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1. Introduction and background. In 1951, Fast [9] and Stein-
haus [19] introduced the concept of statistical convergence via the natural
density. The natural density of a set 𝐴 ⊆ ℕ is defined as

𝑑(𝐴) = lim
𝑘→∞

𝑐𝑎𝑟𝑑(𝐴 ∩ {1, 2, . . . , 𝑘})
𝑘

,

provided that the limit exists. A sequence 𝑥 = (𝑥𝑘) is called statistically
convergent to a real number 𝑥0, if for any 𝜀 > 0, the set {𝑘 ∈ ℕ : 𝑥𝑘 /∈
(𝑥0 − 𝜀, 𝑥0 + 𝜀)} has zero natural density. Now, since every finite subsets
of ℕ have zero natural density, statistical convergence has appeared to be
one of the generalizations of the usual convergence. Apart from Fast [9]
and Steinhaus [19], a lot of investigation and generalizations in this direc-
tion has been carried out by Fridy [10], [11], Šalát [17], Tripathy [20] and
many others [1], [3], [14].

In an attempt to extend the notion of statistical convergence, ℐ and
ℐ*−convergence of sequences was introduced in 2001 by Kostyrko et. al. [13]
in the metric space setting, where ℐ represents an ideal in ℕ. A sequence
𝑥 = (𝑥𝑘) is called ℐ-convergent to a real number 𝑥0 if for any 𝜀 > 0, the
set {𝑘 ∈ ℕ : 𝑥𝑘 /∈ (𝑥0 − 𝜀, 𝑥0 + 𝜀)} ∈ ℐ. Interestingly, ℐ-convergence was
appeared not only as a generalization of statistical convergence, but, also,
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some other important known notions of convergences, such as logarith-
mic statistical convergence, uniform statistical convergence etc., turned
out to be the particular cases of ℐ-convergence. For more details on
ℐ-convergence and its several generalizations, [8], [12], [16], [18] can be
addressed, where many more references can be found.

On the other hand, the notion of ℐ*-convergence was further extended
in 2011 to ℐ𝒦-convergence by M. Macaj and M. Sleziak [15]. It should be
mentioned that ℐ*-convergence of a sequence 𝑥 = (𝑥𝑘) was defined in terms
of usual convergence of the subsequence (𝑥𝑚𝑘

), where
𝑀 = {𝑚1 < 𝑚2 < . . . < 𝑚𝑘 < · · · } is an element of the associated filter
ℱ(ℐ). But in the case of ℐ𝒦-convergence, that usual convergence was re-
placed by 𝒦-convergence, where 𝒦 is another ideal. The involvement of
two ideals at the same point of time makes this concept more complicated
and more interesting. Over the last few years, the study of ℐ𝒦-convergence
of sequences has got much attention from researchers and the research car-
ried out so far shows a strong analogy in the behavior of ℐ𝒦-convergence
of sequences. The relation between ℐ and ℐ𝒦-convergence can be found in
works by Das et. al. [4] and Macaj and Sleziak [15]. In [5], [6], Das et. al.
introduced and investigated ℐ𝒦-convergence of sequence of function and
ℐ𝒦-Cauchy functions. For more details on ℐ𝒦-convergence, see [7], where
many more references can be found.

When studying some new notion of convergence of sequences, several
closely related concepts occur quite naturally, such as cluster points, supre-
mum, infimum, limit superior, limit inferior, etc. In this paper, our aim
is to introduce ℐ𝒦-analogue of the above concepts and investigate some
fundamental properties.

2. Definitions and preliminaries.

Definition 1. [13] Let 𝑋 be a non-empty set. A family of subsets
ℐ ⊂ 𝑃 (𝑋) is called an ideal in 𝑋 if

(i) for every 𝐴,𝐵 ∈ ℐ we have 𝐴 ∪𝐵 ∈ ℐ;
(ii) for every 𝐴 ∈ ℐ and 𝐵 ⊂ 𝐴 we have 𝐵 ∈ ℐ.

An ideal ℐ is called non-trivial if ℐ ≠ ∅ and 𝑋 /∈ ℐ. A non-trivial ideal
ℐ ⊂ 𝑃 (𝑋) is called an admissible ideal in 𝑋 if and only if
ℐ ⊃ {{𝑥} : 𝑥 ∈ 𝑋}. Some standard examples of ideals are given below:
(i) The set ℐ𝑓 of all finite subsets of ℕ is an admissible ideal in ℕ.
(ii) The set ℐ𝑑 of all subsets of natural numbers having natural density 0
is an admissible ideal in ℕ.
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(iii) The set ℐ𝑐 = {𝐴 ⊆ ℕ :
∑︀

𝑎∈𝐴 𝑎
−1 <∞} is an admissible ideal in ℕ.

(iv) Suppose ℕ =
∞⋃︀
𝑝=1

𝐷𝑝 be a decomposition of ℕ (for 𝑖 ̸= 𝑗, 𝐷𝑖∩𝐷𝑗 = ∅).

Then the set ℐ of all subsets of ℕ, which intersects finitely many 𝐷𝑝’s,
forms an ideal in ℕ.

More important examples can be found in [12].

Definition 2. [13] Let 𝑋 be a non-empty set. A family of subsets
ℱ ⊂ 𝑃 (𝑋) is called a filter in 𝑋 if

(i) for each 𝐴,𝐵 ∈ ℱ we have 𝐴 ∩𝐵 ∈ ℱ ;
(ii) for each 𝐴 ∈ ℱ and 𝐵 ⊃ 𝐴 we have 𝐵 ∈ ℱ .

The filter ℱ = ℱ(ℐ) = {𝑋 − 𝐴 : 𝐴 ∈ ℐ} is called the filter associated
with the ideal ℐ.

