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ON THE MUTUAL MULTIFRACTAL ANALYSIS FOR
SOME NON-REGULAR MORAN MEASURES

Abstract. In this paper, we study the mutual multifractal Haus-
dorff dimension and the packing dimension of level sets K (a, ) for
some non-regular Moran measures satisfying the so-called Strong
Separation Condition. We obtain sufficient conditions for the valid
multifractal formalisms of such measures and discuss examples.
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1. Introduction. Recently, the issue of using the methods of fractal
geometry to compare the distributions of various probability measures has
been actively discussed (see for example [17], [18], [21], [23]). However,
in practical applications, the comparison of distributions of measures can
be difficult. Often, different distributions of measures can give subtle
or indistinguishable differences in the spectra. To solve this problem,
various new methods for direct comparison of distributions are proposed.
One such method is the mixed or mutual multifractal analysis [17], [18§],
[21], [23], which allows to better understand the local geometry of fractal
measures and the simultaneous scale behavior of multiple measures.

The mixed multifractal analysis is a natural extension of the multi-
fractal analysis of single objects, such as measures, functions, statistical
data, distributions, etc. It has been developed quite recently from a purely
mathematical point of view. In physics, and statistics, it was appearing
in different forms, but not really, and strongly linked to the mathema-
tical theory (see [12]). In some applications, such as clustering topics,
each attribute in a data sample may be described by more than one type
of measure. This leads researchers to apply measures well adapted for
mixed-type data as [12|. Mixed multifractal analysis has been applied in

(©) Petrozavodsk State University, 2023

[G) ev-rc |


http://creativecommons.org/licenses/by/4.0/

On the mutual multifractal analysis. . . 47

explaining joint movements in volatility for asset markets, such as joint
multifractal Markov-switching models.

The mixed multifractal analysis is not really new in financial series
processing. It has been, in contrast, merged under the name of multivari-
ate multifractal analysis, where many situations in financial markets and
their volatility have been described. Multivariate models have been also
applied for long memory with mixture distributions [14], [15]. Multifractal
analysis of measures for the so-called mixed logical dynamical models to
the classification of signals, especially network traffic, is developed in [13].
These models are widely applied in the control of hybrid systems, such as
multiserver ones.

Many authors were interested in studying the properties of mutual
multifractal dimensions and spectra and establishing connections between
them. More about the use of mixed multifractal analysis/formalism of
measures, as well as functions and time series or images is developed in
(1], [3], [4], [5], [6], [8], 9], [22], [24], [25], [26] and the references therein.
The inverse problem of the mixed multifractal formalism and interesting
examples are developed in [19].

From a mathematical point of view, Moran sets are generalizations of
the classical self-similar objects, characterized by arbitrary basic sets in
each step of construction. Moreover, the associated similarities at each
step have also different rations from their predecessors. Moran’s con-
struction permits zero value for the lower limit of the contraction ratios
(see |28]). Moran structures are also met in geography. Spatial autocorre-
lation in geographic information systems is based on the degree to which
one object is similar to other nearby objects. Geographers call this concept
Moran Index measures for spatial autocorrelation. Although the concept
is defined independently in geography, it uses the similar idea of subdivid-
ing maps into Moran sets based on the axiom stating that everything is
related to everything else, but near things are more related than distant
things, see for example [2] and the references therein. More backgrounds
and information on the applications may be found in [11], [20].

For given two compactly supported Borel probability measures 1 and
v on R™ and for a, 8 > 0, we consider the set

K(a, B) = {x € F; lim log (M(BT(J:))) = « and lim log (V(Br(x))) = 5},

r—0 log r r—0 log r

where £ = suppp n suppv and B,.(z) is the closed ball with center z
and radius r. That is, we will be interested in the set of points for which
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the local dimensions of u(B,(z)) and v(B,(x)) simultaneously describe the
power-law behavior of the measures at a small radius . The main problem
is to estimate the size of this set. For some «, 5, the mutual Hausdorff and
packing dimensions of these sets K («, ) have a close connection with the
Legendre transform of some function 7(q,t) associated with measures p
and v. The purpose of this work is to obtain conditions for the valid and
non-valid multifractal formalism for some non-regular Moran measures.

2. Preliminaries. Before detailing our results, let us recall the
mutual multifractal formalism introduced by Svetova [25]. Let u and v
be two Borel probability measures on R™ with the same compact supports
supp ¢ = supp v. For (q,t,s) € R* and § > 0, we introduce

HE(E) = inf { 3 (B, ()0 (B, () 2

where the infimum is taken over all centered d-coverings of £ < R™. The
mutual Hausdorfl measure is defined as follows:

My yo(B) = sup MU 5(E), and  HE G (E) = sup Hjy )y (F).
5>0 FCE

We make the dual definitions

P 5B —mﬂZﬂrwz V(B (z:))'(2r)*,

where the supremum is taken over all the centered d-packings of £ < R"™.
We define the mutual packing as follows:

qt,s q,t,s q,t,s — qts
Piuo(B) = nf Prus(E), and Phye(E) EgbeP  (E).

