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1. Introduction and Background. There are three basic conver-
gence types for the sequences of sets: Kuratowski convergence, Hausdorff
convergence and Wijsman convergence. First, Painleve introduced the
concept of convergence of sequences of sets by defining the outer and in-
ner limits of sets. If the inner and outer limits are equal to each other,
then this convergence type is known as Kuratowski convergence [7].

Second well-known convergence type for sequences of closed sets was
given by Hausdorff as follows: Let (𝑋, 𝜌𝑋) be a metric space and 𝐶𝑙(𝑋)
denote the nonempty closed subsets of𝑋. The Hausdorff distance between
two sets 𝐴 and 𝐵 of 𝐶𝑙(𝑋) is defined by

𝐻 (𝐴,𝐵) = sup
𝑥∈𝑋

|𝑑(𝑥,𝐴)− 𝑑(𝑥,𝐵)| ,

where 𝑑(·, 𝐴) : 𝑋 −→ [0,∞) is the distance function defined by
𝑑(𝑥,𝐴) = inf{𝜌𝑋(𝑥, 𝑦) : 𝑦 ∈ 𝐴} [12].

Equivalently, the Hausdorff distance is given by

𝐻 (𝐴,𝐵) = max {𝑕(𝐴,𝐵), 𝑕(𝐵,𝐴)} ,
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where 𝑕(𝐴,𝐵) = sup
𝑎∈𝐴

𝑑(𝑎,𝐵) is the Hausdorff excess of the set 𝐴 with

respect to the set 𝐵 [3].
It is clear that a sequence (𝐴𝑛) of sets is Hausdorff convergent to the

set 𝐴 if
lim
𝑛→∞

𝐻(𝐴𝑛, 𝐴) = 0.

In this case, we write 𝐴𝑛
𝐻−→ 𝐴 as 𝑛→ ∞ [6].

If a sequence (𝐴𝑛) of sets is Hausdorff convergent to 𝐴, then the se-
quence {𝑑(·, 𝐴𝑛)}𝑛∈ℕ of distance functions is uniform convergent to the
distance function 𝑑(·, 𝐴). Finally, if we replace this type of convergence
with the pointwise convergence, we get the Wijsman convergence as fol-
lows:
Let 𝐴𝑛 ⊂ 𝑋 for each 𝑛 ∈ ℕ; a sequence (𝐴𝑛) of sets is said to be Wijsman
convergent to the set 𝐴 if

lim
𝑛→∞

𝑑(𝑥,𝐴𝑛) = 𝑑(𝑥,𝐴) for all 𝑥 ∈ 𝑋.

In this case, we write 𝐴𝑛
𝑊−→ 𝐴 as 𝑛→ ∞ ( [12], [13]).

A sequence (𝐴𝑛) of sets is said to be monotonically increasing if
𝐴𝑛 ⊂ 𝐴𝑛+1 for each 𝑛 ∈ ℕ and it is said to be monotonically decreas-
ing if 𝐴𝑛+1 ⊂ 𝐴𝑛 for each 𝑛 ∈ ℕ [7].

The relations among these three types of set convergence have been
investigated by several authors. In 1979, Salinetti and Wets [9] showed
that every Hausdorff convergent sequence of sets is Kuratowski convergent
to the same set. Then, Beer [2] examined that the Wijsman convergence
implies the Kuratowski convergence for nonempty closed sets. Also, he
gave the conditions for these convergences to be equivalent to each other
in [2, Theorem 1]. In 2001, Apreutesei [1] observed that Wijsman con-
vergence and Hausdorff convergence are equivalent to each other if the
sequence of compact sets is monotone. In [3], the Hausdorff limit of a
sequence of sets was obtained as intersection of closure of the union of
terms of this sequence.

In 1951, Fast [4] introduced the concept of statistical convergence. In
2012, the theory of set convergence was generalized to the theory of sta-
tistical convergence by Nuray and Rhoades [8]. They investigated the
relation between statistical Hausdorff convergence and statistical Wijs-
man convergence. Furthermore, Talo et al. [10] defined statistical inner
and outer limits of sequences of closed sets and they compared the statis-
tical Kuratowski convergence with the statistical Hausdorff convergence.
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Recently, Ulusu and Gülle [11] examined statistical Wijsman convergence
and statistical Hausdorff convergence of order 𝛼 for double sequences of
sets.

In this paper, we first show that Wijsman convergence and statisti-
cal Wijsman convergence are equivalent to each other if we choose the
sequences of sets as monotone. Then, we show that every statistical Wijs-
man convergent monotone sequence of sets is not only Hausdorff conver-
gent, but also statistical Hausdorff convergent to the same set. Finally, we
characterize the statistical Hausdorff limit by using the concept of ideal.
Note that we used the similar proof tecniques of [1].

