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EXPONENTIAL APPROXIMATION OF FUNCTIONS IN
LEBESGUE SPACES WITH MUCKENHOUPT WEIGHT

Abstract. Using a transference result, several inequalities of ap-
proximation by entire functions of exponential type in C(R), the
class of bounded uniformly continuous functions defined on
R = (-0, +®), are extended to the Lebesgue spaces LP (pdx)
1 < p < o with Muckenhoupt weight o. This gives us a different
proof of Jackson type direct theorems and Bernstein-Timan type
inverse estimates in L? (pdz). Results also cover the case p = 1.
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1. Introduction. An entire function f(z) is called of exponential
type o € [0,00) (briefly e.f.e.t< o) if

lim Sup|z|:raoo(7a_1 ln(<max|z|:7" ‘f(Z)D) <o

Sometimes e.f.e.t< o are also recalled as band-limited functions. See, e.g.,
paper [4].

Studies on e.f.e.t< o have intensified with problems related to approx-
imation of non-periodic continuous functions (see Bernstein’s paper [8] of
the year 1912) defined on the real axis R := (—o0, + o0).

It is well known that trigonometric polynomials are not suitable enough
for approximation of non-periodic functions defined on R, while the class
of e.f.e.t< o serves as a correct class for non-periodic functions on R.

Consider the class Ap of Muckenhoupt’s weights [18]. The main aim of
this paper is to obtain central inequalities of approximation by e.f.e.t< o
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for functions from the Lebesgue spaces LP (pdz) on R with Muckenhoupt’s
weights p €Ay, 1 < p < .

Before presenting the main results, we give some historical remarks
and achievements in the particular case of non-weighted classical Lebesgue
spaces LP(R):=LP (odx) with p =1 and 1 < p < .

After the results of S. N. Bernstein in [§], some systematic studies on
e.f.e.t< o continued, chronologically, by N. I. Ackhieser 2], S. M. Nikol-
ski [20], I. I. Ibragimov [15]. All these reference books contain several
inequalities of e.f.e.t< o in spaces LP(R) with 1 < p < .

On the other hand, many other works also include results of approxima-
tion by e.f.e.t< 0. See, for example, papers by F. G. Nasibov [19]; S. Ar-
tamonov, K. Runovski, H. J. Schmeisser [4]; D. P. Dryanov, M. A. Qazi,
and Q. I. Rahman [12]; Z. Ditzian, K. G. Ivanov [11].

Recently, in the paper [13], D. V. Gorbachev, V. I. Ivanov, and
S. Yu. Tikhonov have studied approximation by spherical e.f.e.t< o for
functions given in L? (pdz), 1 < p < o0, with Dunkl weights ¢ on R.

After these historical remarks, we can return to the case of LP(pdx),
1 < p < oo with the Muckenhoupt weight ¢ on R.

Some results on trigonometric approximation are known for periodic
0 €Ap, 1 < p < 0 and periodic f € LP (pdz). See, e.g., papers by S. Z. Ja-
farov [16], [17]; A. Guven and V. Kokilashvili [14]; Y. E. Yildirir and D.
M. Israfilov [23]; F. Abdullaev, A. Shidlich and S. Chaichenko [1], and A.
H. Avsar and H. Kog [5].

Recently, the author has proved in [3] a transference result to obtain
norm inequalities for functions in variable exponent Lebesgue spaces on
the real axis LP(*).

In the present work, we deal with non-periodic weighted case in LP(odz),
1<p<w, pei,.
Let N :== {1,2,3,...} be the natural numbers and Ny := Nu {0}.

For j € N, all constants C; = C,(a,b,...) are positive numbers
that depend on the parameters a,b,... and change only when parame-
ters a, b, ... change. Absolute constants are denoted by ¢; > 0 (i € N) and
do not change in each occurrences.

2. Preliminary notations and the transference result. A func-
tion o: R—[0,00] is called weight if o is measurable and positive a.e.
on R. Define {9y, = {o(t)dt for A < R. A weight g belongs to the

A



Exponential weighted approximation on the real line 5

Muckenhoupt class Ay, 1 < p < o0, if
|J|_1 (0); < o], (essinfres 0(x)), a.e. on R, (p=1), (1)

_ _ —1
[el, = sup |17 (o), (MIPNT <o, (1<p <) (2)

with some finite constants independent of J.
For a weight o on R, denote by LP (odx), 1 < p < o the class of
real-valued measurable functions, defined on R, such that

= [ 1f @F e@ar) " <0 (1 <p<

and
[l =e88-supser [ (2)], (p = ).

