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STABILITY-PRESERVING PERTURBATION OF THE
MAXIMAL TERMS OF DIRICHLET SERIES

Abstract. We study stability of the maximal term of the Dirichlet
series with positive exponents, the sum of which is an entire func-
tion. This problem is of interest, because the Leont’ev formulas for
coefficients calculated using a biorthogonal system of functions play
the key role in obtaining asymptotic estimates for entire Dirichlet
series on various continua going to infinity (for example, curves).
This fact naturally leads to the need to study the behavior of the
logarithm of the maximum term also for the Hadamard composi-
tion of the corresponding Dirichlet series. For the wide class of
entire Dirichlet series determined by a convex growth majorant, we
establish a criterion for the equivalence of the logarithms of the
moduli of the original series and a modified Dirichlet series outside
some exceptional set.
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1. Introduction. The equivalence problem of logarithms of maximal
terms of entire Dirichlet series

∑︀
𝑛

𝑎𝑛𝑒
𝜆𝑛𝑠 and

∑︀
𝑛

𝑎𝑛𝑏𝑛𝑒
𝜆𝑛𝑠 (0 < 𝜆𝑛 ↑ ∞)

was first studied in [2]. This important property, called the stability of
the maximal term, turned out to be very useful for obtaining asymptotic
estimates of the sum of the Dirichlet series on curves going to infinity,
namely, for proving the well-known Polya conjecture (1929). Similar re-
search was later carried out for Dirichlet series of a given growth, for
example, of a finite Ritt order [3]. The key role in such research is played
by Borel–Nevanlinna type lemmas (see, for example, [2], [1]). However,
in the mentioned works [2], [3], a rather strong, although natural for the
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main problems considered there, restriction was required on the exponents
𝜆𝑛 of the Dirichlet series

lim
𝑛→∞

ln𝑛

ln𝜆𝑛
<∞. (1)

In other words, 𝜆𝑛 are zeros of some entire function of finite order.
Studying stability of the maximal term is also of interest by itself. In

this situation, as shown in [5], it is enough to assume that
∞∑︁
𝑛=1

1

𝑛𝜆𝑛
<∞ (2)

or (this is the same):
∞∫︁
1

ln𝑛(𝑡)

𝑡2
𝑑𝑡 <∞, 𝑛(𝑡) =

∑︁
𝜆𝑛⩽𝑡

1. (3)

It is clear that condition (2) is weaker than (1).
In this paper, we consider the entire Dirichlet series in the class 𝐷(Φ)

defined by some convex majorant Φ (we considered the dual class 𝐷(Φ)
in [1]). As in works [2]– [5], the stability criterion of the maximal term of
the Dirichlet series of class 𝐷(Φ) is proved in terms of the sequence {𝑏𝑛}.
In the situation we are considering here, the convergence of the series (2)
(of the integral (3)) is not assumed at all.

2. The Main Result. Let Λ = {𝜆𝑛} (0 < 𝜆𝑛 ↑ ∞) be a sequence,
such that

lim
𝑛→∞

ln𝑛

𝜆𝑛
= 0. (4)

We denote by 𝐷(Λ) the class of all functions 𝐹 that can be represented
by the Dirichlet series in the whole plane:

𝐹 (𝑠) =
∞∑︁
𝑛=1

𝑎𝑛𝑒
𝜆𝑛𝑠 (𝑠 = 𝜎 + 𝑖𝑡). (5)

By (4), if the series (5) converges in the whole plane, then it absolutely
converges in the plane and its sum 𝐹 is an entire function [4]. Denote
by 𝐿 the class of all continuous infinitely increasing positive functions on
ℝ+ = [0,∞). Let Φ be a convex function of class 𝐿, and let

𝐷𝑚(Φ) = {𝐹 ∈ 𝐷(Λ) : ∃ {𝜎𝑛}, 0 < 𝜎𝑛 ↑ ∞, ln𝑀(𝜎𝑛) ⩽ Φ(𝑚𝜎𝑛)} , 𝑚 ⩾ 1,
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where 𝑀(𝜎) = sup
|𝑡|<∞

|𝐹 (𝜎 + 𝑖𝑡)|. Set 𝐷(Φ) =
∞⋃︀
𝑚=1

𝐷𝑚(Φ).

Note that in [1] the class 𝐷(Φ) =
∞⋃︀
𝑚=1

𝐷𝑚(Φ), is considered, where

𝐷𝑚(Φ) = {𝐹 ∈ 𝐷(Λ) : ln𝑀(𝜎) ⩽ Φ(𝑚𝜎)} , 𝑚 ⩾ 1.