It holds, as for the case of the multifractal analysis of a single measure, that
each of the measures H ' b5 and Py s assigns a multifractal dimension to
each subset E of R". T hey are respectlvely denoted by

dim%’ (E) = sup {s: HL,*(E) = oo} = inf {s: HEL(E) = =0},
and

Dim{ ' (E) = sup {s: PI';*(E) = o} = inf {s: PI';*(E) = 0} .
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Now, we define the multifractal function b, ,, B, ,: R* — [—00,+0] as

follows:

H, v

b v(q,t) = dimf (supp ), and By, (g,t) = Dim{’, (supp p1).
We denote by P(R™) the set of Borel probability measures on R"”. A mea-
sure p € P(R™) with support supp p is said to satisfy the doubling condi-

tion if
By
P(a, 1) = limsup < sup M) < o0,
N0 TESUPP W /JJ(BT(QT))

for all @ > 1. Denote by Pp(R™) the family of Borel probability measures
on R" that satisfy the doubling condition.

Let {ng}r>1 be a sequence of positive integers. Define Dy = ¥, for
any integer k =1, set Dy, p={(imims+1..-9);1 < i; < nj, m <j < k},
and Dy = Dy . Define D = |JDy. If 0 = (01...0%) € Dy, and

k>0
T=(T...Tm) € Dy, then 0«7 = (01...0k71 ... Tin) € Diyn. 1 < Kk,

then o|l = (01...0;). Suppose J is a closed interval of length 1.

Definition 1. [30], [31] The collection Q2 = {J,,0 € D} of closed subin-
tervals of J is called having the Moran structure, if it satisfies the following
conditions:

(i) Jg = J;

(ii) For all k > 0 and 0 € Dy, Jys1, ..., Joxn,,, are subintervals of J,,
and satisty int(Jy4;) N int(Jyy;) = & for i # j, where int(A) denotes the
interior of the set A;
| Jorss]

| Jo]

(iii) For any k > 1 and 0 € Dy_1, 1 < j < ny, = ¢y;, where |A|

denotes the diameter of A.

Suppose that €2 is a collection of closed subintervals of J having the
Moran structure, set

Ey= ) Jo, and E=()E.

UGDk ]{220

It is clear that E is a nonempty set. The set F = E(Q) i s called the
Moran set associated with the collection 2.

Let Qi = {J,;0 € Dy}; obviously, Q@ = | €. The elements of €, are
k>0
called the basic elements of order k£ of the Moran set F, and the elements
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of Q) are called the basic elements of the Moran set E. Further we will

assume that lim sup |.J,| = 0.
k—o0 ogeDy,

Suppose, for any integer k > 1, any o € Dy, and for 1 < j < ngyq, the
(k + 1)-order basic element J,,; < J,. Let

diSt(JU*Z‘, Jg*j)
| o]

> Ay,

for all 7 # j, where dist(A, B) ;== inf dist(z,y) for any two sets A and

reA,yeB

B, and dist(z,y) is the Euclidean distance between the points x and y.
Denote A := inf Ay.

k>1
Definition 2. We say that the Moran set E satisfies the Strong Separa-
tion Condition (SSC) if A > 0.
Now, we define two probability measures on the Moran set F. For
k=1, let p={prj}j=i, D= {Prj};2, be two positive probability vectors,
i.e.,

Ng N
pri >0, P >0, Dipy =1, and > j; =1
=1 =1

For ¢ € Dy, k > 1, we define u(Jy) = DioyP2os---Pho, and
v(J5) = Pro, P20y - - - Dkoy,- 1t is obvious that supp i = supp v. The measures
w1 and v are defined on one set £ = supp p = supp v. Denote

Pmin = min{pij}: Pmax = maX{pij} for 1 < .7 g nkal g l g k?

~

Pmin = MiN{P;;}, Pmax = max{p;;} for 1 <j <my, 1 <@ <k,
<J< <

J
Cmin = Min{c;;}, Cmax = max{c;} for 1 <j<ny,1<i<k.

3. The main result. Let p, v be two compactly supported Borel
probability measures on R™. For o, 8 > 0, let
log (V(BT(ZL‘))) @}

_log (u(B:(2))) .
K(a. ) = {x, }«lgtl) logr = @, and }“E% logr B

We are interested in the estimation of the Hausdorff and packing dimension
of K(«, (). Let us mention that in the last decade there has been a
great interest for the multifractal analysis and positive results have been
obtained for various situations (see, for example, [16], [29], [31]). The
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authors in [8], [9] prove the result of Theorem 3 in [25] under less restrictive
assumptions, as follows:

Theorem 1. Let pu,v be two compactly supported Borel probability
measures on R™. Suppose that B, , is differentiable at (¢,t) and set

a = _‘?B“é—”q(q’t) and 3 = —aB“T”t(q’t). Assume that

HZ,}L,B;L,V(QJ) ( supp g M supp I/) > 0.