2. Main Results. Before giving our results, we recall some definitions
about the statistical convergence.

Let𝐾 be a subset of the set of positive integers ℕ and |{𝑘 ⩽ 𝑛 : 𝑘 ∈ 𝐾}|
denote the number of elements of 𝐾 ∩ [1, 𝑛]. The natural density of 𝐾 is
defined by

𝛿(𝐾) = lim
𝑛→∞

1

𝑛
|{𝑘 ⩽ 𝑛 : 𝑘 ∈ 𝐾}|

if this limit exists. It is clear that any finite subset of ℕ has zero natural
density and 𝛿(𝐾𝑐) = 1− 𝛿(𝐾), where 𝐾𝑐 := ℕ ∖𝐾 [5].

Let 𝐴,𝐴𝑛 ∈ 𝐶𝑙(𝑋). The sequence (𝐴𝑛) is said to be statistical Haus-
dorff convergent to the set 𝐴 if for every 𝜀 > 0,

lim
𝑛→∞

1

𝑛
|{𝑘 ⩽ 𝑛 : max {𝑕(𝐴𝑘, 𝐴), 𝑕(𝐴,𝐴𝑘)} ⩾ 𝜀}| = 0.

In this case, we write 𝐴𝑛
𝑠𝑡−𝐻−→ 𝐴 [8].

Let 𝐴𝑛 ⊂ 𝑋 for each 𝑛 ∈ ℕ. Then the sequence (𝐴𝑛) of sets is said to
be statistical Wijsman convergent to a set 𝐴 if

lim
𝑛→∞

1

𝑛
|{𝑘 ⩽ 𝑛 : |𝑑(𝑥,𝐴𝑘)− 𝑑(𝑥,𝐴)| ⩾ 𝜀}| = 0

for each 𝑥 ∈ 𝑋. In this case, we write 𝐴𝑛
𝑠𝑡−𝑊−→ 𝐴 [8].

Theorem 1. Let 𝐴,𝐴𝑛 ∈ 𝐶𝑙(𝑋) (𝑛 ∈ ℕ).
(i) Let 𝐴1 ⊂ 𝐴2 ⊂ . . . ⊂ 𝐴𝑛 . . .. Then the sequence (𝐴𝑛) is Wijsman
convergent to the set 𝐴 if and only if it is statistical Wijsman convergent
to the set 𝐴.
(ii) Let 𝐴1 ⊃ 𝐴2 ⊃ ... ⊃ 𝐴𝑛 ⊃ .... Then the sequence (𝐴𝑛) is Wijsman
convergent to the set 𝐴 if and only if it is statistical Wijsman convergent
to the set 𝐴.
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Proof. The necessity parts of (i) and (ii) are provided for all sequences
of sets (see [8]).
i) Assume that 𝐴𝑛

𝑠𝑡−𝑊−→ 𝐴. Firstly, we show that 𝐴𝑛 ⊂ 𝐴 for every 𝑛 ∈ ℕ.
Fix 𝑛 ∈ ℕ and let 𝑢 ∈ 𝐴𝑛. From 𝐴𝑛

𝑠𝑡−𝑊−→ 𝐴, we have 𝛿 (𝐾(𝑢, 𝜀)) = 1 for
each 𝜀 > 0, where

𝐾(𝑢, 𝜀) := {𝑚 ∈ ℕ : |𝑑(𝑢,𝐴𝑚)− 𝑑(𝑢,𝐴)| < 𝜀} .

For each 𝜀 > 0, there exists an 𝑚𝜀 ∈ ℕ, which is 𝑚𝜀 ∈ 𝐾(𝑢, 𝜀) and 𝑚𝜀 ⩾ 𝑛.
Since (𝐴𝑛) is monotonically increasing, we have 𝐴𝑛 ⊂ 𝐴𝑚𝜀 and 𝑢 ∈ 𝐴𝑚𝜀 .
Therefore, we get 𝑑(𝑢,𝐴𝑚𝜀) = 0 and so,

𝑑(𝑢,𝐴) = |𝑑(𝑢,𝐴𝑚𝜀)− 𝑑(𝑢,𝐴)| < 𝜀

for each 𝜀 > 0. We get 𝑢 ∈ 𝐴, since the set 𝐴 is closed.
Now, let us take any 𝑥 ∈ 𝑋. Hence, we can write 𝑑(𝑥,𝐴) ⩽ 𝑑(𝑥,𝐴𝑛)

and so:
𝑑(𝑥,𝐴𝑛)− 𝑑(𝑥,𝐴) ⩾ 0 (1)

for each 𝑥 ∈ 𝑋 and each 𝑛 ∈ ℕ.
We show that for each 𝜀 > 0 there exists an 𝑛0 ∈ ℕ, such that