Together with the series (5), we consider the series

𝐹 *
𝑏 (𝑠) =

∞∑︁
𝑛=1

𝑎𝑛𝑏𝑛𝑒
𝜆𝑛𝑠, (6)

where the sequence 𝑏 = {𝑏𝑛} of complex numbers 𝑏𝑛 (𝑏𝑛 ̸= 0 for 𝑛 ⩾ 𝑁)
satisfies the condition

lim
𝑛→∞

|ln |𝑏𝑛||
𝜆𝑛

<∞. (7)

In this case, 𝐹 *
𝑏 ∈ 𝐷(Φ) if and only if 𝐹 ∈ 𝐷(Φ) (see below).

Let 𝐸 ⊂ [0,∞) be a Lebesgue measurable set. By the upper 𝐷𝐸 and
lower 𝑑𝐸 densities of the set 𝐸 we mean the quantities

𝐷𝐸 = lim
𝜎→∞

mes(𝐸 ∩ [0, 𝜎])

𝜎
, 𝑑𝐸 = lim

𝜎→∞

mes(𝐸 ∩ [0, 𝜎])

𝜎
.

In what follows, we assume that all exceptional sets 𝐸 ⊂ [0,∞) outside
of which asymptotic estimates will be obtained, are represented by the
unions of segments of the form [𝑎𝑛, 𝑎

′
𝑛], where

0 < 𝑎1 < 𝑎′1 ⩽ 𝑎2 < 𝑎′2 ⩽ . . . ⩽ 𝑎𝑛 < 𝑎′𝑛 ⩽ . . . .

Let 𝜙 be the inverse of Φ, such that

lim
𝑥→∞

𝜙(𝑥2)

𝜙(𝑥)
<∞. (8)

From (8) it follows that Φ ∈ 𝑀 , where 𝑀 is the class of convex func-
tions Φ, such that 𝑥Φ(𝑥) < Φ(𝐾𝑥) for 𝑥 ⩾ 𝑥0, where 𝐾 is some constant.
Indeed, due to (8) there exists a constant 𝐾 > 0, such that 𝜙(𝑡2) ⩽ 𝐾𝜙(𝑡),
and, hence, 𝑡2 ⩽ Φ(𝐾𝜙(𝑡)), 𝑡 ⩾ 0. Denoting 𝑥 = 𝜙(𝑡) and using the fact
that 𝑥 < Φ(𝑥) for 𝑥 ⩾ 𝑥0, we have: 𝑥Φ(𝑥) < Φ2(𝑥) ⩽ Φ(𝐾𝑥). So Φ ∈𝑀 .

We introduce the class of functions

𝑊 (𝜙) =

{︂
𝑤 ∈ 𝐿 :

√
𝑥 ⩽ 𝑤(𝑥), lim

𝑥→∞

𝑤(𝑥)

𝑥𝜙(𝑥)
= 0, lim

𝑥→∞

1

𝜙(𝑥)

𝑥∫︁
1

𝑤(𝑡)

𝑡2
𝑑𝑡 = 0

}︂
.
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We note that for any 𝜙 ∈ 𝐿 the function 𝑤(𝑥) =
√
𝑥 belongs to the class

𝑊 (𝜙) =

{︂
𝑤 ∈ 𝐿 :

√
𝑥 ⩽ 𝑤(𝑥), lim

𝑥→∞

1

𝜙(𝑥)

𝑥∫︁
1

𝑤(𝑡)

𝑡2
𝑑𝑡 = 0

}︂
.

Denote by 𝜇(𝜎) and 𝜇*
𝑏(𝜎) the maximal terms of the series (5) and (6),

respectively:

𝜇(𝜎) = max
𝑛⩾1

{︀
|𝑎𝑛| 𝑒𝜆𝑛𝜎

}︀
, 𝜇*

𝑏(𝜎) = max
𝑛⩾1

{︀
|𝑎𝑛| |𝑏𝑛| 𝑒𝜆𝑛𝜎

}︀
.

Let 𝑛(𝑡) =
∑︀
𝜆𝑛⩽𝑡

1 be the counting functions of the sequence Λ, and let 𝑛𝑙(𝑡)

be the least concave majorant of ln𝑛(𝑡). It is well defined because of the
condition (4).

We formulate the main result of the paper.