Then we have

dimp (K (a, 8)) = dimp(K(e, 8)) = B, (o, 5) = b, ,(a, 5),

where f*(a, B) = intf (aq + Bt + f(a, 6)) denotes the Legendre transform
q,

of the function f. Here dimy and dimp denote the Hausdorff and packing
dimensions (see [16] for the definitions), and in this case we say that the
mutual multifractal formalism is valid.

Let us define the function 74(q, t) as the only solution to the equation

ST ()t () |0 = 1, (1)

O’GDk

Using (1), the theorem of implicit differentiation shows that 7 is partially
differentiable with respect to all variables. It is clear that if u(J,) # |J,|™
and v(J,) # |J,|™, where s;, satisfies >, ¢ = 1, then 75(q, t) is strictly

(e
(J'ED)C

convex for (g,t) € R% Define now the following functions:

7(q,t) = iminf 7,(q,t), T(q,t) =limsup7x(q,t), 7(q,t) = lim 73(q,1).
k—o0 k—s00 k—0o0

We can now state the main result of the paper. Explicit formulas for
the mutual multifractal dimensions of the level sets K(«, ), for which
the classical formalism does not hold, are given by obtaining some new
sufficient conditions (which are different from the ones in Theorem 1)
for the non-validity of the mutual multifractal formalism of non-regular
Moran measures, i.e., the case for which the multifractal functions b, ,
and B,,, do not necessarily coincide (see Figure 2). Our main theorem
generalizes the main results of 7], [29], [30], [31] (by taking (¢ = O or
t=0)and ¢ =t=0).

Theorem 2. Assume that A > 0, and let (¢,t) € R®. Let pu,v be two
non-regular Moran measures on the Moran set F.
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1) Suppose that (%‘é’t), %) exists, and

lilgn inf 1 (J) v (J) 5% > 0, for all (¢,t) € R
—00
O’EDk

If (o, ) = — (%“ %) then dimy (K (o, ) =%, (@, B) = *(av, ).

2) Suppose that <%§’t), @) exists, and

lim sup Z ) J,7@D >0, for all (q,t) € R

k—o0 UGDk

If (o, 5):-(@3”,%;?) then, dim p (K (o, ) = B, (,8) =7* (v, ).

3) Suppose that 7(q,t) and <%§’t),%> exist, and inequality

7(q,t) < § + (g, 1) is true for some constant ¢ > 0, and all k > 1
If (a, B) = — <azsq’t), aT(qt ) then,

oq

dimy (K(a, 8)) = dimp(K(a, 8)) = b;, ,(a, B) = By, (a, B) = 7"(ax, ).

Remark.

1) Our results hold naturally when replacing the interval J by a com-
pact subset (denoted also J) of R" with int(J) =

)
2) If there exists a family of similitudes {Sy;: k > 1,1 < j < ny} with

Jg = SU(J> = 31’010527(,20' : 'OSkpk(J), for o = (0’1, ce ,O'k) € Dk,

then the corresponding Moran set E = ﬂ U J, is called a general-

ized self-similar set, which is a generahzamon of the self-similar sets,
and the Moran measure is an extension of the self-similar measure.
This implies that our main results hold for the self-similar sets and
measures.

3) For v > 0, we consider the following fractal set:

log (1(B:(x)))
E(v) = {x € Supp i N supp v; h_I)I(l) tog, (v(B, (2)) = 7}.
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Denote R, x R*% := [0, + 0[x]0, + co[. It is clear that

U K(a,B) < E(v).
(ayﬁ)ER‘FXRj)
5=

The union is composed of an uncountable number of pairwise dis-
joint nonempty sets. Theorems 1 and 2 show that, surprisingly, the
Hausdorff and packing dimensions of £(~y) are fully carried by some
subset K (a, ). Also, our main results give an optimal lower bound
of the Hausdorff and packing dimensions of (7).

4. Examples. In this section, we illustrate our main results with two
examples.
Example 1. Let I = [0,1], ny = 2, and ¢; = %, for all K > 1. The set F
is the middle—% Cantor set, and p and v are two Bernoulli measures, such
that y = v, with p:= P} = P? and p:= P} = P?. Then, for (¢q,t) € R?
we have:

log (pa*" + p*)
b, (q,t) = B,,(q,t) = 7(q,t) =
w(q,t) w(q,t) = 7(q,1) g5

Y

and
or(gt)  0dt(q,t)  p'logp + p*'logp

dg ot (prtt+prtt)logh

Now, it follows from Theorem 2 that

dimy (K (o, 8)) = dimp(K (o, 8)) = 7%(a, B),

for (a, B) = — (%‘;’t), %) . Figure 1 shows the plots of the multifractal

functions 7 and 7*.