Remark 1. If ℐ and 𝒦 are two ideals in ℕ, then the set
ℐ ∨ 𝒦 = {𝐴 ∪ 𝐵 : 𝐴 ∈ ℐ, 𝐵 ∈ 𝒦} forms an ideal in ℕ. Further, if
ℐ ∨ 𝒦 is non-trivial, then the dual filter of ℐ ∨ 𝒦 is denoted and defined
by ℱ(ℐ ∨ 𝒦) = {𝑀 ∩𝑁 : 𝑀 ∈ ℱ(ℐ), 𝑁 ∈ ℱ(𝒦)}.
Definition 3. [13] Let ℐ ⊂ 𝑃 (ℕ) be a non-trivial ideal in ℕ. A real-
valued sequence 𝑥 = (𝑥𝑘) is said to be ℐ-convergent to 𝑥0 if the set
{𝑘 ∈ ℕ : | 𝑥𝑘 − 𝑥0 |⩾ 𝜀} belongs to ℐ for each 𝜀 > 0. In this case, 𝑥0
is called the ℐ-limit of the sequence (𝑥𝑘) and is written as ℐ − lim𝑥 = 𝑥0.

Definition 4. [13] Let ℐ be an admissible ideal in ℕ. A real-valued
sequence 𝑥 = (𝑥𝑘) is said to be ℐ*−convergent to 𝑥0, if there exists a set
𝑀 = {𝑚1 < 𝑚2 < . . . < 𝑚𝑘 < . . .} in the associated filter ℱ(ℐ), such
that lim

𝑘∈𝑀
𝑥𝑘 = 𝑥0. In this case, 𝑥0 is called the ℐ*-limit of the sequence

(𝑥𝑘) and is written as ℐ* − lim𝑥 = 𝑥0.

Definition 5. [15] Let ℐ and 𝒦 be two ideals in ℕ. A real-valued se-
quence 𝑥 = (𝑥𝑘) is said to be ℐ𝒦-convergent to 𝑥0 if there exists𝑀 ∈ ℱ(ℐ),
such that the sequence 𝑦 = (𝑦𝑘) defined by

𝑦𝑘 =

{︃
𝑥𝑘, 𝑘 ∈𝑀,

𝑥0, 𝑘 /∈𝑀

is 𝒦-convergent to 𝑥0. In this case, 𝑥0 is called the ℐ𝒦-limit of the sequence
(𝑥𝑘) and is written as ℐ𝒦 − lim𝑥 = 𝑥0.

When 𝒦 = ℐ𝑓 , then ℐ𝒦-convergence concept coincides with ℐ*-conver-
gence [13].
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Definition 6. [2] A real number 𝑙 is said to be an ℐ lower bound of the
real-valued sequence 𝑥 = (𝑥𝑘), if

{𝑘 ∈ ℕ : 𝑥𝑘 ⩾ 𝑙} ∈ ℱ(ℐ) (𝑜𝑟 {𝑘 ∈ ℕ : 𝑥𝑘 < 𝑙} ∈ ℐ).

The set of all ℐ lower bound of the sequence 𝑥 = (𝑥𝑘) is denoted by 𝐿ℐ(𝑥).

Theorem 1. [2] If 𝑙 ∈ ℝ is a usual lower bound of the real-valued se-
quence 𝑥 = (𝑥𝑘), then 𝑙 is also an ℐ lower bound of the sequence 𝑥.

Definition 7. [2] A real number 𝑡 is said to be the ℐ-infimum of the
real-valued sequence 𝑥 = (𝑥𝑘) if 𝑡 is the supremum of 𝐿ℐ(𝑥). In other
words,

ℐ − inf 𝑥 = sup𝐿ℐ(𝑥).

Definition 8. [2] A real number 𝑢 is said to be an ℐ upper bound of the
real-valued sequence 𝑥 = (𝑥𝑘), if

{𝑘 ∈ ℕ : 𝑥𝑘 ⩽ 𝑢} ∈ ℱ(ℐ) (𝑜𝑟 {𝑘 ∈ ℕ : 𝑥𝑘 > 𝑢} ∈ ℐ).

The set of all ℐ upper bounds of the sequence 𝑥 = (𝑥𝑘) is denoted by
𝑈ℐ(𝑥).

Definition 9. [2] A real number 𝑠 is said to be the ℐ-supremum of the
real-valued sequence 𝑥 = (𝑥𝑘) if 𝑠 is the infimum of 𝑈ℐ(𝑥). In other words,

ℐ − sup𝑥 = inf 𝑈ℐ(𝑥).

Theorem 2. [2] Let 𝑥 = (𝑥𝑘) be any real-valued sequence. Then

inf 𝑥 ⩽ ℐ − inf 𝑥 ⩽ ℐ − sup𝑥 ⩽ sup𝑥.

Definition 10. [2] (a) Let 𝑥 = (𝑥𝑘) be a real-valued sequence. Then the
ℐ−limit inferior is denoted and defined by

ℐ − lim inf 𝑥 = ℐ − sup 𝑣,

where 𝑣 = (𝑣𝑘) is the sequence defined by 𝑣𝑘 = ℐ − inf
𝑛⩾𝑘

{𝑥𝑛, 𝑥𝑛+1, . . .}.
(b) Let 𝑥 = (𝑥𝑘) be a real-valued sequence. Then the ℐ−limit superior is
denoted and defined by

ℐ − lim sup𝑥 = ℐ − inf 𝑤,

where 𝑤 = (𝑤𝑘) is the sequence defined by 𝑤𝑘 = ℐ − sup
𝑛⩾𝑘

{𝑥𝑛, 𝑥𝑛+1, . . .}.

Definition 11. [13] A real number 𝛾 is said to be an ℐ-cluster point of
a sequence 𝑥 = (𝑥𝑘) if for any 𝜀 > 0
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{𝑘 ∈ ℕ : |𝑥𝑘 − 𝛾| < 𝜀} /∈ ℐ

holds.

3. Main results. Throughout the article, ℐ, 𝒦, and ℐ ∨ 𝒦 denotes
the non-trivial admissible ideal in ℕ.

Definition 12. A real number 𝑙 is said to be an ℐ* lower bound of the
real-valued sequence 𝑥=(𝑥𝑘), if there exists𝑀 = {𝑚1 < 𝑚2 < . . . < 𝑚𝑘 <
. . .} ∈ ℱ(ℐ), such that 𝑙 is an usual lower bound of the subsequence (𝑥𝑚𝑘

).

The set of all ℐ* lower bounds of the sequence 𝑥 = (𝑥𝑘) is denoted by
𝐿ℐ*(𝑥).