𝑑(𝑥,𝐴𝑛)− 𝑑(𝑥,𝐴) < 𝜀 for every 𝑛 ⩾ 𝑛0. Let 𝜀 > 0. Since 𝐴𝑛
𝑠𝑡−𝑊−→ 𝐴, we

have 𝛿 (𝐿(𝑥, 𝜀)) = 1, where

𝐿(𝑥, 𝜀) := {𝑛 ∈ ℕ : |𝑑(𝑥,𝐴𝑛)− 𝑑(𝑥,𝐴)| < 𝜀} . (2)

Let 𝑛0(𝑥, 𝜀) := min𝐿(𝑥, 𝜀). By the monotonicity of the sequence (𝐴𝑛), we
have

𝑑(𝑥,𝐴𝑛) ⩽ 𝑑(𝑥,𝐴𝑛0) (3)

for every 𝑛 ⩾ 𝑛0. If we combine the expressions (2) and (3), we get

𝑑(𝑥,𝐴𝑛)− 𝑑(𝑥,𝐴) ⩽ 𝑑(𝑥,𝐴𝑛0)− 𝑑(𝑥,𝐴) < 𝜀 (4)

for every 𝑛 ⩾ 𝑛0.
By the inequalities (1) and (4), we get

|𝑑(𝑥,𝐴𝑛)− 𝑑(𝑥,𝐴)| < 𝜀

for every 𝑛 ⩾ 𝑛0.
Since 𝑥 is arbitrary, we obtain

lim
𝑛→∞

𝑑(𝑥,𝐴𝑛) = 𝑑(𝑥,𝐴)
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for every 𝑥 ∈ 𝑋 and 𝐴𝑛
𝑊−→ 𝐴.

ii) Let us assume that 𝐴𝑛
𝑠𝑡−𝑊−→ 𝐴. Fix 𝑛 ∈ ℕ and take 𝑢 ∈ 𝐴. Since

𝐴𝑛
𝑠𝑡−𝑊−→ 𝐴, we have 𝛿 (𝐾(𝑢, 𝜀)) = 1 for each 𝜀 > 0, where

𝐾(𝑢, 𝜀) := {𝑚 ∈ ℕ : |𝑑(𝑥,𝐴𝑚)− 𝑑(𝑥,𝐴)| < 𝜀} .

Then there exists an 𝑚𝜀 ∈ ℕ, which is 𝑚𝜀 ∈ 𝐾(𝑢,𝜀) and 𝑚𝜀 ⩾ 𝑛 for each
𝜀 > 0. Since (𝐴𝑛) is monotonically decreasing, we have 𝐴𝑚𝜀 ⊂ 𝐴𝑛 and
𝑑 (𝑢,𝐴𝑛) ⩽ 𝑑 (𝑢,𝐴𝑚𝜀). Moreover, since 𝑑(𝑢,𝐴) = 0, we have

𝑑(𝑢,𝐴𝑚𝜀) = |𝑑(𝑢,𝐴𝑚𝜀)− 𝑑(𝑢,𝐴)| < 𝜀

for each 𝜀 > 0. Hence, we get 𝑑 (𝑢,𝐴𝑛) < 𝜀 for every 𝜀 > 0 and, so, 𝑢 ∈ 𝐴𝑛
since the sets 𝐴𝑛 are closed.

Hence, we can write 𝑑(𝑥,𝐴𝑛) ⩽ 𝑑(𝑥,𝐴) and, so,

𝑑(𝑥,𝐴𝑛)− 𝑑(𝑥,𝐴) ⩽ 0 (5)

for each 𝑥 ∈ 𝑋 and each 𝑛 ∈ ℕ.
Let 𝑥 ∈ 𝑋 and 𝜀 > 0. Since 𝐴𝑛

𝑠𝑡−𝑊−→ 𝐴, we have 𝛿 (𝐿(𝑥, 𝜀)) = 1, where

𝐿(𝑥, 𝜀) := {𝑛 ∈ ℕ : |𝑑(𝑥,𝐴𝑛)− 𝑑(𝑥,𝐴)| < 𝜀} . (6)

Define 𝑛0(𝑥, 𝜀) := min𝐿(𝑥, 𝜀). Using the monotonicity of the sequence
(𝐴𝑛), we have