Example 2. Let (Sk)xr be a sequence of integers, such that
S1 =1, So =3, and Sky1 =25k, Vk = 2.

Define the family of parameters n;, ¢;, and p; ., as follows:

3, if Sop—1 <1 < Sop,
ny = 2, n; =

2,if Sy, <1 < Sopyt,
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Figure 1: The plots of the functions 7 and 7*.

and

if Sop—1 <@ < Sy,

1=, ¢ =

Q| —

1

7

£, 1 Sop < < Sopsr-

Let (pam)2,—1 and (ppm)2,_; be two probability vectors. We define
Pim = Pam, for all 1 <m < 27

and

Poms i Sop—1 <4 < Sy, 1<m <3,
Pim =
<m <2

Pam, i Sop <1< Sopyq, 1

Let Nj, be the number of integers ¢ < k, such that p; ,, = psm; then

Wl o

N, 1 N
liminf =% = = and lim sup R

Now, let 1 and v be two Moran measures, with ¢ = v, which are generated
by (pim). For (q,t) € R?, we get

%log< Z pq“) (1 — 7’“) log( ) p“t)

) = (1 — Tk) log 7

%10g5—|—

Let

élog( Z pq”) + %109;( ) p"“)

t = 9
(a.1) %10g5+ Zlog 7
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Figure 2: The plots of the functions 7 and 7.

and
§log( Z pq“) + élog( ) p"“)

2 1

O(q,t) =

Observing that the assumptions of Theorem 2 are satisfied, we obtain

r(q.t) = min{6(q.), 3lg.t)} and T(g,t) = max{o(q.1), d(g.0)}.
Figure 2 shows the plots of the functions 7 and 7.

4. Proof of the main result. Suppose that the set F is a Moran set
associated with the collection 2. Let p and v be two non-regular Moran
measures supported by the set £. We start with the following interesting
intermediate results.

Proposition 1. Let A >0,0<r <A, anda > 1. Forx e J,, 0 € D,
we find kI € N, such that ]Jo|k] < r < |Jop-1]| and
AlJoy| < ar < AlJyp—1|. Then 0 < k —1 < M, where M is a posi-
tive constant.

Proof. Since 0 < A < 1 and a > 1, we have: ol < % Then

A|Jc7\l|
||{,“"’;|‘ < 1. Therefore |Jy k| < |Jop|, which implies & > I. As k > [, the
mequahty r < |Jok—1| can be rewritten as
r< |Ja|l 1a(ll+1,. | |Ja|l 1] -c
We have i .
|Jo|k 1‘ |‘]0'|l’ “Craz Cmiaacil

A|J0'|l| S A|Jz7\l—1| h A
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Then, - < =% and k — [ < P +1=M.
a A log ¢max

Proposition 2. [10] If A > 0, then p,v € Pp(F).

Proposition 3. For any x € E, and small r > 0, we can find o € D,
k,l € N. There are some constants A;(q,t), Aa(q,t), Bi(q,t), and By(q,1)
for (q,t) € R?, such that

Ar(q (o) v (o))" < p( By () (Br (2))" < Aa(q, ) Top) v (o),

and
Bi(q, )il Tope) W (Jopp)" < p(Br(2)) (B, (2))" < Ba(g, ) (o) v (Jopk)"-

Proof. Fix x € £ and r > 0. We can find o € D,,, such that x € J,, and in-

tegers k, | € N, such that || < r < |[Jyp-1], and

AlJyu| <7 < AlJyu—1|. Notice that J,, < B,(x) and E n B,.(x) < J,.
Let us estimate u(B,(z))v (B, (z))" for different ¢ and ¢.

1) Suppose ¢,t < 0. By Proposition 1, we have, for M > k —[:

MJo)i) YV Joll) S U Dr(T)) V Dp(T X M Jolk) VYV Jolk) =
(Joi) v (o) < p(Br(2))70( By ()" < pu(Jow) v (Jop)'
= (p101p202 .. 'pkak)q(ﬁlo'1ﬁ20'2 .- 'ﬁkzak)t =
= <p101p202 .. 'plalpl+lal+1 o -pkak)q<]5101]3202 .. 'ﬁlalﬁl+lal+1 o -ﬁkak)t <

<P DD () W (o)t < MM (o) (o).