Theorem 1. Let {𝑏𝑛} be a sequence of complex numbers (𝑏𝑛 ̸= 0,
𝑛 ⩾ 𝑁), satisfying (7), and let Φ be a convex function of class 𝐿. We
assume that the inverse 𝜙 of Φ satisfies (8) and the function 𝑛𝑙(𝑡) satisfies

lim
𝑥→∞

1

𝜙(𝑥)

𝑥∫︁
1

𝑛𝑙(𝑡)

𝑡2
𝑑𝑡 = 0.

For any 𝐹 ∈ 𝐷(Φ) for 𝜎 → ∞, for the asymptotic equality

ln𝜇(𝜎) = (1 + 𝑜(1)) ln𝜇*
𝑏(𝜎), (9)

to be valid outside some set 𝐸 ⊂ [0,∞) of zero lower density, it is sufficient
and necessary that there exists a function 𝑤 ∈ 𝑊 (𝜙) such that

|ln |𝑏𝑛|| ⩽ 𝑤(𝜆𝑛) (𝑛 ⩾ 𝑁). (10)

In this theorem, the function 𝑛𝑙(𝑡) can be replaced by ln𝑛(𝑡). Proving
this statement requires a slightly different approach. Therefore, this case
will be considered in another paper.

3. Proof of Theorem 1.
The proof of theorem 1 is based on the following accessory statement:
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Theorem 2. Let Φ ∈ 𝐿, and the inverse 𝜙 of Φ satisfy (8). Let 𝑢(𝜎) be
a nondecreasing positive continuous function on [𝑟0,∞), moreover

lim
𝜎→∞

𝑢(𝜎) = ∞, lim
𝜎→∞

𝑢(𝜎)

lnΦ(𝜎)
<∞. (11)

Let {𝑥𝑛} be a sequence chosen so that

𝑢(𝑥𝑛) ⩽ 𝐶 lnΦ(𝑥𝑛), 0 < 𝐶 <∞.

Suppose that 𝑤 ∈ 𝑊 (𝜙). If 𝑣 = 𝑣(𝜎) is a solution to the equation

𝑤(𝑣) = 𝑒𝑢(𝜎), (12)

then, for the same sequence {𝑥𝑛} for 𝜎 → ∞ outside a set 𝐸 ⊂ [0,∞),

mes(𝐸 ∩ [0, 𝑥𝑛]) = 𝑜(𝜙(𝑣(𝑥𝑛))) + 4

𝑣(𝑥𝑛)∫︁
𝑣(𝑥1)

𝑤*(𝑡)

𝑡2
𝑑𝑡 = 𝑜(𝜙(𝑣(𝑥𝑛))), 𝑥𝑛 → ∞,

the following estimate holds:

𝑢
(︁
𝜎 +

𝑤(𝑣(𝜎))

𝑣(𝜎)

)︁
< 𝑢(𝜎) + 𝑜(1).

Here function 𝑤* is some function of class 𝑊 (𝜙), having a form
𝑤*(𝑡) = 𝛽(𝑡)𝑤(𝑡) (𝛽 ∈ 𝐿).

The theorem 2 is proved in the same way as the corresponding
Borel-Nevanlinna-type theorem from [1]. The difference is only in the
choice of the sequence {𝑥𝑛}. However, the theorem 2 needs proof.

Proof. There exists a function 𝑤*(𝑡) = 𝛽(𝑡)𝑤(𝑡), (0 < 𝛽(𝑡) ↑ ∞, 𝑡 → ∞)
of class 𝑊 (𝜙), satisfying the condition of theorem.

We show that

𝑢
(︁
𝜎 +

𝑤(𝑣(𝜎))

𝑣(𝜎)

)︁
< 𝑢(𝜎) +

1

𝛽(𝑣(𝜎))

outside a set 𝐸 ⊂ [0,∞) of zero lower density.
Indeed, let 𝐸 ⊂ [0,∞) be a set on which

𝑢
(︁
𝜎 +

𝑤(𝑣(𝜎))

𝑣(𝜎)

)︁
⩾ 𝑢(𝜎) +

1

𝛽(𝑣(𝜎))
.
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Then, in the same way as in [1], the sequences {𝜎𝑛} and {𝜎′
𝑛} are con-

structed, such that 𝐸 ⊂
∞⋃︀
𝑛=1

[𝜎𝑛, 𝜎
′
𝑛], and

0 < 𝜎′
𝑛 − 𝜎𝑛 ⩽

𝑤(𝑣(𝜎𝑛))