Definition 13. A real number 𝑡 is said to be the ℐ*-infimum of the real-
valued sequence 𝑥 = (𝑥𝑘), if 𝑡 is the supremum of 𝐿ℐ*(𝑥). In other words,

ℐ* − inf 𝑥 = sup𝐿ℐ*(𝑥).

Definition 14. A real number 𝑢 is said to be an ℐ* upper bound of
the real-valued sequence 𝑥 = (𝑥𝑘), if there exists 𝑀 = {𝑚1 < 𝑚2 <
· · · < 𝑚𝑘 < · · · } ∈ ℱ(ℐ), such that 𝑢 is an usual upper bound of the
subsequence (𝑥𝑚𝑘

).

The set of all ℐ* upper bounds of the sequence 𝑥 = (𝑥𝑘) is denoted by
𝑈ℐ*(𝑥).

Definition 15. A real number 𝑠 is said to be the ℐ*-supremum of the
real-valued sequence 𝑥 = (𝑥𝑘), if 𝑠 is the infimum of 𝑈ℐ*(𝑥). In other
words,

ℐ* − sup𝑥 = inf 𝑈ℐ*(𝑥).

Theorem 3. For any real-valued sequence 𝑥 = (𝑥𝑘),

ℐ* − inf 𝑥 ⩽ ℐ − inf 𝑥 ⩽ ℐ − sup𝑥 ⩽ ℐ* − sup𝑥.

Proof. We first prove that the inclusions 𝐿ℐ*(𝑥) ⊆ 𝐿ℐ(𝑥) and
𝑈ℐ*(𝑥) ⊆ 𝑈ℐ(𝑥) hold for the sequence 𝑥. Let 𝑙 ∈ 𝐿ℐ*(𝑥). Then, by
definition, there exists 𝑀 = {𝑚1 < 𝑚2 < . . . < 𝑚𝑘 < . . .} ∈ ℱ(ℐ), such
that 𝑙 is an usual lower bound of (𝑥𝑚𝑘

). In other words, 𝑥𝑚𝑘
⩾ 𝑙 for any

𝑘 ∈ ℕ. But then the inclusion

{𝑘 ∈ ℕ : 𝑥𝑘 ⩾ 𝑙} =𝑀 ∪ {𝑘 ∈ ℕ ∖𝑀 : 𝑥𝑘 ⩾ 𝑙} ⊇𝑀
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holds and, subsequently, {𝑘 ∈ ℕ : 𝑥𝑘 ⩾ 𝑙} ∈ ℱ(ℐ). Hence, 𝑙 ∈ 𝐿ℐ(𝑥)
and the first inclusion is established. Applying a similar technique, the
second inclusion can be obtained. Now the inclusions 𝐿ℐ*(𝑥) ⊆ 𝐿ℐ(𝑥) and
𝑈ℐ*(𝑥) ⊆ 𝑈ℐ(𝑥) and Theorem 2 altogether give

ℐ* − inf 𝑥 ⩽ ℐ − inf 𝑥 ⩽ ℐ − sup𝑥 ⩽ ℐ* − sup𝑥.

□

Definition 16. A real number 𝑙 is said to be an ℐ𝒦 lower bound of the
real-valued sequence 𝑥 = (𝑥𝑘), if there exists 𝑀 = {𝑚1 < 𝑚2 < · · · <
𝑚𝑘 < · · · } ∈ ℱ(ℐ), such that 𝑙 is an 𝒦 lower bound of the sequence
𝑦 = (𝑦𝑘) defined by

𝑦𝑘 =

{︃
𝑥𝑘 𝑘 ∈𝑀,

𝑙 𝑘 /∈𝑀.

The set of all ℐ𝒦 lower bounds of the sequence 𝑥 = (𝑥𝑘) is denoted by
𝐿ℐ𝒦(𝑥).

Definition 17. A real number 𝑡 is said to be the ℐ𝒦-infimum of the real-
valued sequence 𝑥 = (𝑥𝑘), if 𝑡 is the supremum of 𝐿ℐ𝒦(𝑥). In other words,

ℐ𝒦 − inf 𝑥 := sup𝐿ℐ𝒦(𝑥).

Definition 18. A real number 𝑢 is said to be an ℐ𝒦 upper bound of the
real-valued sequence 𝑥 = (𝑥𝑘), if there exists 𝑀 = {𝑚1 < 𝑚2 < · · · <
𝑚𝑘 < · · · } ∈ ℱ(ℐ), such that 𝑢 is an 𝒦 upper bound of the sequence
𝑦 = (𝑦𝑘) defined by

𝑦𝑘 =

{︃
𝑥𝑘 𝑘 ∈𝑀,

𝑢 𝑘 /∈𝑀.

The set of all ℐ𝒦 upper bounds of the sequence 𝑥 = (𝑥𝑘) is denoted by
𝑈ℐ𝒦(𝑥).

Definition 19. A real number 𝑠 is said to be the ℐ𝒦-supremum of the
real-valued sequence 𝑥 = (𝑥𝑘) if 𝑠 is the infimum of 𝑈ℐ𝒦(𝑥). In other
words,

ℐ𝒦 − sup𝑥 := inf 𝑈ℐ𝒦(𝑥).

Theorem 4. (i) Let 𝑥 = (𝑥𝑘) be a real-valued sequence, such that
𝑙 ∈ 𝐿ℐ𝒦(𝑥). If 𝑙′ < 𝑙, then 𝑙′ ∈ 𝐿ℐ𝒦(𝑥);
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(ii) Let 𝑥 = (𝑥𝑘) be a real-valued sequence, such that 𝑢 ∈ 𝑈ℐ𝒦(𝑥). If
𝑢′ > 𝑢, then 𝑢′ ∈ 𝑈ℐ𝒦(𝑥).

Proof. (i) Let 𝑙 ∈ 𝐿ℐ𝒦(𝑥). Then there exists 𝑀 = {𝑚1 < 𝑚2 < . . . <
𝑚𝑘 < . . .} ∈ ℱ(ℐ), such that 𝑙 ∈ 𝐿𝒦(𝑦), where 𝑦 = (𝑦𝑘) is the sequence
defined by

𝑦𝑘 =

{︃
𝑥𝑘, 𝑘 ∈𝑀,

𝑙, 𝑘 /∈𝑀.