Let C'(R) (respectively, C(R) ) be the class of continuous (bounded
uniformly continuous) functions defined on R. Denote by C.. (respectively,
Se) the collection of real-valued continuous (respectively, simple) functions
f on R, such that support supp(f) of f is a compact set in R.

For 1 <p < oo, set (1/p) + (1/p') = 1.

Lemma 1. ([7, (2.7) p. 933 and (2.10) p. 934]) If p € [1,0), 0 € Ay,
and fxa € LP (pdx), then

1 —1
Ifxaly < [0l <2 1 fxal,,

holds for any compact subset A of R.

Lemma 2. If 1 < p < o, g€A,, f € LP(odz) and g € L¥ (odz), then,
Hdélder’s inequality

j F@)g@) e @) dz < 71, Il 3)

holds.

Proof. In Theorems 16.14 and 16.40 of [22], we replace du by o (x) dz and
get Holder’s inequality (3). [J

Definition 1. Suppose that 0 < A\ < o0 and 7 € R. Define the family of
the translated Steklov operators {Syx,f}, by

oT1/(2\)
Sy f(x) = A J F)dt, zeR (@)

z+7—1/(2))
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for a locally integrable function f defined on R.

Definition 2. Let 1 < p < o, p € A,, f € LP(pdx). For u € R, we
define

ﬂ@n:jémjmnGunm>¢r(1 p < o0) (5)

R
with G € L” (odx) satisfying IGl,, <1
Definition 3. (a) A family @) of measurable sets E — R is called locally

N-finite (N € N) if
Y xe(x) <N
EeqQ

almost everywhere in R, where xy is the characteristic function of the
set U.

(b) A family @ of open bounded sets U < R is locally 1-finite if and
only if the sets U € () are pairwise disjoint.

Theorem 1. Suppose that 1 < p < o and ¢ € A,. Then the family of
Steklov Mean Operators { S1,T}TeR is uniformly bounded (inT)in LP (odx),
namely,

2
ISt f[,, <337 [g];/p Ifl,, forTeR.

Proof. Let () be 1-finite family of open bounded subsets P; of R, having
Lebesgue measure 1, such that (u;P;) U A = R for some null-set A. Since
7 € R, there exists m € Z, such that m < 7 < (m + 2). Let P +m be the
translation of the set P by m. Set (P; + m)i = (P u P, U Pyqy) +m.
Then

z+7+1/2
p
Si Al = 3 [ | o] e
Pie QPz TH+T— 1/2
z+7+1/2
1 P
< | e mas
PeRp o1 or (1)
z+7+1/2 T+7+1/2

<SS [ ewisora)y ([ oF o)) o=

PEQp i1 et+T—1/2
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z+7+1/2 z+74+1/2 ,
Zf f FOP at( f o (t)dt)" o(w)dz =
PEQp, yir—1)2 a+7—1/2
x+7+1/2 x+7+1/2
1 -1
-y f f \”dt( J Q*rl(t)dt)p o()da =
PieQp, yrm1/2 a+T—1/2
z+7+1/2 r+7+1/2
p—1
-S| emma) (| ewlsord)ods <
Pie QPz z+7—1/2 x+7—1/2
) 1 1 p-1
<3 Z (W Q(x)dx) (—+ 0 P 1( )dt) X
Pie@ Tt T ps ‘<Pi+m)7’(Pi+m)*
< | ewlsoras
(P4+m)*
<@, 5{ [+ [+ | Jeoiroras
PGQ Pi_1+m Pi+m Pii1+m
<Fd, [ o0l »

R

{ D Xpeml®) 4 D Xpam(®) D Xp () bt =

PeQ Pie@ Pe@

=372 (gl, [ o) [F)F dt = 34 [g] | 17, and
R

181+ £1,, <337 [l |f],,-
For p =1, we find:

x+7+1/2

Sifli,= X ||| Fdfeto)a

P EQPz T+T—1/2

x+7+1/2

<3| | aoul g

PZEQP z+7—1/2
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<32ﬁ | otaro( esssup %) | ewirwrar<

P te(Pi+m)* €

(Pi+m)* (Pi+m)*
B ] e ] | e
PeQ p Tim  PYm  Piitm

<30, [ o101 3 xrien®+ X xren®)+ X oo}t <

R PieQ PieQ Pie@

9, ”le,g :