𝑣(𝜎𝑛)
, 𝑢(𝜎𝑛+1)− 𝑢(𝜎𝑛) ⩾

1

𝛽(𝑣(𝜎𝑛))
. (13)

Let 𝑣𝑛 = 𝑣(𝜎𝑛), 𝛿𝑛 = 𝑤(𝑣𝑛)
𝑣𝑛

(𝑛 ⩾ 1). If 2𝑣𝑛 ⩽ 𝑣𝑛+1, then

𝛿𝑛 ⩽ 2

𝑣𝑛+1∫︁
𝑣𝑛

𝑤(𝑡)

𝑡2
𝑑𝑡 < 2

𝑣𝑛+1∫︁
𝑣𝑛

𝑤*(𝑡)

𝑡2
𝑑𝑡. (14)

If 2𝑣𝑛 > 𝑣𝑛+1, then we have, from (12), (13), and the monotonicity of
𝑤 = 𝑤(𝑡) and 𝛽 = 𝛽(𝑡):

𝛿𝑛 ⩽
𝑤*(𝑣𝑛)

𝑣𝑛
[𝑢(𝜎𝑛+1)− 𝑢(𝜎𝑛)] ⩽ 2

𝑣𝑛+1∫︁
𝑣𝑛

𝑤*(𝑡)

𝑡
𝑑 ln𝑤*(𝑡) =

= 2

[︂
𝑤*(𝑣𝑛+1)

𝑣𝑛+1

− 𝑤*(𝑣𝑛)

𝑣𝑛
+

𝑣𝑛+1∫︁
𝑣𝑛

𝑤*(𝑡)

𝑡2
𝑑𝑡

]︂
. (15)

Since
𝑣𝑛+1∫︁
𝑣𝑛

𝑑𝑤*(𝑡)

𝑡
⩾ 0,

then, obviously,
𝑣𝑛+1∫︁
𝑣𝑛

𝑑𝑤*(𝑡)

𝑡2
⩽
𝑤*(𝑣𝑛+1)

𝑣𝑛+1

− 𝑤*(𝑣𝑛)

𝑣𝑛
+ 2

𝑣𝑛+1∫︁
𝑣𝑛

𝑤*(𝑡)

𝑡2
𝑑𝑡.

Consequently, from (14), (15) we conclude that

𝛿𝑛 ⩽ 2

[︂
𝑤*(𝑣𝑛+1)

𝑣𝑛+1

− 𝑤*(𝑣𝑛)

𝑣𝑛

]︂
+ 4

𝑣𝑛+1∫︁
𝑣𝑛

𝑤*(𝑡)

𝑡2
𝑑𝑡.

It follows from the condition of the theorem that there exists a sequence
{𝑥𝑛}(0 < 𝑥𝑛 ↑ ∞), such that 𝑢(𝑥𝑛) ⩽ 𝐶Φ(𝑥𝑛) (0 < 𝐶 < ∞). It is
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clear that for any 𝑛 ⩾ 0 there exists 𝑘 ⩾ 0, such that 𝜎𝑘−1 ⩽ 𝑥𝑛 < 𝜎𝑘.
Consequently, we have:

mes(𝐸 ∩ [0, 𝑥𝑛]) ⩽
𝑘−1∑︁
𝑛=1

𝛿𝑛 =
𝑤*(𝑣𝑘−1)

𝑣𝑘−1

+
𝑘−2∑︁
𝑛=1

𝛿𝑛.

Then, if 𝜎𝑘−1 ⩽ 𝑥𝑛 < 𝜎𝑘, then for 𝑥𝑛 → ∞

mes(𝐸 ∩ [0,𝑥𝑛])

𝜙(𝑣(𝑥𝑛))
⩽

3𝑤*(𝑣𝑘−1)

𝜙(𝑣(𝑥𝑛))𝑣𝑘−1

+
4

𝜙(𝑣(𝑥𝑛))

𝑣𝑘−1∫︁
𝑣1

𝑤*(𝑡)

𝑡2
𝑑𝑡 ⩽

⩽
3𝑤*(𝑣𝑘−1)

𝜙(𝑣(𝑥𝑘−1))𝑣𝑘−1

+
4

𝜙(𝑣(𝑥𝑛))

𝑣(𝑥𝑛)∫︁
𝑣(𝑥1)

𝑤*(𝑡)

𝑡2
𝑑𝑡.