2) For ¢,t > 0:

(o) (T = Lo (B ()

1
< e B () "B ()
1 1
< 5 o B (@) W(Br(2))' <~ (o) v (o)

pmin min pmin min

N

/N

3) For ¢ <0,t>0:
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W) () < u(&(x»q%ww))t <
< ,f((fj'gtu(&( DB @) € B (2) (B () <
< L) (B, ) < L))

1 o
FL(Joll)qV<Ja\l)t < TqM(BT(x»qV(BT(x))t < Mq M(Jall)qV(JUIIY-

Combining all these cases, we get

Ar(q (o) V(o) < p( By ()0 (Br(2))" < Aa(q, ) Jop) (o),

where
fl, q,t <0, (pﬁiﬁﬂfi;, q,t <0,
Mq ~Mt
Pmin Pmins gt = 07 1; q,t = 0,
Al(Qat) = A _ AQ(q> t) = A M
p%lil’ q < Oat Z 07 pmi%, q < O,t = 0,
kp]\mﬁy q=0,t<0, kﬁff{;, g>0,t<0.

Similar arguments give

BI(Q»t)N(JUIk>qV<JU\k)t < M(Br<x>)qV(Br(x))t < By(q, t)N(JUIk)qV(JU\k)tv

where
( 1 (
M—, q’t < 07 17 q)t < O’
pmi(r]1~]\m/[ii1 1
—ie o 6t =0,
L ¢t >0, I T
Bl(Q7t) = 1 BZ(Qat) = 3 1
Tg, q<0,t>0, W’ q<0,t>0,
1 1
Mt Q>07t<07 Mg q>0,t<0
\pmin \pmin
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For (q,t,s) € R3, we denote

I FIN q t s FANEE q t s
h=liminf > (L)W ( o) [Jol*, and h=limsup > p(Jo) 0 (Jo)!Jol*.

oeD,, n—ow oeD,,

Proposition 4. If A > 0, there exists a constant ¢ > 0, such that, for
any (g.t,s) € R,
-h < 7—[‘”5( ) < h.

<
Proof. It is not hard to see that H%,*(E) < h. If h e (0, +0), there is a
sufficiently large number n, such that

DIICARIEALPAEE S

oeD,

Let § > 0 and {B,,(z;)} be a centered 6- covering of E. For any i € N, we
choose o(i) € D,,, n > 1, such that x; € J,(;). For any i € N, let k;,l; € N
be such that

‘Jg(i)‘ki’ < < ‘Jg(mki,l‘, and A‘J | < A‘J o ,1‘
If s = O, then |Jg(i)‘li I (%)S
Let s < 0. Since |Ja(i)\ll = CminJU(i)Ui—l = Cmin%; then |Jg(i)|li|8 <
7:)*  Thus
Chin (%) - Thus,
1 s>0
J i K<>,Where Ky=<" ’
[ownl” < Ko | 5 ‘ {ciﬁm s < 0.

There exists a probability measure x,, supported on F, such that

1(Jo) "V (Jo(i) | o]
Yo 1la@) (o) 1o

€D)g(s)]

Xq,t,s (Ja(z) ) =

Obviously, xqts(E) = ZXq,t,s(Jo(i)) =1

For a Moran set F and (g¢,t,s) € R?, we have, by using Proposition 3,

Xq,ts Zths i xz Zths o(7) =
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V(o) 1ol

_Z Z < ()|

<3 Z 1(To o)V (Jotiyit)' | Ty 1s]°

2K, 1
0 Let ¢ = —, hence,

where K = ————.
(2A)SA1<QJt) K

ch = chxgs(B) < Hy5(E) < Hpyo(B) < HES(E).
Let h = +o0. For any € > 0, there is a sufficiently large n, such that

IRIEALYEALPALERS

oeD,,

Then, for § = d(n) > 0 and a centered d-covering {B,,(z;)} of the Moran
set F, we have

Xq,t,s(E) < ZXq,t,s(Bri (xz)) < Z Xq,t,s(‘]g(i)ﬂi) =

Blo(@)|li]=n

o)V (o) | Joiil* _ €K o
= < ((Br () v (By, (i) (2r:)°.
Z 2 J) (o) ol 2 -
oeD,
Then
’Hf],t,s E >qu7t,8 qutS 2 E) = 2
jT8% ( )/ u,l/,O( ) MV5( ) gKX(Lt,S( >_ cK

Therefore, H%*(E) = +o0. [
Proposition 5. Let A > 0.