This implies {𝑘 ∈ ℕ : 𝑦𝑘 ⩾ 𝑙} ∈ ℱ(𝒦). Now, since 𝑙′ < 𝑙 by the assump-
tion, the inclusion

{𝑘 ∈ ℕ : 𝑦𝑘 ⩾ 𝑙′} ⊃ {𝑘 ∈ ℕ : 𝑦𝑘 ⩾ 𝑙}

holds, and, consequently, {𝑘 ∈ ℕ : 𝑦𝑘 ⩾ 𝑙′} ∈ ℱ(𝒦), i. e., 𝑙′ ∈ 𝐿ℐ𝒦(𝑥). This
completes the proof.
(ii) The proof can be obtained by applying a similar technique. □

Corollary 1. (i) Let 𝑥 = (𝑥𝑘) be a real-valued sequence, such that
𝑙 ∈ 𝐿ℐ*(𝑥). If 𝑙′ < 𝑙, then 𝑙′ ∈ 𝐿ℐ*(𝑥);
(ii) Let 𝑥 = (𝑥𝑘) be a real-valued sequence, such that 𝑢 ∈ 𝑈ℐ*(𝑥).
If 𝑢′ > 𝑢, then 𝑢′ ∈ 𝑈ℐ*(𝑥).

Theorem 5. For any real-valued sequence 𝑥 = (𝑥𝑘),

ℐ* − inf 𝑥 ⩽ ℐ𝒦 − inf 𝑥 ⩽ ℐ𝒦 − sup𝑥 ⩽ ℐ* − sup𝑥.

Proof. To prove the theorem, we prove the following three inequalities:

ℐ* − inf 𝑥 ⩽ ℐ𝒦 − inf 𝑥, (1)

ℐ𝒦 − inf 𝑥 ⩽ ℐ𝒦 − sup𝑥, (2)

and
ℐ𝒦 − sup𝑥 ⩽ ℐ* − sup𝑥. (3)

To prove (1), let 𝑙 ∈ 𝐿ℐ*(𝑥). Then, by definition, there exists 𝑀 = {𝑚1 <
𝑚2 < . . . < 𝑚𝑘 < . . .} ∈ ℱ(ℐ), such that 𝑙 is an usual lower bound of
(𝑥𝑚𝑘

). In other words, 𝑙 ∈ 𝐿(𝑦), where 𝑦 = (𝑦𝑘) is defined by

𝑦𝑘 =

{︃
𝑥𝑘, 𝑘 ∈𝑀,

𝑙, 𝑘 /∈𝑀.
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Therefore, by Theorem 1, we have 𝑙 ∈ 𝐿𝒦(𝑦). This implies 𝑙 ∈ 𝐿ℐ𝒦(𝑥).
Hence, we have 𝐿ℐ*(𝑥) ⊆ 𝐿ℐ𝒦(𝑥) and, consequently, (1) holds.

To prove (2), assume the contrary. Then there exist some 𝑙′ ∈ 𝐿ℐ𝒦(𝑥)
and 𝑢′ ∈ 𝑈ℐ𝒦(𝑥), such that 𝑢′ < 𝑙′. But then, by Theorem 4, 𝑙′ ∈ 𝑈ℐ𝒦(𝑥),
which is a contradiction.

The proof of (3) is analogous to that of (1), so omitted.
Combining (1), (2), and (3) we obtain the desired inequality. □

Corollary 2. For any real-valued sequence 𝑥 = (𝑥𝑘):

inf 𝑥 ⩽ 𝒦 − inf 𝑥 ⩽ ℐ𝒦 − inf 𝑥 ⩽ ℐ𝒦 − sup𝑥 ⩽ 𝒦 − sup𝑥 ⩽ sup𝑥.

Proof. We omit the proof as it can be easily obtained by combining
Theorem 2, Theorem 5, and considering 𝑀 = ℕ from ℱ(ℐ). □

Theorem 6. Let ℐ ∨ 𝒦 be a non-trivial ideal in ℕ and 𝑥 = (𝑥𝑘) be a
real-valued sequence. Then:
(i) if 𝑥 is a monotonic increasing sequence, then ℐ𝒦 − inf 𝑥 = ℐ* − sup𝑥;
(ii) if 𝑥 is monotonic decreasing, then ℐ𝒦 − sup𝑥 = ℐ* − inf 𝑥.

Proof. (i) We divide the entire proof into considering two cases.
Case-I: ℐ* − sup𝑥 <∞
Suppose ℐ* − sup𝑥 = 𝑠. Then there exists some 𝑀 = {𝑚1 < 𝑚2 <

. . . < 𝑚𝑘 < . . .} ∈ ℱ(ℐ), such that 𝑥𝑚𝑘
⩽ 𝑠 holds for all 𝑘 ∈ ℕ. This

implies
𝑀 ⊆ {𝑘 ∈ ℕ : 𝑥𝑘 ⩽ 𝑠}. (4)

Also, for any 𝜀 > 0, there exists 𝑘0 ∈ ℕ, such that 𝑥𝑚𝑘0
> 𝑠− 𝜀. We claim

that 𝑠 /∈ 𝐿ℐ𝒦(𝑥). Otherwise, if 𝑠 ∈ 𝐿ℐ𝒦(𝑥), then there exists 𝑁 = {𝑛1 <
𝑛2 < . . . < 𝑛𝑘 < . . .}, such that 𝑠 ∈ 𝐿𝒦(𝑦), where 𝑦 = (𝑦𝑘) is the sequence
defined by

𝑦𝑘 =

{︃
𝑥𝑘, 𝑘 ∈ 𝑁,

𝑠, 𝑘 /∈ 𝑁.