𝑑(𝑥,𝐴𝑛0) ⩽ 𝑑(𝑥,𝐴𝑛) (7)

for every 𝑛 ⩾ 𝑛0. By the expressions (6) and (7), we get

− 𝜀 < 𝑑(𝑥,𝐴𝑛0)− 𝑑(𝑥,𝐴) ⩽ 𝑑(𝑥,𝐴𝑛)− 𝑑(𝑥,𝐴) (8)

for every 𝑛 ⩾ 𝑛0.
Using the inequalities (5) and (8), we get

|𝑑(𝑥,𝐴𝑛)− 𝑑(𝑥,𝐴)| < 𝜀

for every 𝑛 ⩾ 𝑛0.
Since 𝑥 is arbitrary, we obtain

lim
𝑛→∞

𝑑(𝑥,𝐴𝑛) = 𝑑(𝑥,𝐴).
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Consequently, we get 𝐴𝑛
𝑊−→ 𝐴. □

Corollary.
(i) Let 𝐴1 ⊂ 𝐴2 ⊂ . . . ⊂ 𝐴𝑛 . . . (𝑛 ∈ ℕ). If there exists a compact set 𝐴,
such that 𝐴𝑛

𝑠𝑡−𝑊−→ 𝐴, then

𝐴𝑛 ⊂ 𝐴 for every 𝑛 ∈ ℕ and 𝐴𝑛
𝑠𝑡−𝐻−→ 𝐴.

(ii) Let 𝐴1 ⊃ 𝐴2 ⊃ . . . ⊃ 𝐴𝑛 . . . (𝑛 ∈ ℕ). If there exists a closed set 𝐴,
such that 𝐴𝑛

𝑠𝑡−𝑊−→ 𝐴, then

𝐴 ⊂ 𝐴𝑛 for every 𝑛 ∈ ℕ and 𝐴𝑛
𝑠𝑡−𝐻−→ 𝐴.

Proof. i) Assume that 𝐴𝑛
𝑠𝑡−𝑊−→ 𝐴. By Theorem 1(i), we write 𝐴𝑛

𝑊−→ 𝐴.
From [1, Theorem 3.1.(i)], we obtain 𝐴𝑛 ⊂ 𝐴 for every 𝑛 ∈ ℕ and
𝐴𝑛

𝐻−→ 𝐴. Since 𝐴𝑛
𝐻−→ 𝐴 implies 𝐴𝑛

𝑠𝑡−𝐻−→ 𝐴, the proof is completed.
ii) By Theorem 1(ii) and [1, Theorem 3.1.(ii)], the proof is obvious. □

Remark. Assume that the hypotheses of Corollary (i) (or (ii)) are valid.
If 𝐴𝑛

𝑠𝑡−𝑊−→ 𝐴, then we have 𝐴𝑛
𝐻−→ 𝐴.

As can be seen from the following theorem, the hypothesis of Corollary
can be weakened using the concept of natural density.

Theorem 2. Let 𝐴,𝐴𝑛∈𝐶𝑙(𝑋), 𝑛 ∈ ℕ and 𝐾={𝑛1<𝑛2 <...< 𝑛𝑘 <...}
be a subset of ℕ, such that 𝛿 (𝐾) = 1.

i) Let the subsequence (𝐴𝑛𝑘
)𝑘∈ℕ of (𝐴𝑛)𝑛∈ℕ be monotonically increas-

ing according to the inclusion relation, i. e., 𝐴𝑛𝑘
⊂ 𝐴𝑛𝑘+1

for each 𝑘 ∈ ℕ.
If 𝐴𝑛

𝑠𝑡−𝑊−→ 𝐴 and 𝐴 is compact, then

𝐴𝑛𝑘
⊂ 𝐴 for every 𝑘 ∈ ℕ and 𝐴𝑛

𝑠𝑡−𝐻−→ 𝐴.

(ii) Let the subsequence (𝐴𝑛𝑘
)𝑘∈ℕ of (𝐴𝑛)𝑛∈ℕ be monotonically de-

creasing according to the inclusion relation. If 𝐴𝑛𝑘
’s are compact and

𝐴𝑛
𝑠𝑡−𝑊−→ 𝐴, then

𝐴 ⊂ 𝐴𝑛𝑘
for every 𝑘 ∈ ℕ and 𝐴𝑛

𝑠𝑡−𝐻−→ 𝐴.