1) If 0 < h < +oo, there are some constants A, B, such that
Ah < 73‘1“( ) < Bh.
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2) If h =0, then, P43 (E) = 0.
3) If h = o0, then, P45 (E) = +oo.
Proof. B
1) Since h > 0, we can find n, such that
t s B
PINICALZOAUNAREE)

oeD,

Let 0 > 0, for 0 € D, take T € D,,, such that |Jy. | < 9, and Jyer < J,.
Let z € E N Jyur. Let 0 <7 < 1, such that J, contains a ball B,«(x) of
radius 7* = 7|Jy4r|/2. The collection of balls {B,«(z)} is a §-packing of
E. Thus,

(Cmin) ™o | < |Joar| < (Cmax) ™ol
(Puin) " 1(J5) < p1(Tser) < (Pmax) ™ 1), (2)
(Prmin) "V (o) < V(Josr) < (Punax) "V (o )-

For any (q,t,s) € R3, we get

N(JG'*T>q 2 klM(Jo)q7 V(JU*T) kQV( ) |JO'*T’ k3|Ja|S-

Then
D 1 Jowr) W (Towe) [our|” > kikaks > (o)W (Jo) | Jo|* = AR
oeD, oeD,,

where A = kikyks/2. This implies that P?L*(E) > Ah. On the other
hand, since h > 0, there is a sufficiently large n, such that

Z p(Jo) W (o) Jo|* < 2h.

oeD,,

Let § > 0, and {B,,(x;)} be a centered d-packing of the Moran set E. For
i € N, we can choose (i) € D, such that x; € J,,. We can found k;,[; € N,
such that

| Jo(ik:] < 70 < |Jog@yki—1], and  |Jopn| < i < [Jo@y-1]-
If s <0, then (2r;)° < 2°|Jy()k,|°, if s > 0. Hence,
S S S 28 S
(2r:)° < 2o/ < S 1ol

min
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Therefore,

) . 28, s <0,
(2r:)* < C(8)[Jo iy, |*, where C(s) = {( 2)° 50,

Cmin

(3)

There exists a probability measure x, ., supported on £, for which,

#Jo@) Vo) 1o
D o) (o) | oo

€D|o(3)|

Xait,s(Jo(i) =

By Proposition 3 and (3), for (¢,t,s) € R?, we get
D (B, ()W (By, () (2r:)° <
By(qt)C(s) > 1otV (Joti) | Toiyi|* =

oeDy,,
M(Ja(i”ki)qy(‘]o(i)\ki)t|Ja(i)|k1 5 .
:Bq,tC’s /JJJquJg Jcrs<
2( ) ( ); Z M(Ja)qV(Ja)t|J0|s UEZD:ki ( ) ( ) ’ ‘

O'EDk

< 232 Q7 hZths 2B2 q> hZths T xz

N\

= 2By(q,t)C(s) th7t75<UB7"i x;) ) < QBg(q,t)C'(s)E.

Hence, it follows that P24*(E) < PEU4(E) < Bh, where B = 2Bs(q,t)C(s).
2) Let h = 0. Then, for any € > 0, there is a sufficiently large n, such that

S ) () ol < e

oeD,,

Let 6 > 0, and {B,,(x;)} be a centered d-packing of E. Then, for i € N,
we can choose 0 (i) € D, z; € J,;), and k;,l; € N, such that

| Jo(i

<1 < | olk—1], and  Aldsayn] <1 < Aldsg-1]-

Then, Ja(i)|ki € B,.(x;), and E n B,,(z;) < Ja(i)”i_ If s < 0, then
(2r;)° < 2°| 5k, |- If s > 0, then

25

(2r:)° < 2°[Jo(ip 1] < | ooyl |-

min



62 B. Selmi, N. Yu. Svetova

Therefore, (2r;)* < C(S)’JU(i)Ik
By Proposition 3,

1(By, (x:)) (B, (2:))" < Bolq,t) 1t(Joiyir,) v (oiyi,)'-
Then,
Zu(Bn () w(By, () (2r:)° <
s)Ba(q:t) ZM o)V (Jo i)' [ o i
p(J Jo@k:) | To (i)
Z Z ) v(Jy)' IJal

< <C(s)Bala,) Zx%t(Ja@m < =C(5) Bl 1) Y Xaa (B 1)) <

A CXOALNATES

UEDki

< EC(S)BQ((Lt)Xq,t(UBTi(xi)> < EC(S)BQ(% t)

Since ¢ is small enough, then P5*(E) = 0.
3) Since h = 40, then, for any £ > 0, we can find an infinite number of

integers n with
1
D o) v () ol > = (4)
€
oeD,
Now, take any open set U intersecting F; it contains a basic interval, say
Jo, for o9 € D,,. For any o € Dy, T € Dyy1,4, it follows from the definitions

of 1 and v that

1) ne) () e T T el

% (Ja*~r> % (JO'()*T) v (Jo*‘r) v (Jao*‘r> nd |Ja*~r’ . ’JO‘Q*T‘

Combining with (4), we get

Z 1 (Jogur) v (Jcro*T)t | Jogsr|® =

UGDk+1,n

D 1 (Jo) v (Joo)" 1 (Josr) "V (Josr)' [ |* Jorar |
0€Dp11n N( ) (']dt|']a|s

=



On the mutual multifractal analysis. . . 63

p (Joy ) (00) |Jao\

Z v (Jo) | )"

By using a similar argument as in the proof of the assertion above, and
(2), we learn that there are three positive constants ky, ks and k3, such
that, as e — 0

1t (Joo) v (o, )|Jao|
N(JU) (Ja |J|

1
€

k1k2k3,u (J ) ( )t |J00| ]{?1]{?2]63

2¢e Z |J K 2e

O'E[))€

P (End,,) >

w150

Xaq.t,s (Joo) — +0.