Hence, for any 1 < p < o0,

21/
HSLTpr,Q < 3 ’ 3p [Q]p Hf”p,g ‘

OJ

Theorem 2. Let 1 < p < o and o be a weight on R. Then, for
f € L? (odx), we have

sup j (%) G ()] olx)dz=]fl,,. (6)

GeLP' (odz),|G|l,, <1

X
P, R

In addition, the condition "G € L¥ (odz)" in supremum can be replaced
by the condition "G € L (odx) N S,"

Proof. (6) is a consequence of Theorem 18.4 of [22]. On the other
hand, methods given in Lemma 2.7.2 and Lemma 3.2.14 of [10] imply

that the condition "G € L (odx)" in supremum can be replaced by
"G e L¥ (odz) n S." [

Theorem 3. Let1<p<w, pe Ay, and f,g € LP (odx). In this case,
(a) The function Fy (-) defined in (5) is bounded and uniformly con-
tinuous on R.
(b) If |Fyllemy < ¢1|Fylewy holds with an absolute constant ¢, > 0,
then we have the weighted norm inequalities

1£llpe < e1Cilgll,,, (7)

with C; 1= Cy (p,0) :=6-3» [@];/p-
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Proof. (a) Since C. is a dense subset of L” (odx), consider functions
H e C. and prove that Fy (u)={(S1,H) (z) |G (z)] ¢ (z) dz is bounded
R

and uniformly continuous on R, where G € L” (odz) n S, and |G| vo S L
Boundedness of Fy (+) is an easy consequence of the Holder’s inequality
and Theorem 1. On the other hand, note that H is uniformly continu-
ous on R, see, e.g., Lemma 23.42 of |22, pp. 557-558|. Take ¢ > 0 and
uy, us, x € R. Then there exists a 6 := § (¢) > 0, such that

£
2 (1 + <Q>supp(G)>

for |u; — ug| < §. Then, for |u; — us| < 4§, uy,us € R, we have

H (z+u) — H(z+u)| <

P ) = P )] = | [ (S0 H (@) = S1nH (@) G (0)] 0 2) | <

19
S : G (z)] 0 (z) dx < (Dsuppic)

2 (1+ <g>supp(G)) 7 (1+ <Q>supp(c;)>

Now the conclusion follows for the class C.. For the general case
f € LP (odx) there exists an H € C.. (R) so that

If —HI,, <&/(12-37 [o]7)

for any £ > 0. Then, for this &,

G, <e

By () = Fy ()] <] [ S1n(f = 1) @) [G (@) oo+
R
][ St (@) = 100 (@) G )] 0 o) a4
] [ S1alt = 1) ()16 @) ¢ (0) o] <
R

< St (F = Bl | [ S1(H (o4 ) = H (@ + 0a)) |6 @] ) d+

+[Svy (f = H)|,, <630 [l |f — H,, +€/2<E/2+€/2=¢.
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As a result, F is bounded, uniformly continuous function defined on R.
(b) Let 0 < f,g € LP (odx). If |f],, = lgl,, = 0, then results (7) are

obvious. So, assume that || f]|,,,[gl,, € (0, + o). Then
)l = [sut01G ],
C(R) llem)
- supf& ) (@) |6 @) ¢ (5) do = crsup [S1,(9)],, 161, <
ueR ueR

2
< 3c137 [0]27 gl -
On the other hand, for any ¢ € (0, | f|,.,] we can choose G. € L¥ (odx) N S,

with
f h(2) |G (x)] e () dz > |, — <,
R

and one can find

IFy ey > 1Fr O > [ $10f ()16 )] 0 (o) e =

N

=510 f f @G @l e@dr) >Sio (I, =) =11, -

In the last inequality, we let &€ — 0+ to obtain |Fy|.g) = [f],, Com-
bining these inequalities, we get

2 1
110 < 1Erlemy < 1l Folley < 3c137 [2l lgll,.,

In the general case f,g € L? (odz), we get

2
1£1,, < 6137 [0, lgll,, - (8)
Then (7) holds. []
Averaging Operator and Mollifier.

Definition 4. Let B < R be an open set, ¢ € Ly (B) and §, ¢ (t) dt = 1.
For each t > 0, define ¢, (x) = 1¢ (£). The sequence {¢;} will be called
the approximate identity. A function

¢ (x) = sup |6 (y)|

ly|>|z|
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will be called a radial majorant of ¢. If ¢ € Ly (B), then the sequence {¢;}
is called the potential-type approximate identity.