Proof. i) Fix 𝑛*
𝑘 ∈ 𝐾 and 𝑢 ∈ 𝐴𝑛*

𝑘
. We have 𝑢 ∈ 𝐴𝑛𝑘

for every 𝑛𝑘 ∈ 𝐾

with 𝑛𝑘 ⩾ 𝑛*
𝑘; hence, we have 𝑑(𝑢,𝐴𝑛𝑘

) = 0. Since 𝐴𝑛
𝑠𝑡−𝑊−→ 𝐴, we have

𝛿 (𝐿 (𝑢, 𝜀)) = 1 for every 𝜀 > 0, where

𝐿 (𝑢, 𝜀) := {𝑛 ∈ ℕ : |𝑑(𝑢,𝐴𝑛)− 𝑑(𝑢,𝐴)| < 𝜀} .
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Then, for each 𝜀 > 0 there exists an 𝑛𝑘 ∈ 𝐾 ∩ 𝐿 (𝑢, 𝜀), with 𝑛𝑘 ⩾ 𝑛*
𝑘 such

that
𝑑(𝑢,𝐴) = |𝑑(𝑢,𝐴𝑛𝑘

)− 𝑑(𝑢,𝐴)| < 𝜀.

Hence, we get 𝑑(𝑢,𝐴) < 𝜀 for every 𝜀 > 0. So, 𝑢 ∈ 𝐴 since the set 𝐴 is
closed. Therefore, we obtain 𝐴𝑛𝑘

⊂ 𝐴 for every 𝑛𝑘 ∈ 𝐾. Then we get

𝑕(𝐴𝑛𝑘
, 𝐴) = sup {𝑑(𝑥,𝐴) : 𝑥 ∈ 𝐴𝑛𝑘

} = 0 (9)

for every 𝑛𝑘 ∈ 𝐾.
We have 𝑑(𝑥,𝐴𝑛𝑘2

) ⩽ 𝑑(𝑥,𝐴𝑛𝑘1
) for every 𝑘1, 𝑘2 ∈ ℕ with 𝑘2 ⩾ 𝑘1 and for

every 𝑥 ∈ 𝑋. Therefore, we have

𝑑(𝑎,𝐴𝑛𝑘2
) ⩽ 𝑑(𝑎,𝐴𝑛𝑘1

) for every 𝑎 ∈ 𝐴

and for every 𝑘1, 𝑘2 ∈ ℕ with 𝑘2 ⩾ 𝑘1 and, so, we get

𝑕(𝐴,𝐴𝑛𝑘2
) ⩽ 𝑕(𝐴,𝐴𝑛𝑘1

).

Define 𝛼𝑘 = 𝑕(𝐴,𝐴𝑛𝑘
) for each 𝑘 ∈ ℕ. Since (𝛼𝑘)𝑘∈ℕ is a decreasing

sequence of positive real numbers, it is convergent. Let us call this "the
limit as 𝛼 ⩾ 0". Since the function 𝑑(., 𝐴𝑛𝑘

) is continuous and 𝐴 is
compact, for every 𝑘 ∈ ℕ there exists an 𝑎𝑘 ∈ 𝐴, such that

𝛼𝑘 = sup {𝑑(𝑎,𝐴𝑛𝑘
) : 𝑎 ∈ 𝐴} = 𝑑(𝑎𝑘, 𝐴𝑛𝑘

).

By the compactness of 𝐴, the sequence (𝑎𝑘)𝑘∈ℕ has a subsequence
(︀
𝑎𝑘𝑗
)︀
𝑗∈ℕ,

converging to a point 𝑎0 ∈ 𝐴. By the triangle inequality, we get

0 ⩽ 𝑑(𝑎𝑘𝑗 , 𝐴𝑛𝑘𝑗
) ⩽ 𝜌(𝑎𝑘𝑗 , 𝑎0) + 𝑑(𝑎0, 𝐴𝑛𝑘𝑗

).

Since 𝐴𝑛
𝑠𝑡−𝑊−→ 𝐴, we have

|𝑑(𝑎0, 𝐴𝑛)− 𝑑(𝑎0, 𝐴)| <
𝜀

2

for every 𝑛 ∈ 𝐾 ∩𝐿 (𝑎0, 𝜀). Since 𝑑(𝑎0, 𝐴) = 0, we get |𝑑(𝑎0, 𝐴𝑛𝑘𝑗
)| < 𝜀/2.

