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SPACE LF((0, + c0))

Abstract. Using a generalized translation operator, we intend to
establish generalizations of the Titchmarsh theorem ( [14], theo-
rem 84) for the first Hankel-Clifford transform for certain classes
of functions in the space LE,((0, + 00)), where 1 < p < 2.
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1. Introduction. Titchmarsh ( [14], Theorem 84) characterized the
set of functions in LP(R), 1 < p < 2, satisfying the Lipschitz condition,
by means of an asymptotic estimate growth of the norm of their Fourier
transform; namely, we have:

Theorem 1. Let f belong to LP(R), 1 < p < 2, such that
+oo
/ |f(x +h)— f(xr —h)]Pde = O(h*?), 0<a <1, ash— 0.

Then its Fourier transform F(f) belongs to L°(R) for

p p
_— <L —.
p+ap—1 B\p—l

On the other hand, Younis in ( [15], Theorem 3.3) studied the same
phenomena for the wider Dini-Lipschitz class, as well as for some other
allied classes of functions. More precisely,
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Theorem 2. Let f € LP(R) with 1 < p < 2, such that

(/ﬁf(x%—h) ()\pda:) —O<%> h—0, 0<a<1,v>0.

Then F(f) € L°(R) for

p /
—< < . —
p+ap—1 p<p p—1

1
and — < ~y, where F(f) stands for the Fourier transform of f.

B

There are many analogues of these theorems: for the Bessel transform
on R*, for the Dunkl transform on R? for the g-Dunkl transform on R,,
etc (for example, see [2], [3], [4], [5], [10]).

The aim of this paper is to provide generalizations of Theorems 1
and 2 for the first Hankel-Clifford transform. For this purpose, we use the
generalized translation operator.

2. Preliminaries. Let us we briefly collect the pertinent definitions
and facts relevant for first Hankel-Clifford analysis, which can be founded
in [11], [12], [13], [16].

Assume that Lb = L7 ((0,+ 00)), 1 < p < oo and p > 0, is the space
of all real-valued measurable functions f on (0,400), such that

+00 .
Il = ([ 15@Paras)” <oc.
0

Let ¢, be the Bessel-Clifford function of the first kind defined by (see [6])

1 k .k
St g
“kID(p+k+1)°
which satisfies the differential equatlon
zy" + (p+1)y +y=0.

For p > —%, we introduce the normalized spherical Bessel function j,
of index p, defined by

= —1)k 2\ 2k
@) =Tt 1) 3 k!F(IE: +1L +1) (3) ec @)
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where I'(x) is the gamma-function.
Moreover, from (2) we see that

]u() 7&0

by consequence, there exist C' > 0 and n > 0 satisfying
2| <= |ju(@) — 1| > Claf”. (3)

lim &——~——
z—0

The function j,(z) is infinitely differentiable, even, and, moreover,
entire analytic.
From [1]|, we have the following lemma:

Lemma 1. Let p > —%. The following inequalities are fulfilled:
1) ju()l < 15
2) 1—ju(z) =0(?), 0
3) 1—ju(z)=0(1), =

By formulas (1) and (2), we have the following relation, which connect
the Bessel-Clifford function and the normalized spherical Bessel function:

6(x) = Fro 2V (@)

Definition 1. [8], [9] For ;n > 0, the first Hankel-Clifford transform for
a function f € L), is defined by

—+00

) =N [ (o) f )

0
Proposition 1. If f € L}, and hy ,(f) € L}, then
—+o00

fla) = [ 0)b(HNAN, Vo € 0, +oc).
0
For p > 0, let F(A\) = hy,(f)(A) and G(A) = hy,(g)(N\) denote
the first Hankel-Clifford transform of order p of f(z) and g(x), respec-
tively. Méndez et al. |9] established the following Parseval relation:

/ F(N)GA\) M = / F(2)g(z)ztdz.

0
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Then the first Hankel-Clifford transform hy,: f(z) — hi,(f)(A) is a
linear isomorphism of the space LZ into itself, and for any function f € Li
we have the Parseval identity

A u () Mll2e = Nl f (@)]]2,-

Parseval’s identity and the Marcinkiewicz interpolation theorem (see [14])
are true for f € LP with 1 < p <2 and p/, such that %+ z% =1

AP (F) Ml e < Collz™ f (@) ()

Let A = A(x,y, z) be area of the triangle with sides z, y, z (see [7], [16]).

For pn > 0, set
A2u+1

22 (zyz) T (p + 3) /T
if A exists, and zero otherwise. Note that D,(x,y,z) > 0 and it is sym-
metric in z, y, 2z

From [12], we define the generalized translation operator by the rela-
tion

Du(x? Y, Z) =

/f W(h,x,2)2Mdz, 0 <z, h<oo.

Assume that p > 0. Let M be the map of L2 defined by

Mf(z) = 2" f(x) (6)
Prasad et al proved the following well-known proposition:

Proposition 2. [12] Let f € L7, and fix h > 0. Then 7,(f)(z) € L7 and

ha (M7 f () (A) = cu(AR)h W (MF(-))(A), A € (0, +00).