Definition 5.
(a) Let U < R be a measurable set and

1
Aol = f )l

(b) For a family @) of open sets U < R, define the averaging operator by

Ty: L, »> L°,  Tof (x) = ) xv(z) Auf, zeR,
UeQ

where L° is the set of measurable functions on R.
(c) For a measurable set A — R, the symbol | A| represents the Lebesgue
measure of A.

Theorem 4. Suppose that 1 < p < o0, p €Ay and f € LP (pdx). If Q) is
1-finite family of open bounded subsets of R, tben the averaging operator
Ty is uniformly bounded in L? (pdx) :

1T £, < Lo, 1f],,- (9)

Proof. Let ) be 1-finite family of open bounded subsets P; of R, such
that (uU;P;) U A = R for some null-set A. From Proposition 4.33 of [9],

we have
| 12 £ @ ff P of

P;

(see also Part 5.2 of [10, p.150]). Then we have

o f12, = 3 f Ty f (@) o(x)dz

PeQP

N

o], 3. j @) olw)dz = [d], 1117,

PiEQP

2

and the desired result (9) follows. []
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Theorem 5. Suppose that 1 < p < 0, p€Ap, f € LP(pdx), ¢ Is a
potential-type approximate identity. Then, for any t > 0,

(s ¢th,g <2 HéHl G Hpr,g

and
lim £ + 6~ fl,,, = 0
holds.

Proof. We can use the transference result. Since F.y, = (Ff)*¢:, we find

”f * ?bt”p,Q < HFf*qthc(R) = H(Ff) * Cbt”c(R) < Hﬁng HFch(R) < ClHﬁngnJCHp,@-
L]

3. Exponential approximation.
Definition 6. Let X = L” (R) or L? (odx) or C (R).

(i) We define G, (X) as the class of entire function of exponential type
o that belong to X. The quantity

Ao(f)x = f{[[f —glx: g € G- (X)} (10)

is called the deviation of the function f € X from G, (X).
(ii) Let W, r € N, be the class of functions f € X, such that the deriva-
tives f*) exist for k = 1,...,r — 1, =Y is absolutely continuous
and, f") e X.
(iii) Define G, (p):=Gs(L*(R)), Go(p,0):=Go (Lp(@dx)), Go (0 ) G,(C(R)),
Aa(f)p = Aa(f)Lp(R): Aa(f)pﬂ = A, (f)Lp (odzx), ( ) U(f)C (R)>
Wy =Wory Wpo = Wiioar and W7, == Weg).
In the following result of C. Bardaro, P. L. Butzer, R. L. Stens, and
G. Vinti, the exponential approximation result of the de la Valee Poussin
operator in L” (R) 1 < p < o was proved.

Theorem 6. [6] Let 0 >0,1<p< o, fe L’ (R),

9 (z) = 2sin (2/2) S21n(3x/2)

™ T

and

J(f, o) =aff(a7u)19(ou)du
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be the de la Valée Poussin operator ( [6, definition given in (5.3)]). It is
known (see (5.4)-(5.5) of [6]) that if f e LP (R), 1 < p < o0, then

(i) J(f,0) € Gas (p),

(ii) J (9o, 0) = go for any g, € G, (p),
(iii) |7 (£, 0) |, < 51fz,m)
(iv) (J(f, o))" =J (f",0) for any r € N and fe W,

v) |7 (f.%) = flz,m) — 0 (as 0 — o) and, hence,

[ (r5)" -

forfeW;andlgkgr.

— 0 as o — w0,
Lp(R)

For r € N, we define C" (R) consisting of every member f € C(R),
such that the derivative f*) exists and is continuouson R for k = 1,...,r.

Modulus of smoothness and the translated Steklov average.
As a corollary of Theorem 3, we have the following two results.

Corollary 1. Suppose that 1 < p < o, peA,, 0 <A <o and 7€ R.
Then:

() Fs,.r = SarFy,
(ii) the family of operators {S, ; f}, defined by (4), is uniformly bounded
(in XA and 7) in LP (odx):

ISar /e < Cillfl,,

Proof of Corollary 1 is a consequence of the transference Theorem 3.
Known results were proved under more restricted condition on A and 7,
such as 1 < A < o0 and |7] < /| \*] for some p.