By lim
𝑗→∞

𝑎𝑘𝑗 = 𝑎0, there exists a 𝑗0 ∈ ℕ, such that

𝜌(𝑎𝑘𝑗 , 𝑎0) <
𝜀

2
for every 𝑗 ⩾ 𝑗0.
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Then we get
0 ⩽ 𝑑(𝑎𝑘𝑗 , 𝐴𝑛𝑘𝑗

) < 𝜀

for every 𝑛𝑘𝑗 ∈ 𝐾 ∩ 𝐿 (𝑎0, 𝜀) with 𝑗 ⩾ 𝑗0. Hence, the subsequence
(︀
𝛼𝑘𝑗
)︀

of (𝛼𝑘) is convergent to 0, therefore, we obtain 𝛼 = 0. Then we have
lim
𝑘→∞

𝑕 (𝐴,𝐴𝑛𝑘
) = 0. Consequently, we get 𝐴𝑛

𝑠𝑡−𝐻−→ 𝐴.

ii) Let 𝑢 ∈ 𝐴. Fix 𝑛𝑘 ∈ 𝐾. Since 𝐴𝑛
𝑠𝑡−𝑊−→ 𝐴, we have 𝛿 (𝐿 (𝑢, 𝜀)) = 1 for

every 𝜀 > 0 where

𝐿 (𝑢, 𝜀) := {𝑛 ∈ ℕ : |𝑑(𝑢,𝐴𝑛)− 𝑑(𝑢,𝐴)| < 𝜀} .

Then, for each 𝜀 > 0, there exists an 𝑛𝜀𝑘 ∈ 𝐾 ∩𝐿 (𝑢, 𝜀) with 𝑛𝜀𝑘 ⩾ 𝑛𝑘, such
that

𝑑(𝑢,𝐴𝑛𝜀
𝑘
) =

⃒⃒
𝑑(𝑢,𝐴𝑛𝜀

𝑘
)− 𝑑(𝑢,𝐴)

⃒⃒
< 𝜀.

Also, we have 𝑑(𝑢,𝐴𝑛𝑘
) ⩽ 𝑑(𝑢,𝐴𝑛𝜀

𝑘
), since 𝑛𝜀𝑘 ⩾ 𝑛𝑘. Hence, we get

𝑑(𝑢,𝐴𝑛𝑘
) < 𝜀 for every 𝜀 > 0 and, so, 𝑢 ∈ 𝐴𝑛𝑘

from the closeness of
𝐴𝑛𝑘

. Therefore, we obtain 𝐴 ⊂ 𝐴𝑛𝑘
for every 𝑛𝑘 ∈ 𝐾.

Hence, we get

𝑕(𝐴,𝐴𝑛𝑘
) = sup {𝑑(𝑥,𝐴𝑛𝑘

) : 𝑥 ∈ 𝐴} = 0 (10)

for every 𝑛𝑘 ∈ 𝐾.
Take 𝛽𝑘 = 𝑕(𝐴𝑛𝑘

, 𝐴) for each 𝑘 ∈ ℕ. Since 𝑕(𝐴𝑛𝑘2
, 𝐴) ⩽ 𝑕(𝐴𝑛𝑘1

, 𝐴)
for every 𝑘1, 𝑘2 ∈ ℕ with 𝑘2 ⩾ 𝑘1, the sequence (𝛽𝑘)𝑘∈ℕ is a decreasing
sequence of positive real numbers and therefore it is convergent. Say its
limit 𝛽 ⩾ 0. Since the function 𝑑(., 𝐴) is continuous and 𝐴𝑛𝑘

are compact,
for every 𝑘 ∈ ℕ there exists an 𝑎𝑘 ∈ 𝐴𝑛𝑘

, such that

𝛽𝑘 = sup {𝑑(𝑎,𝐴) : 𝑎 ∈ 𝐴𝑛𝑘
} = 𝑑(𝑎𝑘, 𝐴).

Hence, we have 𝑎𝑘 ∈ 𝐴𝑛1 for every 𝑘 ∈ ℕ due to monotone decrease of
(𝐴𝑛𝑘

). From the compactness of 𝐴𝑛1 , the sequence (𝑎𝑘)𝑘∈ℕ has a subse-
quence (𝑎𝑘𝑗)𝑗∈ℕ converging to the point 𝑎0 ∈ 𝐴𝑛1 . Since the subsequence
(𝐴𝑛𝑘𝑗

) is decreasing and 𝐴𝑛𝑘𝑗
are closed, we get

lim
𝑗→∞

𝑎𝑘𝑗 = 𝑎0 ∈ 𝐴𝑛𝑘𝑗
for every 𝑗 ∈ ℕ.