This gives:
PLWEANU) = PrA(E 1) = +0.

, w,v,0

Using techniques as in [27, Theorem 2|, we obtain P1%*(E) = +o0. []
Proposition 6. Let A > 0. For (q,t,s) € R3, we have:

My (B) <Py (EB).

Proof. By Proposition 2, the measures p and v satisfy the doubling con-
dition. Therefore, the required inequality follows from |23, Theorem 1]. []

Proposition 7. Assume that A > 0. We have:

buv(q,t) = 7(q,t), and B,,(q,t) =7(q,t).

Proof. We will prove the first assertion. The proof of the second assertion
is very similar and is therefore omitted. Let s < 7(gq,t). We can find
ko € N, such that for any k > ko we get s < 1(q,t). This gives:

Z 1w (Je) v (T T, > Z 1 (T v ()T, = 1.

O'E[)]C O'EDk

Then
lim inf 1 (J) v (I, > 0.

k—+o0
- O’EDk

By using Proposition 4, we have ’H‘”S( ) > 0, for all s < 7(q,t), which
implies that b,,(¢,t) > 7(q,t).

Now fix s > 7(g¢,t). We can find a sequence (k;);, such that 7y, (¢,t) < s
for any sufficiently large 7. Let F' < E, and o € Dy, such that F'nJ, # ;
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then we can choose ;€ FnJ,(z;). This shows that (B, () (xl))l is a cent-
ered (Cpax)"-covering of F. By Proposition 2, and BA|JG‘U_‘(ZL‘Z‘) NnEcJ,,
for all 0 € Dy,, we can choose positive constants Py(A) > 0 and P;(A) > 0,

such that (B ( )) (B ( ))
P By ()| (Zi HA BT (i) \ Li o (A
p(Jo(2:)) ) (Bajg, () (%)) <Pl
and
V(BIJa(xi)\(xi)) < V(BIJG(%‘)\(:CZ')) < Pi(A).

v(Jolz:)) " v(Balg, ()
Then there is a constant C(q,t,s) > 0 with

21 (Bl (0) W (B, (1)) (2 o (2)])” <
< Clat8) Y (o) ' (o)) | o ()] <
<Clgts) Y n(Jo) v (o) |,]° <

UEDk,L-

<Clatys) D) nlo) v () [Jo]™4 = Clg, 1, 5).

UEDk,L-

We now deduce that ”HZ';SO(F) < C(g;t,8), and HEL*(E) < +oo, for all
s > 7(q,t). Finally, we conclude that b, ,(q,t) < 7(g,t). O

Proposition 8. Assume that A > 0, (aTaZ H alé%”) exists, and that

liininf 1 (J) v (J)E |2 %) > 0, for all (¢,t) € R
—00
O'EDk

It (o, ) = — <az£q,t)’ ar(qt ) then Hqtf(qt (K(a,8)) > 0

oq

Proof. By using Proposition 4, we have

HELTOD(E) > Aliminf > p ()7 v (J,) | J7*) > 0.
) k—00

UGDk

Now, for a = (a, ) € R?, consider the following sets:

1 B, 1 B,
F, = {x; lim sup o8 (,u( <x)>) > o, or lim sup o8 (V( (ac)))
r—0 logr 0 logr

> 8},
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Fl = {:1:; lim inf log (M(BT(I») < «, or liminf log (V<Br<x>)) < 5},
r—0 IOgT’ r—0 IOgT’

F? = {x; lim sup log (M(Br(x))) > o, or liminf log (V(Br(x))) < ,6},
* 0 log r r—0 log r

and
1 1

F3 = {x; lim inf o8 (MBT(@)) < «, or limsup o8 (V(Br(x))) > 5}

« r—0 log r r—0 log r

The o-subadditivity of the mutual Hausdorff measure allows this:

0t(q,t 0t(q,t
Hz’,ﬁz(q’t)(Fa) = 0, for every a > — (] ), and § > — (] ), (5)
0q ot
07 (gt 0t(q,t
HZ’ﬁ,’I(q’t)(Fé) = 0, for every a < —M, and § < —M, (6)
oq ot
0T(q,t oT(q,t
HZ’ﬁ;z(q’t)(Fi) =0, for every a > — (g, ), and 8 < — (2, ), (7)
oq ot
and
0t(q,t 0t(q,t
HZ’zz(q’t)(Fi) =0, for every o < — (d ), and [ > —M. (8)
0q ot
The proof of (6)-(8) follows by using the same ideas as in the proof of
(5). So, we will prove (5). Let a > —%Z’t) and 3 > —%; then, there

is h > 0 with
7(q — ht) < 7(q,t) + ah, and 7(q,t — h) < (q,t) + Sh.
It follows from Proposition 4 that

.. q—h t 7(gt)+ah _
lim inf (o) T (o) o

= liminf w(Jy)tv (Ja)t*h ’Ja‘z(q,t)%h _0.