Proof. (i) follows from (4) and (5). For (ii), we will use (i) and Theorem 3:

ISxrF 1o < [Fsvrtllemy = 1SxrFrlemy < IFtlemy < Cillfl,,-

[

Corollary 2. Let 1 < p < o0, p€Ap, 0 < § < oo, f € LP(pdx).
If 7 = §/2 then,

5
Ss.s/2f (x 1Jf (x+t)dt =Tsf (),
0
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Fryp =T5Fy  and  |T5f|,, < C[f],,- (11)

Proof. Equality Fr,; = T5Fy follows from (4) and (5). For the second
inequality in (11), we estimate:

||T5f||p,g < HFT(sch(R) = ||T5Ff||c(R) < HFch(R) <G ”pr,@-

O

For 1 <p <, g€y, fe LP(odr), 0 <6 < oo, reN, we define the
modulus of smoothness

Q(f,0)po = (I =T5)" fllpe

From the Transference Result:

(T =T5)"f,, < 2"Ci[ £l

Lemma 3. 1<p<w,pe A, IfreNand feW, then —Ff( )
exists and
dk
duka( u) = Fyaw (u) forke{l,...,r}, and u e R. (12)
Proof. We have the following equalities: for u € R,
()= [[810f(0) 6@ o o) i =
du ! du Lul % TeNE) AT =
R
1/2
d
| | e ofe) d -
R —1/2
1/2
_ J J (@ +u+ 1) dt|G@)| o () de = Fyr (u).
R —1/2

Then (12) holds for £ = 1. Using this procedure consecutively, we get

dk dkfl d dkfl

Fy ) = G
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Lemma 4. Let 1 <p <, peA,, reN, and 0 < < 0. Then
|1 =T5) fHI”Q < G0’ Hf(r)Hp,g’ fe Wz:,g

holds.
Proof. Note that the following inequality

I =T5) fl,, <27'Ciolf '], 6>0 (13)

p,e’

holds for f, f" € L? (pdz). Then

QO (f.0),,=1I=T5) fl,, < - <27Ci" [ fO) , 6>0

p.0
for fe W, ,. O
K-functional.
Definition 7. Let X = L? (R) or L” (¢odzx) or C (R).
(i) Let W%, r € N, be the class of functions f € X, such that derivatives

f®) exist for k = 1,...,r — 1, f=Y is absolutely continuous, and
f) e X. In particular, we set W, = WEP(R), Wy, = ng(gdm) and
W = W&R).

(ii)) We define Peetre’s K-functional for the pair X and W% as follows:
Ky (£,6,X) = inf {If = glx + 5 [9"]}, d>0.
geW %

We use the notation K, (f,0,p,0) = K, (f,0,LP (odx)) for r € N,
1<p<w, p€ep, 6 >0 and f e LP(odz).
Also set K, (f,0,C) = K, (f,0,C(R)) forre N, § >0 and feC(R).

As a corollary of the Transference Result, we can obtain the following
lemma:

Lemma 5. Let 0 <h<d <0, 1< p<oo,p€eA,, andf € LP (odzx).
Then
Fu-m)r = (I —1Tp,) Fr, (14)

|(1 = Th)£],, < 72C: (I - T5) £, , (15)
hold.
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Proof. Property (14) follows from definitions of F; and 7},. First, we
obtain the following inequalities:

H—af C®\§f%®, (10
H Tﬁf R S SH%TMHC(R), (17)
Hg(x) —Tsg (v) +g%g (x) ) 52 H deQH ' (18)

(Co) K (F.6.0) < |(I=Ty) f| | <PTEA£6.C); (19)

they hold with Cy (1) = 36, Cy(r) = 2" (r" + (34)") for r > 1, where
feC@), reNandge C?(R). In fact, these inequalities are known
from [3]. On the other hand, if 0 < h < § < w0 and g € C'(R), then the
inequality

HF(I_Th)QHC(R) S T2 HF(I—Ts)gHC(R) (20)
holds. To prove (20), we use (19) and obtain

HF(I‘Th)QHC(R) = ||(I-Th) FQHC(R) < 72 |(I-T5) FQHC(R) =72 ”F(I-Ta)QHC(R)

Now, the Transference Result, (20), and (14) give the result (15). ]
Theorem 7. Let1<p <, p€Ay, and f € LP (odz). Then

1 < Kr(f757pag)
QTCI = Qr(fa 5);0,9

Proof. For any g € W}, we have I, € W7, and F(;_r;rp = (I — T5)"F}.
Then, using the Transference Result:

| =T5)" £l < | Fia-myys

<{(2r) +27(34)} Cy.

