ap, replacing 2™ by B(z):

Theorem 1. IfreR,, has all the n zeros in |z| > 1, then, for |z| = 1,
we have:

() < 5B G 2
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The result is sharp and the equality holds for r(z) = aB(z) + b, with
la] = |b| = 1.

In the same paper, they proved the following:

Theorem 2. IfreR,, has all n zeros in |z| < 1, then, for |z| = 1, we
have:

1
()| = SIB'()lIr(2)]- (3)
The result is sharp and the equality holds for r(z) = aB(z) + b, with
jal = o] = 1.

In this paper, we relax the condition that all zeros of a rational function
r(z) lie in |z| < 1 and prove the following results, more general than those

proved by Wali and Shah [15].

2. Main results.

Theorem 3. Ifr e R,,, has a zero of order s at zy with |z| > 1, and
the remaining m — s zeros are in |z| < 1, then, for any |z| = 1:

1 1—’20’ s
ma; r! = —{(—) X

N 2s
B o s |CO|)_ } (4
x(\ B (r—m s+ Lol B o)

For s = 0, (4) reduces to a result by Wali and Shah [15].

Corollary 1. If we assume r(z) has a pole of order n at z = «, then
__p(2)
r(z) =

(z —a)"
(2) ((z )") (

—a o — a)n+1

, where p(z) is a polynomial of degree m. Then

Y

where D,p(z) = mp(2) + (o — z)p/(2) is the polar derivative of p(z) with
respect to the pole Q.

@ : n(lo2-1) (1@ """
Since B(z ( a) therefore, B'(z) = ooy <ﬁ) :
Also for |z | =1, |B( )| = ‘LD"alQ Now for |z| = 1 and m = n, from

Theorem 7?7 we get:

Dap(2) ‘>1{<1—]20>8<n(|a|2—1) S+|cn_s|—|60|)_

’(z R 21\1 + |20 |z — al? B |Cns| + |col
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2s }’ p(2) 5)

1+ [z Sz =)l

Now, letting |a| — o0, we get, from (5):

1 1- 5 n—s|
maXW(Z)\?—{( |ZO|) (n—s+—|c | |CO>—

|z]=1 2 1+ |Zo| |Cn_5| + |C()’

= Fmaxp(e)] ()

B 1+ |Zo| |z]=1

Remark. If we put s =0 in (6), we get the result by Dubinin [5].
Next, we obtain the following generalization of Theorem 3:

Theorem 4. Ifr e R,,, has zeros at zy and z; of order s and d with
|z0| > 1,|21| > 1, and remaining m — s — d zeros lie in |z| < 1, then, for
|z| =1:

max |r'(z)| > 1{<1 _ |ZO|>S<1 - ’Zﬂ)dx

|z|=1 2 1+ ’Zo’ 1+ ’21’

“

B'(Z)l—(n—m+s+d)+w>_

|Cm—s—a| + |col
2s 2d }
1 + |Zo| 1 + |Zl|

max|r(z)|. (7)
For d = 0, Theorem 4 reduces to Theorem ?7; for s = d = 0, (7)
reduces to the result by Wali and Shah [15].
Again, if we consider r(z) with a pole of order n at z = «, then
r(z) = % Now, using the same procedure as in Corollary 1 and
z—a)"
letting |a| — o0, we get:
Corollary 2. Ifpe P, has zeros zy and z, of order s and d, respectively,
with |zg| > 1,|z1| > 1, and remaining n — s — d zeros lie in |z| < 1, then,
for |z| = 1:

1 1-— |Zo| srl — |Zl| d ’Cnfsfd| - ’CO|
/ _—
max |p'(z 2—{( )( ><n—3—d—|— >_
|2|=1 P (z)] 2 N1 + |2/ \1+ |z] |Cn—s—al + |col

2s 2d }
— — max |p(z)]. (8
1+ |Z()| 1+ |Zl| |z]=1 |p( )| ( )

Using the similar technique, we also have:
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Corollary 3. Let r(z) = (2 — 20)*(2 — 21)"...(z — 2)*s(2) € Ry .
t

Let s(z) be a rational function of degree m — >’ s; = | (say), with each

=0
t
lzil > 1,i =0,1,2,...;t and 0 < >, s; < m — 1, and let the remaining [
i=0
zeros lie in |z| < 1. Then, for |z| = 1, we have:

1 1—|z0|>80<1—|21|>81 (1—|zt|>8t
m ! = — X
|z|i}f‘T(z)’ 2{<1+|z0] 1+ |z 1+ |z
, la] — el
x (|B'(z —n—m+l+—>—
(1B ( ey

250 251 25, }
L4 z0] 141z = 14|z

max |r(z)].
|z|=1

For the proof of these theorems, we need following lemma.
3. Lemma and Proofs of Theorems.