The function 𝑤* belongs to the class 𝑊 (𝜙); therefore, it satisfies the
condition 𝑤*(𝑥) = 𝑜(𝑥𝜙(𝑥)), 𝑥→ ∞. Hence, as can be seen from the last
estimate, everything we need follows.

Theorem 2 is proved. □

Without loss of generality, we can assume that 𝑛𝑙(𝑡) ⩽ 𝑤(𝑡), 𝑡 > 0.
Otherwise, we can consider the function 𝑤(𝑡) + 𝑛𝑙(𝑡), which obviously
belongs to 𝑊 (𝜙), since it is clear that 𝑊 (𝜙) ⊂ 𝑊 (𝜙). Indeed, for any
𝑤 ∈ 𝑊 (𝜙)

lim
𝑥→∞

1

𝜙(𝑥)

𝑥∫︁
𝑥
2

𝑤(𝑡)

𝑡2
𝑑𝑡 = 0.

Hence,

lim
𝑥→∞

𝑤(𝑥
2
)

𝑥
2
𝜙(𝑥)

= 0.

Since Φ is convex, then the function 𝜙 is concave and 𝜙(𝑥) ⩽ 2𝜙(𝑥
2
).

Therefore,

lim
𝑥→∞

𝑤(𝑥)

𝑥𝜙(𝑥)
= 0,

and, so, 𝑤 ∈ 𝑊 (𝜙).

Lemma. Let 𝐹 ∈ 𝐷(Φ), where Φ ∈ 𝐿. Then there exists a sequence of
numbers 𝜎𝑗, 𝜎𝑗 ↑ ∞, such that for 𝜎 = 𝜎𝑗 and some 𝑚 ∈ ℕ:

ln𝜇(𝜎) ⩽ Φ(𝑚𝜎), ln𝜇*
𝑏(𝜎) ⩽ Φ(𝑚𝜎),
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where 𝜇(𝜎), 𝜇*
𝑏(𝜎) are the maximal members of the series (5) and (6),

accordingly.

Proof of Lemma. Since the condition (7) is satisfied, it follows that
there exists 𝑐 (0 < 𝑐 <∞), such that

𝜇*
𝑏(𝜎) ⩽ 𝜇(𝜎 + 𝑐) (𝜎 ⩾ 0). (16)

By condition of the theorem, there exists a sequence {𝜎′
𝑗}, 𝑐 < 𝜎′

𝑗 ↑ ∞,
the number 𝑚′ ⩾ 1, such that

ln𝑀(𝜎′
𝑗) ⩽ Φ(𝑚′𝜎′

𝑗), 𝑗 ⩾ 1. (17)

Therefore,

ln𝜇(𝜎′
𝑗 − 𝑐) ⩽ ln𝜇(𝜎′

𝑗) ⩽ Φ(𝑚′𝜎′
𝑗) ⩽ Φ(𝑚(𝜎′

𝑗 − 𝑐)).

Then, taking into account (16), (17), we get:

ln𝜇*
𝑏(𝜎

′
𝑗 − 𝑐)

Φ(𝑚(𝜎′
𝑗 − 𝑐))

⩽
ln𝜇(𝜎′

𝑗)

Φ(𝑚′𝜎′
𝑗)

⩽ 1.

It can be seen that the required estimates hold for the sequence
𝜎𝑗 = 𝜎′

𝑗 − 𝑐 > 0.
The lemma is proved.
Let us prove the Theorem 1.

Proof of Theorem 1. 10. Sufficiency. Let (10) hold, with 𝑤 ∈ 𝑊 (𝜙).
Then there exists a function 𝑤* ∈ 𝑊 (𝜙), such that 𝑤*(𝑥) = 𝛽(𝑥)𝑤(𝑥),
where (0 < 𝛽(𝑥) ↑ ∞ as 𝑥→ ∞).

Let 𝑣 = 𝑣(𝜎), 𝑝 = 𝑝(𝜎) be solutions to the equations

𝑤1(𝑣) = 3 ln𝜇(𝜎), 𝑤1(𝑝) = 3 ln𝜇*
𝑏(𝜎), (18)

where 𝑤1(𝑥) =
√︀
𝛽(𝑥)𝑤(𝑥). Set

𝑅𝑣 =
∑︁
𝜆𝑗>𝑣

|𝑎𝑗| 𝑒𝜆𝑗𝜎, 𝑕 =
𝑤1(𝑣)

𝑣
, 𝑣 = 𝑣(𝜎).