= 10 =T Flegmy <

} <
C(R)

<ZCHIS = glpo + 07|97, } - @)

Taking infimum in (21) and considering definition of K-functional, one
gets

dT
F
dur”?

< 2K, (Fy,6,0) < 27{ |y = Fyllegm) + 6"

< 27”{HFfngc(R) + (VHFg(

(L =T5)" fl,, < 2°CiK, (f,6,p, 0)-
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Now we consider the opposite direction of the last inequality. Defining

0O =Y 0 ().

=1

using the Transference Result, we have for g € W

dT
KT 767 ) < - + X
(f,0.p,0) <|f —dl,, =9
T dT
< IFp=oleqey = 1Fs = Fllogy + 8| o gy <

10 -T2 Pl +2)( )

< @2n)" (I =T5)" Frlowy + 2" B4 |(I = T5)" Ftllem) =

< H(] - Tc?r)rFfHC(R) +0

27l ! 1

= [(2r)" +27(34)" <{@2r)"+ 276 C U = T5)" fl,,-

C(R) =

]

Theorem 8. For p € [1,), p€Ap, f,g € L?(odx) and § > 0, the
following properties hold:

1) Q. (f, 5)},79 is non-negative, non-decreasing function of J;
2) Q,.(f,9),, is sub-additive of f;

3) We have

As a result,
(151H(1) Qr(f: 6)])79 = 0. (23>

Proof. Properties 1) and 2) are clear from definition. Since

(lgrr(l] K. (f,0,p,0) =0,

we have, from Theorem 7, that (23) holds. []
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Jackson type inequality.

Theorem 9. Let p e [1,0), p€Ap, r € N, 0 > 0 and f € L? (odz).
Then

AU (f)p»Q < 2571_87‘_1@2@1 H (I - Tl/o')T pr,g : (24)
Proof. First we obtain
As (f),,, < 258" CoC (1 = Thyae)” £, (25)

and (24) follows from (25).
Let us take g, € Gy (0) with |Ff — golem) = Ao (Ff)ew)- Using
VoF; = Fy, ¢ and V, 9, = g5, we get

Az, (f)pvg < ||f - Vaf”p,g < HFf_VafHC(R) = HFf - VoFch(R) <
< |Ff =90+ 95 — VUFch(R) = Fy — 95 + Voo — VUFch(R) <
3 5
< A, (Ff)c(R) + §Ao— (Ff)c(R) - 5140 (Ff)c(R) .
For any g € W, one gets

d?"
dz” g

5w 4"
Ay (Wegmy < Ar (U-9)em) + Ao (Deqmy < lu-glem) + 7 —

<

‘C(R)

47
< 57TTKT(U7 0_17

where C, (1) = 36 and Cy ( ) =2"(r" + (34)") for r > 1. Therefore,

5 r— r
Ay, (f)m < §Aa (Ff>C(R) < 258" 1C, H([ — Ti) FfHC(R) =

5 ST om8"
K (155 €) < O (Tl )
C(R)

— 2578 1C, HF

(I_T]_/(2U))TfHC(R) < 257T8T_1CZC1 H ([ B Tl/(QU))r f”p,g

[

Inverse theorem.

Theorem 10. Letpe[l,0), p€A,, reN, de (0,0) and f € LP (odzx).

Then
1/5

Q (f,5),, < Cso" (AO (f),, + fu”Au/Q ), du>

1/2
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holds with Cg = Cl (1 + 3@1) gr+1 (1 + 227"—1).

Proof. We use the transference result to obtain

0 (£,0),, = 1T =T5)" fll,p < |Fu—zpys

ey = 1T = T Fillom <

1/8
<27 (1+2771) 6" (AO (Ff)em) + f u Ay (Ff)omy du) <

1/2
1/6

<Cp(143C)2 (1+ 271 o (AO (f)p, + J u' " A (f),, dU)
1/2

because, taking g, as | f — g5, , = Ao(f)p.e;

Ao (Ff>c(R) < |1Fy - VaFch(R) = HFfngch(R) <Cif - Vopr,g =

= Culf = 9o + 90 = Vo by < C1 (IF = Gl + [Vogo = Vit l,.,) <

<C1 (If = gol g +3C1lgs = Fl,,) = C1 (1+3C1) Ay ()

p,e

[

Marchaud inequality.