3. Main results. Before giving our first main result, we define the
Clifford-Lipschitz class.

Definition 2. Let 0 < < 1. A function f € LF, 1 < p < 2, is said to
be in the Clifford-Lipschitz class, denoted Lip.(d,p, p), if

IT(+ V7f (@) = f(@0)llpye = OK®) ash —» 0
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Theorem 3. Let f belong to the Clifford-Lipschitz class Lip.(6,p, i),
0 <d<landl < p <2 Then hy,(Mf) e LE((0,400)) for all
satisfying
Hp +p /
<f<yp =L
p—pu+dop—1 fsp p—1

Proof. Assume that f € Lip.(6, p, 1); then we have
T+ )70 f (2) = f(@)]lpyu = O(R?) as h — 0.
Using the formula (6), we have
I+ D7 f () = f@)llpe = 2™ (T + Datm f (2) — 2" f(2)) =
= [lz™" (T(p+ )M (1. f(2)) = M (f(2))) llp,u-
From proposition 2 and formula (4), we get
hiy (D(p+ )M (mnf (x)) = M (f(2))) (A) =
= (3u(@VAR) = 1) by (M F () ().
By the Hausdorff-Young formula (5), we have

+o0o
/ AT = Gu VAR [ u (M)A P NdA <
0
<OV ||z (D(p+ )M (mf(x) O
<OV IT(u+ mf( > ~ fla >||W < Cih%,

Hence,
+00
[ = BV I (MDA < G
0

fo< A< Zh, then 0 < 2v/Ah < n and inequality (3) implies

11— j.(2V/AR)| = 4C\h.
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From this, we get

7]2

in
/’)\h|pl’h1,u(Mf)()\)!p/)\(lp/)“d)\ <
0

‘3
M

4

1 RN .
(4o>p'/ (1= Gu VAR W (MFN)PAT AN <
0

=

<

1
(4C)

+o0
S / 1= Gu VAR (B (M YN ATTPHAN = O(RT).
0

So that

n 2

4h
[ W) N Rax = 0
0

Thus,

t
/ |>\h1ﬂu(Mf>(>\)|p/)\(1*p/)ﬂd)\ — O(t(lfts)p/).
0

Let
t

Y(t) = / IRy (M F)N)[PAG—PORE/P g ),
1

Now, if g < p/, by the Holder inequality we obtain

p(t) < ( / |Ah1,u(Mf)(A)I”/A(l"’/)“dA) ( / dA)l_ﬁ/p/ _

— O(t-IWXBIY 18Iy — O(1-081-BIYy — O (=95 +5/p).

Therefore,

t

t
J e e B VI OO
1

1
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— t—ﬁ—(l—p’)uﬁ/p’+u¢(t)+
t
(B (L= = ) [ X ) =

1
t

= O(fﬁf(lfp’)uﬂ/p“ru t1765+5/p)+0 </ )\ﬂ(lp’)uﬂ/p’+u1>\165+5/pd)\> _

1
= O(t—ﬁ—(1—p’)u6/p’+u+1—5ﬁ+ﬁ/p)

and the right-hand side of this estimate is bounded as t — oo if

—B—=A—=p)ub/p +p+1-08+p8/p<O0.

That is,
Hp +p
> .
b p—pu+op—1
Thus, the proof is finished. []

In the rest of this paper, we give our second main result, which is a
generalization of Theorem 2. For this objective, we need to define the
Dini-Clifford Lipschitz class.

Definition 3. Let 0 <0 < 1,7 > 0. A function f € L}, 1 <p <2, is
said to be in the Dini-Clifford-Lipschitz class, denoted D szc((S v, D, ,u),
if
h6
P+ 170() = S = O oy ) s b —0
Theorem 4. Let f € LF, 1 <p < 2. If f belongs to D-Lip.(6,7,p, i),
then hy ,(M f) belongs to Lﬁ((O +00)), such that

pup +p ;D
<8<y =
b atop—1 PSP Eo

1
and (> —.
Y

Proof. Similary to the proof of theorem 3, we can establish the following

result:

n?

4h ) (1 ,) h((s_l)p/

Ay (M YN PASPHEIN =0 | ———— | .
[ wmarne (o)
0
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Thus,

t (1-6)p'
/ / t -
'\ (1=p")p — I
/|)\h17u(Mf)(/\)| A d\ =0 ((log t)“ﬂ’/) )
0

Let us consider again the function ¢, defined by
— [N QLAPAC 15

Then, if 5 < p/, using the Holder inequality we obtain
F1=83+6/p
010 =0( gy )
Hence,

t t

./WMMﬁ@WWMZ/Aﬁum”wwvw=

1 1

= ¢ BB/ 1 )y (1) (B+(1—pf ——M/ ~A=POB/P I (X)) dA =

1
t

1-6 1-6
= O(t—ﬁ—(l—p’)uﬁ/p’+u ¢ 5+ﬁ/p>+0 </)\—ﬁ—(1—p’)uﬁ/p’+u—1 A —BH}/Z) d)\> =
(logt)r? (log A)7#

4B (=p) 57 +u+1-06+6/p

B O( (log t)¥? >

and this is bounded as t — oo if

—B—=A—=p)B/p +p+1-08+8/p<0 and —~vp < —1,

which gives

8> Mt P and B>l.
p—p+op—1 v

And this ends the proof. [J
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