Using the triangle inequality, we have

0 ⩽ 𝑑(𝑎𝑘𝑗 , 𝐴) ⩽ 𝜌(𝑎𝑘𝑗 , 𝑎0) + 𝑑(𝑎0, 𝐴)
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for each 𝑗 ∈ ℕ.
Take 𝜀 > 0. Since 𝐴𝑛

𝑠𝑡−𝑊−→ 𝐴, we have

|𝑑(𝑎0, 𝐴𝑛)− 𝑑(𝑎0, 𝐴)| <
𝜀

2

for every 𝑛 ∈ 𝐾 ∩ 𝐿 (𝑎0, 𝜀). Since 𝑑(𝑎0, 𝐴𝑛𝑘𝑗
) = 0 for every 𝑗 ∈ ℕ we get

|𝑑(𝑎0, 𝐴)| < 𝜀/2. Also, from lim
𝑗→∞

𝑎𝑘𝑗 = 𝑎0, there is a 𝑗0 ∈ ℕ, such that

𝜌(𝑎𝑘𝑗 , 𝑎0) <
𝜀

2
for every 𝑗 ⩾ 𝑗0.

Then we get
0 ⩽ 𝑑(𝑎𝑘𝑗 , 𝐴) < 𝜀

for every 𝑛𝑘𝑗 ∈ 𝐾 ∩𝐿 (𝑎0, 𝜀) with 𝑗 ⩾ 𝑗0. Hence, the subsequence (𝛽𝑘𝑗) of
(𝛽𝑘) is convergent to 0, and, therefore, we obtain 𝛽 = 0. Then we have
lim
𝑘→∞

𝑕 (𝐴𝑛𝑘
, 𝐴) = 0. Consequently, we get 𝐴𝑛

𝑠𝑡−𝐻−→ 𝐴. □

Theorem 3. Let ℐ𝛿 = {𝐼 ⊂ ℕ : 𝛿(𝐼) = 0} be an ideal connected with
statistical convergence. If 𝐴𝑛

𝑠𝑡−𝐻−→ 𝐴, then we have
(i) 𝐴 =

⋂︀
𝐼∈ℐ𝛿

⋃︀
𝑚∈ℕ∖𝐼

𝐴𝑚 and

(ii) 𝐴 =
⋂︀
𝜀>0

⋃︀
𝐼∈ℐ𝛿

⋂︀
𝑚∈ℕ∖𝐼

B(𝐴𝑚, 𝜀), where B(𝐴𝑚, 𝜀)={𝑥 ∈ 𝑋 : 𝑑(𝑥,𝐴𝑚)⩽𝜀}.

Proof. i) Define 𝐵 :=
⋂︀
𝐼∈ℐ𝛿

⋃︀
𝑚∈ℕ∖𝐼

𝐴𝑚. Firstly, we show that 𝐴 ⊆ 𝐵. Let

𝑥 ∈ 𝐴 and 𝐼 ∈ ℐ𝛿. Since 𝐴𝑛
𝑠𝑡−𝐻−→ 𝐴, we have

𝐼𝜀 := {𝑛 ∈ ℕ : 𝑕 (𝐴,𝐴𝑛) ⩾ 𝜀 or 𝑕 (𝐴𝑛, 𝐴) ⩾ 𝜀} ∈ ℐ𝛿

for every 𝜀>0. Moreover, since 𝐼∪𝐼𝜀∈ℐ𝛿, the set ℕ∖(𝐼∪𝐼𝜀)=(ℕ∖𝐼)∩(ℕ∖𝐼𝜀)
is non-empty. Hence, there exists an 𝑚 ∈ (ℕ ∖ 𝐼)∩ (ℕ ∖ 𝐼𝜀) for each 𝜀 > 0,
and we get

𝑕 (𝐴,𝐴𝑚) < 𝜀

and, so,
𝑑 (𝑥,𝐴𝑚) < 𝜀.

Since 𝐴𝑚 is a closed set, there exists an 𝑥𝑚 ∈ 𝐴𝑚, such that

𝜌 (𝑥, 𝑥𝑚) = 𝑑 (𝑥,𝐴𝑚) < 𝜀.
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Also, since 𝑥𝑚 ∈
⋃︀