In other words, {𝑘 ∈ 𝑁 : 𝑥𝑘 ⩾ 𝑠} ∈ ℱ(𝒦). Now, as the inclusion

{𝑘 ∈ 𝑁 : 𝑥𝑘 ⩾ 𝑠} ⊆ {𝑘 ∈ ℕ : 𝑥𝑘 ⩾ 𝑠}

holds, we have {𝑘 ∈ ℕ : 𝑥𝑘 ⩾ 𝑠} ∈ ℱ(𝒦). Consequently, from (4), we
have ℕ ∖𝑀 ∈ ℱ(𝒦). Now 𝑀 ∈ ℱ(ℐ) and ℕ ∖𝑀 ∈ ℱ(𝒦) together yield
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𝑀 ∩ (ℕ ∖𝑀) ∈ ℱ(ℐ ∨ 𝒦), i. e., ∅ ∈ ℱ(ℐ ∨ 𝒦), which is a contradiction.
This proves our claim. Now, let 𝜀 > 0 be arbitrary. Then we have

{𝑘 ∈𝑀 : 𝑥𝑘 < 𝑠− 𝜀} ⊆ {𝑘 ∈𝑀 : 𝑥𝑘 < 𝑥𝑚𝑘0
} ⊆ {1, 2, . . . ,𝑚𝑘0}.

Since 𝒦 is admissible, so {1, 2, . . . ,𝑚𝑘0} ∈ 𝒦 and, as a consequence,
{𝑘 ∈𝑀 : 𝑥𝑘 < 𝑠− 𝜀} ∈ 𝒦, i. e., 𝑠− 𝜀 ∈ 𝐿ℐ𝒦(𝑥). Therefore, by Theorem 4,
we obtain 𝐿ℐ𝒦(𝑥) = (−∞, 𝑠− 𝜀]. Hence, ℐ𝒦 − inf 𝑥 = sup𝐿ℐ𝒦(𝑥) = 𝑠.

Case-II: ℐ* − sup𝑥 = ∞
If ℐ* − sup𝑥 = ∞, then, for any 𝑙 ∈ ℝ, there exists 𝑀 = {𝑚1 < 𝑚2 <

. . . < 𝑚𝑘 < . . .} ∈ ℱ(ℐ), such that 𝑥𝑚𝑘0
⩾ 𝑙 for some 𝑘0 ∈ ℕ. Now, since 𝑥

is monotonic increasing, 𝑥𝑚𝑘0
⩽ 𝑥𝑘 for all 𝑘 ⩾ 𝑚𝑘0 . Thus, for all 𝑘 ⩾ 𝑚𝑘0 ,

we have 𝑥𝑘 ⩾ 𝑙. Eventually, {𝑘 ∈ ℕ : 𝑥𝑘 < 𝑙} ⊆ {1, 2, . . . ,𝑚𝑘0} ∈ 𝒦,
i. e., 𝑙 ∈ 𝐿𝒦(𝑥), which further implies that 𝑙 ∈ 𝐿ℐ𝒦(𝑥). Now, since 𝑙 is
arbitrary, 𝐿ℐ𝒦(𝑥) = (−∞,∞). Hence, ℐ𝒦 − inf 𝑥 = sup𝐿ℐ𝒦(𝑥) = ∞.
(ii) The proof is analogous to that of (i), so omitted. □

Theorem 7. Let 𝑥 = (𝑥𝑘) be a real-valued sequence and 𝑡 ∈ ℝ be fixed.
Then ℐ𝒦 − inf 𝑥 = 𝑡 if and only if for every 𝜀 > 0 there exists 𝑀 ∈ ℱ(ℐ),
such that

{𝑘 ∈𝑀 : 𝑥𝑘 < 𝑡− 𝜀} ∈ 𝒦 and {𝑘 ∈𝑀 : 𝑥𝑘 ⩾ 𝑡+ 𝜀} /∈ ℱ(𝒦).

Proof. Suppose ℐ𝒦−inf 𝑥 = 𝑡. Then, for any 𝑙 ∈ 𝐿ℐ𝒦(𝑥), 𝑙 ⩽ 𝑡 and for any
𝜀 > 0, there exists 𝑙′ ∈ 𝐿ℐ𝒦(𝑥), such that 𝑡− 𝜀 < 𝑙′. So, by Theorem 4(i),
𝑡− 𝜀 ∈ 𝐿ℐ𝒦(𝑥). This implies that there exists a set 𝑀 ∈ ℱ(ℐ), such that
{𝑘 ∈ ℕ : 𝑦𝑘 < 𝑡− 𝜀} ∈ 𝒦, where 𝑦 = (𝑦𝑘) is defined as

𝑦𝑘 =

{︃
𝑥𝑘, 𝑘 ∈𝑀,

𝑡− 𝜀, 𝑘 /∈𝑀.

Therefore, {𝑘 ∈𝑀 : 𝑥𝑘 < 𝑡− 𝜀} ∈ 𝒦 holds.
Now, to prove {𝑘 ∈ 𝑀 : 𝑥𝑘 ⩾ 𝑡 + 𝜀} /∈ ℱ(𝒦), we assume the con-

trary. Then there exists some 𝜀0 > 0, such that for any 𝑀 ∈ ℱ(ℐ)
{𝑘 ∈ 𝑀 : 𝑥𝑘 ⩾ 𝑡 + 𝜀0} ∈ ℱ(𝒦). In particular, if we take 𝑀 = ℕ, then
we have 𝑡 + 𝜀0 ∈ 𝐿𝒦(𝑥) and, consequently, 𝑡 + 𝜀0 ∈ 𝐿ℐ𝒦(𝑥), which is a
contradiction to the fact that 𝑡 = sup𝐿ℐ𝒦(𝑥).

To prove the converse part, assume that ∀𝜀 > 0 there exists 𝑀 ∈ ℱ(ℐ):
{𝑘 ∈𝑀 : 𝑥𝑘 < 𝑡 − 𝜀} ∈ 𝒦 and {𝑘 ∈𝑀 : 𝑥𝑘 ⩾ 𝑡 +𝜀} /∈ ℱ(𝒦). Then we
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have 𝑡− 𝜀 ∈ 𝐿ℐ𝒦(𝑥) and 𝑡+ 𝜀 /∈ 𝐿ℐ𝒦(𝑥). Therefore, 𝐿ℐ𝒦(𝑥) = (−∞, 𝑡− 𝜀).
Now, since 𝜀 is arbitrary, we have

ℐ𝒦 − inf 𝑥 = sup𝐿ℐ𝒦(𝑥) = 𝑡.