Next, ln𝑛 = ln𝑛(𝜆𝑛) ⩽ 𝑛𝑙(𝜆𝑛). Since a function 𝑛𝑙(𝑡) is concave, we have

𝑛𝑙(𝜆𝑛) ⩽
𝑤(𝑣)

𝑣
𝜆𝑛
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for 𝜆𝑛 ⩾ 𝑣. Consequently,

𝑅𝑣 ⩽ 𝜇(𝜎 + 𝑕)
∑︁
𝜆𝑛>𝑣

𝑒−𝜆𝑛𝑕 ⩽ 𝜇(𝜎 + 𝑕)𝑐0 exp(max
𝑡⩾𝑣

𝜓(𝑡)),

where 𝜓(𝑡) = 2𝑛𝑙(𝑡) − 𝑕𝑡, 𝑐0 =
∞∑︀
𝑛=1

1
𝑛2 . Take into account the previous

estimate for 𝑛𝑙(𝑡), when

max
𝑡⩾𝑣

(𝜓(𝑡)) ⩽ 2
𝑤(𝑣)

𝑣
𝑡− 𝑕(𝑡) ⩽ −𝑣(1 + 𝑜(1))𝑕.

Thus,

𝑅𝑣 ⩽ 𝑐0𝜇(𝜎+𝑕) exp[−𝑣(1+𝑜(1)𝑕] = 𝑐0𝜇(𝜎+𝑕) exp[−(1+𝑜(1))𝑤1(𝑣)]. (19)

Set 𝑢(𝜎) = ln 3+ln ln𝜇(𝜎), 𝑢*(𝜎) = ln 3+ln ln𝜇*
𝑏(𝜎). Since 𝐹 ∈ 𝐷(Φ),

then, according to the lemma, there exists the sequence {𝜏𝑗} (0 < 𝜏𝑗 ↑ ∞),
such that for some 𝑚 ∈ ℕ

𝑢(𝜎) ⩽ lnΦ(𝑚𝜎), 𝑢*(𝜎) ⩽ lnΦ(𝑚𝜎), 𝜎 = 𝜏𝑗.

Therefore, taking into account (18) for 𝜎 = 𝜏𝑗(𝑗 ⩾ 1), we have

ln𝑤1(𝑣(𝜎)) = 𝑢(𝜎) ⩽ lnΦ(𝑚𝜎),

ln𝑤1(𝑣(𝜎)) = 𝑢*(𝜎) ⩽ lnΦ(𝑚𝜎) (𝑚 ⩾ 1).

Hence, we learn that for 𝜎 = 𝜏𝑗 (𝑗 ⩾ 1)

𝜙(𝑤1(𝑣(𝜎))) ⩽ 𝑚𝜎, 𝜙(𝑤1(𝑣(𝑝(𝜎)))) ⩽ 𝑚𝜎, (𝑚 ⩾ 1).

Thus,

1

𝜎
⩽

𝑚

𝜙(𝑤1(𝑣(𝜎)))
,

1

𝜎
⩽

𝑚

𝜙(𝑤1(𝑝(𝜎)))
, 𝜎 = 𝜏𝑗, 𝑚 ⩾ 1. (20)

Taking into account (8) and the fact that that
√
𝑥 ⩽ 𝑤1(𝑥), we have

𝜙(𝑥) ⩽ 𝑐1𝜙(𝑤1(𝑥)), 𝑥 ⩾ 𝑥0 (0 < 𝑐1 <∞). (21)

Thus, from (20) and (21) we obtain the estimates

1

𝜎
⩽

𝑐2
𝜙(𝑣(𝜎))

,
1

𝜎
⩽

𝑐2
𝜙(𝑝(𝜎))

, 𝜎 = 𝜏𝑗 (0 < 𝑐2 <∞). (22)
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Further, since 𝑤* ∈ 𝑊 (𝜙) and 𝑊 (𝜙) ⊂ 𝑊 (𝜙), then

lim
𝑥→∞

𝑤*(𝑥)

𝑥𝜙(𝑥)
= 0, (23)

lim
𝑥→∞

1

𝜙(𝑥)

𝑥∫︁
1

𝑤*(𝑡)

𝑡2
𝑑𝑡 = 0. (24)