Theorem 11. Let rk e N, 1 < p < o, p€A,, f € LP(odr) and
t € (0,1/2). Then

1
Q, LU
QT‘ (f: t)p@ < C4tr f %du

t

holds with C4 = 207Cy (1 + 2271) 22 +3kCy(r + k) where C, (1) = 36,
and Cy (r) ==2" (r" + (34)") for r > 1.

Proof. Let ¢ > 0 and g, be an exponential-type entire function of degree
< o, belonging to L? (pdz), as the best approximation of f € L? (odz).
Then

O (fi1),, = 1T =T)" fl,, < |Fu-nys

ey = 10 =T Filegmy <
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1 H (I _ Tﬂ)T’-‘rk FfH R) 1 HF(I_Tu)rJrkf C(R)
< (((34(21)17[ ] du = (C4C1)trf ] U S
-yt F Qe (fu)
r+k , U
cer [l sy [t

t

[

Inverse theorem for derivatives.
Set || = max{neZ: n <o}

Theorem 12. Let1<p <, peA,, reN and f e LP (odx). If

0

Z Vi Ay (f),, <0

v=0
holds for some k € N, then f*) e L (odz) and

lo] 0

Q, (f(k), l);;,g <Gy <% Z (v+ 1)T+k_1AV/2(f)p,@ + Z Vk_lAV/Q(f)p,9>

g v=0 v=|o|+1
(26)
with Cs = 227 +1C,.
Proof. Let g, be an exponential-type entire function of degree < o, be-
longing to C(R), as the best approximation of f € C(R). For natural

numbers p < k, consider the series g(p )+ ook ggs)ﬂ - ggi)}. Using Bern-
stein’s inequality and assuming 2" < o < 2", we get

||92(u+1> 99 ey < 2047 | gavii-garlery < 2P Ap (f)eqmy-
Now, by the following estimation:

v

2050 g (Flewy <27 3, 17 Au(fewy,

p=2v-1+1

we have

o0 o0
19 + > 1o — 68 ey < 197 ey + D 19 — 98 ey <
v=0 v=0
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e}
<P lery +2 . 207 Ap (fem <
v=0

2’/
<9 ey + 27 Av(femy +22p+1 DT A(fem) <

=2v—141

<ot lewy + 27 Av(f)eqmy + 2% Z PP AL(em) < o
pn=2

Denote the partial sum of the above series by SP for p=0,1,2,... k;
then the sequence of S converge in the norm of C(R). So, for p = k,
one can write

Qr(f(k)al) < Qr(f(k) _Sgﬂ)l) +QT<Sy(Lk)7l> = Il +[2-
0/C(R) C(R) (R)

o o/c
Let us deal with the first item I;. By boundedness of T}, and the Bernstein
inequality, we obtain

1
Q, <f k) _ (k). —> <2f P - emy = 27
o/CR)

n

0
k
g — g }H
v=n+1

0 0 v

<27 YT 2R A (femy <27 )] {2% 2 T AU )e >} S

v=n+1 v=n+1 p=2v-141

o o
< 22k+r+1 Z /J/kilA#(f)C(R) < 22k+r+1 2 NkilA;L(f)C(Ry

=241 p=lo]+1

Next, let us estimate I5.

1 1 1
0 (501) 0 <0 1) 0 - S0 68 00).
" g /em) NG ) emy +Z g2+ — 9 C(R)

Hence,

1 1 n
(k) (k+r) (k-‘rr) L (k1) (k+r)
Q, <S )c(R) p || ler) + — VZ_;)QQVH g5 ey <
1 n 2v

O—’I“

{QAO(f)C(R) + Ai(flew) + Z 22(k ) 2 #kAu(f)C(R)} <
v=1

p=2v-1+1
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2 (& 2 (
< ;{ Z(N + 1)kAu(f)C(R)} < ;{ D+ 1)kA,u(f)C(R)}-
p=0 =0

Since 2" < o < 2"*!, the inequalities imply
(s 1) <
"o/cR)
lo]

r 1 r+k—
< 92+ +1<UTZ(V+1) +k 1A R+ Z - 1A )>'

v=0

Now we use A, (Ff)e gy < A2 (f),, and Theorem 3 to obtain (26). [J
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