This completes the proof. □

Corollary 3. Let 𝑥 = (𝑥𝑘) be a real-valued sequence and 𝑠 ∈ ℝ be
fixed. Then ℐ𝒦 − sup𝑥 = 𝑠 if and only if for every 𝜀 > 0 there exists
𝑀 ∈ ℱ(ℐ), such that

{𝑘 ∈𝑀 : 𝑥𝑘 > 𝑠+ 𝜀} ∈ 𝒦 and {𝑘 ∈𝑀 : 𝑥𝑘 ⩽ 𝑠− 𝜀} /∈ ℱ(𝒦).

Proof. The proof is similar to that of Theorem 7, so it is omitted here. □

Theorem 8. For a real-valued sequence 𝑥 = (𝑥𝑘), ℐ𝒦 − lim𝑥 = 𝑥0 if
and only if ℐ𝒦 − inf 𝑥 = 𝑥0 = ℐ𝒦 − sup𝑥.

Proof. Let ℐ𝒦 − lim𝑥 = 𝑥0. Then there exists a set 𝑀 = {𝑚1 < 𝑚2 <
. . . < 𝑚𝑘 < . . .} ∈ ℱ(ℐ), such that for any 𝜀 > 0, {𝑘 ∈ 𝑀 : |𝑥𝑘 −
𝑥0| ⩾ 𝜀} ∈ 𝒦. This implies {𝑘 ∈ 𝑀 : 𝑥𝑘 > 𝑥0 + 𝜀} ∈ 𝒦, i. e.,
𝑥0 + 𝜀 ∈ 𝑈ℐ𝒦(𝑥) and {𝑘 ∈ 𝑀 : 𝑥𝑘 < 𝑥0 − 𝜀} ∈ 𝒦, i. e., 𝑥0 − 𝜀 ∈ 𝐿ℐ𝒦(𝑥).
By Theorem 4, we have 𝑈ℐ𝒦(𝑥) = (𝑥0,∞) and 𝐿ℐ𝒦(𝑥) = (−∞, 𝑥0), which
further gives

ℐ𝒦 − inf 𝑥 = sup𝐿ℐ𝒦(𝑥) = 𝑥0 = inf 𝑈ℐ𝒦(𝑥) = ℐ𝒦 − sup𝑥.

For the converse part, let ℐ𝒦 − inf 𝑥 = 𝑥0 = ℐ𝒦 − sup𝑥. Then
sup𝐿ℐ𝒦(𝑥) = 𝑥0 = inf 𝑈ℐ𝒦(𝑥). Then, by definition of the usual supre-
mum and infimum, for any 𝜀 > 0 there exists 𝑙 ∈ 𝐿ℐ𝒦(𝑥) and 𝑢 ∈ 𝑈ℐ𝒦(𝑥),
such that 𝑥0−𝜀 < 𝑙 and 𝑥0+𝜀 > 𝑢. Now, 𝑙 ∈ 𝐿ℐ𝒦(𝑥) and 𝑢 ∈ 𝑈ℐ𝒦(𝑥) imply
the existence of two sets 𝑀 ′,𝑀 ′′ ∈ ℱ(ℐ), such that {𝑘 ∈𝑀 ′ : 𝑥𝑘 < 𝑙} ∈ 𝒦
and {𝑘 ∈ 𝑀 ′′ : 𝑥𝑘 > 𝑢} ∈ 𝒦. Let 𝑀 denote the set 𝑀 ′ ∩ 𝑀 ′′. Then
𝑀 ∈ ℱ(ℐ) and, since 𝑥0 − 𝜀 < 𝑙 and 𝑥0 + 𝜀 > 𝑢 hold, by the hereditary
property of 𝒦 we have:

{𝑘 ∈𝑀 : 𝑥𝑘 ⩽ 𝑥0 − 𝜀} ⊆ {𝑘 ∈𝑀 : 𝑥𝑘 < 𝑙} ⊆ {𝑘 ∈𝑀 ′ : 𝑥𝑘 < 𝑙} ∈ 𝒦,

and

{𝑘 ∈𝑀 : 𝑥𝑘 ⩾ 𝑥0 + 𝜀} ⊆ {𝑘 ∈𝑀 : 𝑥𝑘 > 𝑢} ⊆ {𝑘 ∈𝑀 ′′ : 𝑥𝑘 > 𝑢} ∈ 𝒦.
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Consequently,

{𝑘 ∈𝑀 : |𝑥𝑘−𝑥0| ⩾ 𝜀}={𝑘 ∈𝑀 : 𝑥𝑘 ⩽ 𝑥0−𝜀}∪{𝑘 ∈𝑀 : 𝑥𝑘 ⩾ 𝑥0+𝜀} ∈ 𝒦.

Hence, ℐ𝒦 − lim𝑥 = 𝑥0. □

Corollary 4. Let 𝑥 = (𝑥𝑘) be a real-valued sequence, such that
𝒦 − inf 𝑥 = 𝑥0 = 𝒦 − sup𝑥. Then, ℐ𝒦 − lim𝑥 = 𝑥0.

Proof. The proof follows directly from Corollary 2 and Theorem 8, so
omitted. □

Theorem 9. Let 𝑥 = (𝑥𝑘) and 𝑦 = (𝑦𝑘) be two real-valued sequences,
such that there exists a set 𝑀 ∈ ℱ(ℐ) satisfying {𝑘 ∈ 𝑀 : 𝑥𝑘 ̸= 𝑦𝑘} ∈ 𝒦.
Then

ℐ𝒦 − inf 𝑥 = ℐ𝒦 − inf 𝑦 and ℐ𝒦 − sup𝑥 = ℐ𝒦 − sup 𝑦.

Proof. We only prove the first part, i. e., ℐ𝒦 − inf 𝑥 = ℐ𝒦 − inf 𝑦. The
proof of the second part can be obtained by applying a similar technique.

Let the given conditions hold and suppose 𝑙 ∈ 𝐿ℐ𝒦(𝑥) be arbitrary.
Then, by definition, there exists𝑁 ∈ℱ(ℐ), such that {𝑘 ∈ 𝑁 :𝑥𝑘 < 𝑙} ∈ 𝒦.
Consequently,

{𝑘 ∈𝑀 ∩𝑁 : 𝑦𝑘 < 𝑙} =

= {𝑘 ∈𝑀 ∩𝑁 : 𝑥𝑘 ̸= 𝑦𝑘, 𝑦𝑘 < 𝑙} ∪ {𝑘 ∈𝑀 ∩𝑁 : 𝑥𝑘 = 𝑦𝑘, 𝑦𝑘 < 𝑙} ⊆
⊆ {𝑘 ∈𝑀 : 𝑥𝑘 ̸= 𝑦𝑘} ∪ {𝑘 ∈ 𝑁 : 𝑥𝑘 < 𝑙} ∈ 𝒦.