Let € > 0; there are a sequence (n(i)); and 7o € N, such that if i > ig, we
get
D) )Ty () [ 0 < e, ©)

O'EDn(i)
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and
Y1 n ) v (o) T 0 < e (10)

O'EDn(-)

We need to show that Hzt;oqt (F) =0, for any F c F,. Let 1€ F € F,

then there exists r, > 0 with u(B,, (7)) < r¢ or v(B,, (r)) < r?. We have

By, ()"0 (B, () (2r, )@ e,
1(By, (x))W(B,, (z))! (2r) "™ < { or
1(By, (2))0(B,, (x))! " (2, 0+,
(11)
If (Bx(2f)); and (B,#x(27*)); are, respectively, a centered d-covering of F°
and FE\F, then (B, (x;)); = <Brz<(a:?") U B (2" ))Z is a centered

7

d-covering of E. It follows from Proposition 3 and (3) that for all
(q,t,8) e R3:

ZM(Br;" (7)) (B, (27))"(2r7)* < Z#(Bn(ﬂfz'))q’/ (B, ()" (2r:)" <
klkzkszu in) (20)) v (Tome (20) | owime (@)1,

where ki,ko and k3 are suitable constants. Let K = kjkoks; using (9) and
(10), we have:

By @) By (7)) D)0 < K Y X hntany+an (Br, (@1),

7

D 1By (@) W (B (7)) (20 )T L e KY Xty +on(Bri (7).

%

It follows from (11) that
¢
M (F) < X (B (@) v (B (1) (2r)0 <

< 5KZ max (Xq*h7t,z(q,t)+ah (Br,(z:)) » Xq,t—h,7(q,t)+Bh (Brz(xl))) .

We deduce that

HZ:Z,IO(W)(F) <ek ZmaX(Xq—h,t,z(q,t)Jrah(Bn- (xi))an,t—h,z(qi)Jrﬁh (B, (zi))).

i
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Since (By,(z;)); is a centered d-covering of the set E, then by using
Besicovitch’s covering theorem, there exists & = £(n) finite sub-families
(Bry; (1)), - - -5 (Brg, (z¢5)); fulfilling the following: for eachie{1,2,... £},

3
the family (B, (;;)); is a 0-packing of E, and £ = U U B, (7). Which

i=1 j
implies that

Hthqt (F) g

,v,0
ek Z Z max <Xq—h7t,z(q,t)+ah (ij (xw)) 1Xq,t—h,z(q;t)+Bh <Bm (‘TU))> =
i=1 §
=ekK Zmax (Xq ht,7(g,t)+ah <U Br” xz])) Xq,t—h,r(q,t )+Bh (U B’r” Lij ))) <
=1

\5K§—>0 as € — 0,

which implies that H“Z(@ (F) =0, then, ’Hth o) (Fy)=0.0

,v,0

Proof of Theorem 2. By using the convexity and differentiability
of the function 7, we have

i) The function 7* is concave.

i)

{0 B |20, > o} = (- (ELL ZLOY) o)

aq+ Bt + 7(g,1), for (g,t) € B, (o, B) € (P22, =42 ) (R2),

—on, for (0,6) ¢ (250, =4a) ) (R2).

(12)
It follows now from [23], [24] that

HILTOD (K (@, ) < HIH+T0075 (K (o, B))
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for any 0 < 0 < ga + tf + 7(q,t). By Proposition 8, we get
ao+tB+7(q;t)=0 (K (a, B)) > 0,

and this gives
dimyg (K (o, 8)) = qa +t5 + 17(q,t) — 9, for any 0 <6 < ga+t5 + 7(q,t).
Letting 6 — 0 yields that

dimg (K(a, 8)) = qa + tB + 7(q, t). (13)
Now, by using [23], [24], and Proposition 7, we obtain

dimp (K (a, 8)) < qo + t8 + (g t). (14)
It follows from (12)—(14) that

dimy (K (a, ) = g + 8 + 7(q,t) = 7*(a, B).

The desired result follows immediately from Proposition 7.
The proof of the second statement is very identical to the proof of the
first. The third follows from the first and the second statements.
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