It is obvious that the change of the condition 𝑢(𝜎) ⩽ 𝐶Φ(𝜎) (𝜎 = 𝜏𝑗) with
𝑢(𝜎) ⩽ Φ(𝑚𝜎) (𝜎 = 𝜏𝑗) (𝑗 ⩾ 1, 𝑚 ⩾ 1) keeps the statement of Theo-
rem 2 the same, provided that the other assumptions remain unchanged.
Therefore, applying Theorem 2 to the functions 𝑢, 𝑤1 and taking into
account (22), (23), (24), we have, outside some set 𝐸1 ⊂ [0,∞):

mes(𝐸1 ∩ [0,𝜏𝑗]) = 𝑜(𝜙(𝑣(𝜏𝑗))) = 𝑜(𝜏𝑗), 𝜏𝑗 → ∞; (25)

from (19) we have

𝑅𝑣 ⩽ 𝑐0𝜇(𝜎)
1+𝑜(1) exp[−𝑤1(𝑣)(1 + 𝑜(1))] = 𝜇(𝜎)−2(1+𝑜(1)).

Hence, for 𝜎 ⩾ 𝜎1, but for 𝜎 /∈ 𝐸1, we find that 𝜆𝜈(𝜎) ⩽ 𝑣(𝜎), where
𝜈 = 𝜈(𝜎) is the central index of the series (5). Then, by (10) for 𝜎 → ∞
outside the set 𝐸1, we have

𝜇(𝜎)= |𝑎𝜈 |𝑒𝜆𝜈𝜎= |𝑎𝜈𝑏𝜈 |𝑒𝜆𝜈𝜎|𝑏𝜈 |−1⩽𝜇*
𝑏(𝜎)𝑒

𝑤(𝜆𝜈)⩽𝜇*
𝑏(𝜎)𝑒

𝑤(𝑣)=𝜇*
𝑏(𝜎)𝜇(𝜎)

𝑜(1).

This means that when 𝜎 → ∞:

(1 + 𝑜(1)) ln𝜇(𝜎) ⩽ ln𝜇*
𝑏(𝜎). (26)

outside the set 𝐸1.
Since |𝑏𝑛| ⩽ 𝑒𝑤(𝜆𝑛) (𝑛 ⩾ 𝑁), we have, for 𝑘 ⩾ 𝑁 :

𝜇*
𝑏 = |𝑎𝑘𝑏𝑘| 𝑒𝜆𝑘𝜎 ⩽ 𝜇(𝜎)𝑒𝑤(𝜆𝑘), (27)

where 𝑘 = 𝑘(𝜎) is the central index of series (6).
Let

𝑅*
𝑝 =

∑︁
𝜆𝑛>𝑝

|𝑎𝑛𝑏𝑛|𝑒𝜆𝑛𝜎, 𝑝 = 𝑝(𝜎).
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But 𝑢*(𝜎) ⩽ Φ(𝑚𝜎) for 𝜎 = 𝜏𝑗 ({𝜏𝑗} is a sequence introduced above),
where 𝑢*(𝜎) = ln 3 + ln ln𝜇*

𝑏(𝜎). So, applying Theorem 2 and arguing in
the same way as in the proof of estimate for 𝑅𝑣, we find:

𝑅*
𝑝 ⩽ 𝑐0𝜇

*
𝑏(𝜎)

−2(1+𝑜(1)), 𝑐0 =
∞∑︁
𝑛=1

1

𝑛2
, (28)

for 𝜎 → ∞ outside some set 𝐸2 ⊂ [0,∞),

mes(𝐸2 ∩ [0, 𝜏𝑗]) = 𝑜(𝜙(𝑝(𝜏𝑗))) = 𝑜(𝜏𝑗), 𝜏𝑗 → ∞. (29)

Thus, if 𝜎 ⩾ 𝜎2, 𝜎 /∈ 𝐸2 we find that 𝜆𝑘(𝜎) ⩽ 𝑝(𝜎). Consequently, by (27)
we have, for 𝜎 → ∞:

𝜇*
𝑏(𝜎) ⩽ 𝜇(𝜎)𝑒𝑤(𝑝(𝜎)) = 𝜇(𝜎)𝜇*

𝑏(𝜎)
𝑜(1),

outside the set 𝐸2; so,

(1 + 𝑜(1)) ln𝜇*
𝑏(𝜎) ⩽ ln𝜇(𝜎). (30)

Let 𝐸 = 𝐸1 ∪ 𝐸2. From (20), (25), (29) for 𝜏𝑗 → ∞ we get:

mes(𝐸 ∩ [0, 𝜏𝑗])

𝜏𝑗
⩽ 𝑐2

[︂
mes(𝐸1 ∩ [0, 𝜏𝑗])

𝜙(𝑣(𝜏𝑗))
+

mes(𝐸2 ∩ [0, 𝜏𝑗])

𝜙(𝑝(𝜏𝑗))

]︂
= 𝑜(1).