From the above inclusion, it is clear that {𝑘 ∈𝑀 ∩𝑁 : 𝑦𝑘 < 𝑙} ∈ 𝒦. Since
𝑀 ∩ 𝑁 ∈ ℱ(ℐ), we have 𝑙 ∈ 𝐿ℐ𝒦(𝑦). This proves that 𝐿ℐ𝒦(𝑥) ⊆ 𝐿ℐ𝒦(𝑦).
Similarly, one can establish 𝐿ℐ𝒦(𝑦) ⊆ 𝐿ℐ𝒦(𝑥). Hence, 𝐿ℐ𝒦(𝑥) = 𝐿ℐ𝒦(𝑦)
holds and, finally, sup𝐿ℐ𝒦(𝑥)=sup𝐿ℐ𝒦(𝑦), i. e., ℐ𝒦−inf 𝑥=ℐ𝒦−inf 𝑦. □

Theorem 10. Let 𝑥 = (𝑥𝑘) and 𝑦 = (𝑦𝑘) be two real-valued sequences.
Then:
(i) ℐ𝒦 − inf(𝑥+ 𝑦) = ℐ𝒦 − inf 𝑥+ ℐ𝒦 − inf 𝑦;
(ii) ℐ𝒦 − sup(𝑥+ 𝑦) = ℐ𝒦 − sup𝑥+ ℐ𝒦 − sup 𝑦.

Proof. (i) Let ℐ𝒦−inf 𝑥 = 𝑡𝑥 and ℐ𝒦−inf 𝑦 = 𝑡𝑦. Then, by Theorem 7, for
any 𝜀 > 0 there exists𝑀,𝑁 ∈ ℱ(ℐ), such that

{︀
𝑘 ∈𝑀 : 𝑥𝑘 < 𝑡𝑥 − 𝜀

2

}︀
∈ 𝒦

and
{︀
𝑘 ∈ 𝑁 : 𝑦𝑘 < 𝑡𝑦 − 𝜀

2

}︀
∈ 𝒦. Now, as the inclusion
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{𝑘 ∈𝑀 ∩𝑁 : 𝑥𝑘 + 𝑦𝑘 < (𝑡𝑥 + 𝑡𝑦)− 𝜀} ⊆

⊆
{︁
𝑘 ∈𝑀 : 𝑥𝑘 < 𝑡𝑥 −

𝜀

2

}︁
∪
{︁
𝑘 ∈ 𝑁 : 𝑦𝑘 < 𝑡𝑦 −

𝜀

2

}︁
holds and 𝑀 ∩𝑁 ∈ ℱ(ℐ), {𝑘 ∈𝑀 ∩𝑁 : 𝑥𝑘 + 𝑦𝑘 < (𝑡𝑥+ 𝑡𝑦)− 𝜀} ∈ 𝒦 and,
consequently, ℐ𝒦 − inf(𝑥 + 𝑦) = 𝑡𝑥 + 𝑡𝑦 = ℐ𝒦 − inf 𝑥 + ℐ𝒦 − inf 𝑦. This
completes the proof.
(ii) The proof is similar to that of (i), so omitted. □

Definition 20. A real number 𝛾 is said to be the ℐ𝒦-cluster point of a
real-valued sequence 𝑥 = (𝑥𝑘) if there exists 𝑀 = {𝑚1 < 𝑚2 <. . .< 𝑚𝑘 <
. . .} ∈ ℱ(ℐ), such that 𝛾 is a 𝒦-cluster point of the subsequence (𝑥𝑚𝑘

).

The set of all ℐ𝒦-cluster points of a real-valued sequence 𝑥 = (𝑥𝑘) is
denoted by ℐ𝒦 − (Γ𝑥).

Theorem 11. Let 𝑥 = (𝑥𝑘) be a real-valued sequence, such that ℐ𝒦 −
sup𝑥 and ℐ𝒦 − inf 𝑥 are finite. Then, ℐ𝒦 − sup𝑥 ∈ ℐ𝒦 − (Γ𝑥) and
ℐ𝒦 − inf 𝑥 ∈ ℐ𝒦 − (Γ𝑥).

Proof. Let ℐ𝒦 − sup𝑥 = inf 𝑈ℐ𝒦(𝑥) = 𝑠. Then, by definition of the usual
infimum, for any 𝜀 > 0 there exists 𝑡0 ∈ 𝑈ℐ𝒦(𝑥), such that 𝑠 ⩽ 𝑡0 < 𝑠+ 𝜀.
Consequently, there exists 𝑀 ∈ ℱ(ℐ), such that {𝑘 ∈ 𝑀 : 𝑥𝑘 > 𝑡0} ∈ 𝒦.
Now, as the inclusion

{𝑘 ∈𝑀 : 𝑥𝑘 ⩾ 𝑠+ 𝜀} ⊆ {𝑘 ∈𝑀 : 𝑥𝑘 > 𝑡0}

holds,
{𝑘 ∈𝑀 : 𝑥𝑘 ⩾ 𝑠+ 𝜀} ∈ 𝒦. (5)

Again, 𝑠 = inf 𝑈ℐ𝒦(𝑥) gives 𝑠− 𝜀 /∈ 𝑈ℐ𝒦(𝑥), which further implies

{𝑘 ∈𝑀 : 𝑥𝑘 > 𝑠− 𝜀} /∈ 𝒦. (6)

Now, since the following relation

{𝑘 ∈𝑀 : 𝑥𝑘 > 𝑠−𝜀} = {𝑘 ∈𝑀 : 𝑠−𝜀 < 𝑥𝑘 < 𝑠+𝜀}∪{𝑘 ∈𝑀 : 𝑥𝑘 ⩾ 𝑠+𝜀}

holds, from (5) and (6) we have {𝑘 ∈ 𝑀 : 𝑠 − 𝜀 < 𝑥𝑘 < 𝑠 + 𝜀} /∈ 𝒦, i. e.,
𝑠 ∈ ℐ𝒦 − (Γ𝑥). This completes the proof of the first part.
Applying a similar technique, we can show that ℐ𝒦− inf 𝑥 ∈ ℐ𝒦− (Γ𝑥). □

Definition 21. (a) Let 𝑥 = (𝑥𝑘) be a real-valued sequence. Then
ℐ𝒦−limit inferior is denoted and defined by

ℐ𝒦 − lim inf 𝑥 = ℐ𝒦 − sup 𝑣,
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where 𝑣 = (𝑣𝑘) is the sequence defined by 𝑣𝑘 = ℐ𝒦 − inf
𝑛⩾𝑘

{𝑥𝑛, 𝑥𝑛+1, . . .}.