Lemma 1. Suppose r € R,,,, has all zeros in |z| < 1; then, for |z| = 1,
we have:

P12 1B E) - (- m) + )

[em] + |col

This lemma was proved by Wali and Shah [15].

Proof of Theorem 3. Since r(z) has a zero of order s at z = 2, therefore,
r(z) = (2 — 20)°t(2), where t € R,;,_s,. This implies

7(2) = (2 — 20)°t'(2) + s(z — 20)° '(2).

Hence,
[7'(2)] = (2 = 20)"t' (2)] = s[(2 = 20)""t(2)]-

This implies

max |7/ (2)] = |1 — |zo|* max [t'(2)] — 5|1 + |z0]]* ! max [t(2)]. (9)
|z]=1 |z|=1 |z|=1

Now, using Lemma 1 for the rational function ¢(z), we have

1) > (B — (= m o+ s) + [l Oy

|Cm—s| + |col

N | —
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Therefore, from (9) we get:

1 _ S

maxls' @) = B2 ) - o+ )+

zl=1
M}ma It(2)] — |1 + |2|[* " max [t(2)]. (10)
|Cm—s| + [col ) 1 A=

Now, for |z| = 1 we have:

1 1
t(z) = —r(z)| =2 ——r(2)|.
12)] = = b > o)
This implies
1
max |t > ————max |r(z)].
max 1(2)] > [ max ()

Therefore, we get, from (10):
Lerl—lzolye |Cm—s| — |col
max |r 2—{( )(B'z —(n—m+s +—>—
max|r'(z)] > 3 T+ |B'(2)] = ( ) e+ 1ol

i}max\r(z)|.

B 1+ |Zo| |z|=1

This completely proves Theorem 3. []

Proof of Theorem 4. Since r(z) has two zeros of order s and d at 2
and zy, respectively, with |zp| > 1,]21| > 1, and remaining m — s — d zeros
lie in |2] < 1, therefore: r(2) = (2 — 20)*(z — 21)%(2), where t € Ry_s_an
has all zeros in |z| < 1; then

r'(2) = (2 — 20)%(2 — 20) % (2) + s(2 — 20) "Mz — 21)%(2)+
+d(z — 20)%(z — 1)t (2).
This implies
rlil‘a)f]r()|>ﬂa>f‘z—zo) (z — 21)%'(2)|-
—max|(z — 20)* ' (z — 2) M s(z — 21) +d(z — 20) }(2)]-

[2=1

Also, for |z| = 1:
1= [z0]| <[z =20 <1+ |2
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and
1= x| < |z — 21| <14z,

we have then:
max |r'(z)] = |1 — |z0]]°|1 — |z1]|* max |t/ (2)|—
|z|=1 |z|=1

= L+ Jaol P+ I s [1 + [l + 1 + |Zo||}ﬁ§>f|t(2)l- (11)

Applying Lemma 1 to the rational function ¢(z), we have

1 |Cm—s—d| - |Co|
(> B - 0 —m ot sy + Lo 2l
1) 2 G{BG) = (o= m o+ s+ d)+ 220 ()

Therefore, from inequality (11) we get:

o 11— Jzol P — EAlE
2|=1 - 2

|Cm—s—d| — |CO‘}
|Cm—s—a| + |col

— 1+ |20] 571 + ]ledfl{s\l + |z1|] + d|1 + ]zOH}maX\t(z)\. (12)

{IB()| = (n=m+s+d+

max [t(z)]|—
|z|=1

|z|=1
Also,
r(z)
t(z
( ) (Z — Zo)s(Z — Zl)d
This implies:
r(2) max r(2)|
max [t(2)| = max‘ d‘ > =
|2|=1 lz|=1 1 (2 — 20)%(z — 21) |1+ |20||5]1 + |21]|

Therefore, we get from (12):

max r(2)| > 2 (3 |Z°|>s(1 - ’Zl‘)d(yB'(z)\ C(h—mts+d)+

|z|=1 2 1+ |Z()’ 1+ ’Zl‘
|Cm—s—a| — |CO|) 2s 2d } r(2)|
— — max |r(z)|.
|Cm—s—d| + |co| 1+ |z0] 14 |21|) |z=1

This completes the proof of Theorem 4. []
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