𝑚∈ℕ∖𝐼
𝐴𝑚, we get 𝑥 ∈

⋃︀
𝑚∈ℕ∖𝐼

𝐴𝑚. Since 𝐼 is arbitrary, we

get 𝑥 ∈ 𝐵.
Now let us show that 𝐵 ⊆ 𝐴. Take 𝑥 ∈ 𝐵 =

⋂︀
𝐼∈ℐ𝛿

⋃︀
𝑚∈ℕ∖𝐼

𝐴𝑚. Then we

have 𝑥 ∈
⋃︀

𝑚∈ℕ∖𝐼
𝐴𝑚 for each 𝐼 ∈ ℐ𝛿. Since 𝐴𝑛

𝑠𝑡−𝐻−→ 𝐴, we have

𝐼𝜀 := {𝑛 ∈ ℕ : 𝑕 (𝐴,𝐴𝑛) ⩾ 𝜀 or 𝑕 (𝐴𝑛, 𝐴) ⩾ 𝜀} ∈ ℐ𝛿

for every 𝜀 > 0. Take 𝜀 > 0. Then we have 𝑥 ∈
⋃︀

𝑚∈ℕ∖𝐼𝜀
𝐴𝑚. Hence, there

exists a sequence (𝑥𝑛)𝑛∈ℕ ⊂
⋃︀

𝑚∈ℕ∖𝐼𝜀
𝐴𝑚, such that 𝑥𝑛 −→ 𝑥. In this case,

there exists an 𝑛0 (𝜀) ∈ ℕ, such that 𝜌 (𝑥𝑛, 𝑥) < 𝜀 for every 𝑛 ⩾ 𝑛0 (𝜀). We
can choose an 𝑛1 ⩾ 𝑛0 and an 𝑚1 ∈ ℕ ∖ 𝐼𝜀, such that 𝑥𝑛1 ∈ 𝐴𝑚1 . Then we
get

𝑑 (𝑥,𝐴) ⩽ 𝜌 (𝑥, 𝑥𝑛1) + 𝑑 (𝑥𝑛1 , 𝐴) ⩽

⩽ 𝜌 (𝑥, 𝑥𝑛1) + 𝑑 (𝑥𝑛1 , 𝐴𝑚1) + 𝑕 (𝐴𝑚1 , 𝐴) <

< 𝜀+ 0 + 𝜀 = 2𝜀.

Since 𝜀 is arbitrary and 𝐴 is closed, we get 𝑥 ∈ 𝐴.

ii) Define 𝐵 :=
⋂︀
𝜀>0

⋃︀
𝐼∈ℐ𝛿

⋂︀
𝑚∈ℕ∖𝐼

B(𝐴𝑚, 𝜀). Let 𝑥 ∈ 𝐴. Choose 𝜀 > 0

arbitrarily. Since 𝐴𝑛
𝑠𝑡−𝐻−→ 𝐴, we have

𝐼𝜀 := {𝑛 ∈ ℕ : 𝑕 (𝐴,𝐴𝑛) ⩾ 𝜀 or 𝑕 (𝐴𝑛, 𝐴) ⩾ 𝜀} ∈ ℐ𝛿.

We can write

𝑕 (𝐴,𝐴𝑚) < 𝜀 =⇒ 𝑑 (𝑥,𝐴𝑚) < 𝜀 =⇒ 𝑥 ∈ B(𝐴𝑚, 𝜀),

for every 𝑚 ∈ ℕ ∖ 𝐼𝜀. Consequently, we obtain 𝑥 ∈ 𝐵 and, therefore,
𝐴 ⊆ 𝐵.

Now, we show that 𝐵 ⊆ 𝐴. Let 𝑥 ∈ 𝐵. Hence, for every 𝜀 > 0 there
exists an 𝐼𝜀 ∈ ℐ𝛿, such that 𝑥 ∈ 𝐵(𝐴𝑚, 𝜀) for every 𝑚 ∈ ℕ ∖ 𝐼𝜀. Also, from
𝐴𝑛

𝑠𝑡−𝐻−→ 𝐴 we have

𝐽𝜀 := {𝑛 ∈ ℕ : 𝑕 (𝐴,𝐴𝑛) ⩾ 𝜀 or 𝑕 (𝐴𝑛, 𝐴) ⩾ 𝜀} ∈ ℐ𝛿.
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Then 𝐼𝜀 ∪ 𝐽𝜀 ∈ ℐ𝛿 and there exists an 𝑚0 = 𝑚0 (𝜀) ∈ ℕ ∖ (𝐼𝜀 ∪ 𝐽𝜀). By
𝑥 ∈ B(𝐴𝑚0 , 𝜀), we have

𝑑 (𝑥,𝐴𝑚0) < 𝜀.

Since 𝐴𝑚0 is a closed set, there is a 𝑦 ∈ 𝐴𝑚0 , such that

𝜌 (𝑥, 𝑦) < 𝜀. (11)

By 𝑕 (𝐴𝑛, 𝐴) ⩾ 𝜀, we have

𝑑 (𝑦, 𝐴) < 𝜀.

Since 𝐴 is a closed set, there is a 𝑧 ∈ 𝐴, such that

𝜌 (𝑦, 𝑧) < 𝜀. (12)

Using the inequalities (11) and (12), we obtain

𝜌 (𝑥, 𝑧) ⩽ 𝜌 (𝑥, 𝑦) + 𝜌 (𝑦, 𝑧) < 2𝜀.

Since 𝜀 is arbitrary and 𝐴 is closed, we get 𝑥 ∈ 𝐴. □
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