(b) Let 𝑥 = (𝑥𝑘) be a real-valued sequence. Then ℐ𝒦−limit superior is
denoted and defined by

ℐ𝒦 − lim sup𝑥 = ℐ𝒦 − inf 𝑤,

where 𝑤 = (𝑤𝑘) is the sequence defined by 𝑤𝑘 = ℐ𝒦 − sup
𝑛⩾𝑘

{𝑥𝑛, 𝑥𝑛+1, . . .}.

Corollary 5. Let 𝑥 = (𝑥𝑘) be a real-valued sequence. Then:
(i) if 𝑣𝑘 = ℐ𝒦− inf

𝑛⩾𝑘
{𝑥𝑛, 𝑥𝑛+1, . . .} for all 𝑛 ∈ ℕ, then 𝑣 = (𝑣𝑘) is a constant

sequence and 𝑣𝑘 = ℐ𝒦 − inf 𝑥;
(ii) if 𝑤𝑘 = ℐ𝒦 − sup

𝑛⩾𝑘
{𝑥𝑛, 𝑥𝑛+1, . . .} for all 𝑛 ∈ ℕ, then 𝑤 = (𝑤𝑘) is a

constant sequence and 𝑤𝑘 = ℐ𝒦 − sup𝑥.

Proof. The proof of (i) and (ii) are easy, so omitted. □

Corollary 6. Let 𝑥 = (𝑥𝑘) be a real-valued sequence. Then:

ℐ𝒦 − lim inf 𝑥 = ℐ𝒦 − inf 𝑥 and ℐ𝒦 − lim sup𝑥 = ℐ𝒦 − sup𝑥.

Proof. The proof is omitted as it can be easily obtained from the Defini-
tion 21 and Corollary 5. □

Corollary 7. Let 𝑥 = (𝑥𝑘) and 𝑦 = (𝑦𝑘) be two real-valued sequences.
Then:

(i) ℐ𝒦 − lim inf 𝑥 ⩽ ℐ𝒦 − lim sup𝑥;

(ii) lim inf 𝑥 ⩽ 𝒦 − lim inf 𝑥 ⩽ ℐ𝒦 − lim inf 𝑥 ⩽

⩽ ℐ𝒦 − lim sup𝑥 ⩽ 𝒦 − lim sup𝑥 ⩽ lim sup𝑥;

(iii) ℐ𝒦 − lim inf(𝑥+ 𝑦) = ℐ𝒦 − lim inf 𝑥+ ℐ𝒦 − lim inf 𝑦;

(iv) ℐ𝒦 − lim sup(𝑥+ 𝑦) = ℐ𝒦 − lim sup𝑥+ ℐ𝒦 − lim sup 𝑦.

4. Conclusion. In this paper, we investigated the notions of
ℐ𝒦-supremum, ℐ𝒦-infimum, ℐ𝒦-limit superior, and ℐ𝒦-limit inferior for
a real-valued sequence 𝑥 = (𝑥𝑘), and presented some interrelationships
between these notions. Theorem 7 and Corollary 3 give the necessary
and sufficient conditions for a real number to become ℐ𝒦-infimum and
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ℐ𝒦-supremum, respectively, of a real-valued sequence. Theorem 8 gives
the necessary and sufficient condition regarding the ℐ𝒦-convergence of a
real-valued sequence. Theorem 11 proves the inclusion of the numbers
ℐ𝒦 − sup𝑥 and ℐ𝒦 − inf 𝑥 in the set ℐ𝒦 − (Γ𝑥). The obtained results may
be helpful for future researchers to explore the notion of ℐ𝒦-convergence
in more detail.
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[5] Das P., Sengupta S., Šupina J. 𝐼𝐾−convergence of sequence of functions.
Math. Slovaca, 2019, vol. 69, no. 5, pp. 1137 – 1148.
DOI: https://doi.org/10.1515/ms-2017-0296

[6] Das P., Sleziak M., Toma V. 𝐼𝐾−Cauchy functions. Topology Appl., 2014,
vol. 173, pp. 9 – 27.
DOI: https://doi.org/10.1016/j.topol.2014.05.008

[7] Debnath S., Choudhury C. On some properties of ℐ𝒦−convergence. Palest.
J. Math., 2022, vol. 11, no. 2, pp. 129 – 135.

[8] Demirci K. 𝐼−limit superior and limit inferior. Math. Commun., 2001,
vol. 6, no. 2, pp. 165 – 172.

[9] Fast H. Sur la convergence statistique. Colloq. Math., 1951, vol. 2,
pp. 241 – 244. DOI: https://doi.org/10.4064/cm-2-3-4-241-244

https://doi.org/10.31801/cfsuasm as.736132
https://doi.org/10.1016/j.topol.2019.107005
https://doi.org/10.1515/ms-2017-0296
https://doi.org/10.1016/j.topol.2014.05.008
https://doi.org/10.4064/cm-2-3-4-241-244


On ℐ𝒦-Supremum, ℐ𝒦-Infimum and Related Results 29

[10] Fridy J. A. On statistical convergence. Analysis, 1985, vol. 5, no. 4,
pp. 301 – 313. DOI: https://doi.org/10.1524/anly.1985.5.4.301

[11] Fridy J. A., Orhan C. Statistical limit superior and limit inferior. Proc.
Amer. Math. Soc., 1997, vol. 125, no. 12, pp. 3625 – 3631.
DOI: https://doi.org/10.1090/S0002-9939-97-04000-8
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