Thus, from (26), (30), taking into account (25), (29), we finally get, for
𝜎 → ∞:

ln𝜇(𝜎) = (1 + 𝑜(1)) ln𝜇*
𝑏(𝜎),

outside the set 𝐸 = 𝐸1 ∪ 𝐸2, such that 𝑑𝐸 = 0.
Sufficiency is proved.
20. Necessity. We will proof by contradiction. Assume that condi-

tion 10) is not valid. Consider two expressions:

𝐴 = lim
𝑥→∞

1

𝜙(𝑥)

𝑥∫︁
𝜆𝑁

𝛼(𝑡)

𝑡2
𝑑𝑡,

𝐵 = lim
𝑥→∞

1

𝜙(𝑥)

𝑥∫︁
𝜆𝑁

𝛼*(𝑡)

𝑡2
𝑑𝑡,
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where 𝛼(𝑡) = max
𝜆𝑁⩽𝑡

{ln |𝑏(𝜆𝑛)| : 𝑛 ⩾ 𝑁}, 𝛼*(𝑡) = max
𝜆𝑁⩽𝑡

{− ln |𝑏(𝜆𝑛)| : 𝑛 ⩾ 𝑁},
𝑏(𝜆𝑛) = 𝑏𝑛. It is clear that 𝛼(𝑡) > 0, 𝛼*(𝑡) > 0 for 𝑡 ⩾ 𝜆𝑁 , more-
over 𝛼(𝑡), 𝛼*(𝑡) are nondecreasing step-like functions, continuous from
the right. Note that 𝛼(𝑡) is the least nondecreasing majorant of the se-
quence {ln |𝑏𝑛|}∞𝑛=𝑁 , and 𝛼*(𝑡) is the least nondecreasing majorant of the
sequence {− ln |𝑏𝑛|}∞𝑛=𝑁 .

We show that 𝐴 and 𝐵 cannot be equal to zero simultaneously. Indeed,
if 𝐴 and 𝐵 both equal zero, then there is a majorant 𝑤𝛼 ∈ 𝑊 (𝜙), such
that 𝛼(𝑡) ⩽ 𝑤𝛼(𝑡), 𝛼*(𝑡) ⩽ 𝑤𝛼(𝑡). Consequently,

|𝑏𝑛|+ |𝑏𝑛|−1 ⩽ 𝑒𝜃(𝜆𝑛) (𝑛 ⩾ 𝑁), 𝜃(𝜆𝑛) = 𝑤𝛼(𝜆𝑛) + ln 2, 𝜃 ∈ 𝑊 (𝜙).

We got a contradiction. So, 𝐴 and 𝐵 are not equal to zero at the same
time. Let for certainty 𝐴 ̸= 0, that is:

lim
𝑥→∞

1

𝜙(𝑥)

𝑥∫︁
𝜆𝑁

𝛼(𝑡)

𝑡2
𝑑𝑡 > 0. (31)

Let us show that in this case

lim
𝑛→∞

1

𝜙(𝑡𝑛)

𝑡𝑛∫︁
𝜆𝑁

𝛼(𝑡)

𝑡2
𝑑𝑡 > 0, (32)

where {𝑡𝑛} is a sequence of all points of discontinuity of the function 𝛼(𝑡),
𝑡0 = 𝜆𝑁 . Let us assume that this is not the case, so

lim
𝑛→∞

1

𝜙(𝑡𝑛)

𝑡𝑛∫︁
𝜆𝑁

𝛼(𝑡)

𝑡2
𝑑𝑡 = 0, (33)

Let 𝛼(𝑡) = 𝛼𝑛 for 𝑡𝑛 ⩽ 𝑡 < 𝑡𝑛+1 (𝑛 > 0). If 𝑥 ∈ [𝑡𝑛−1, 𝑡𝑛), then

lim
𝑥→∞

1

𝜙(𝑥)

𝑥∫︁
𝜆𝑁

𝛼(𝑡)

𝑡2
𝑑𝑡 ⩽

⩽ lim
𝑥→∞

1

𝜙(𝑥)

𝑡𝑛−1∫︁
𝜆𝑁

𝛼(𝑡)

𝑡2
𝑑𝑡+ lim

𝑥→∞

1

𝜙(𝑥)

𝑡𝑛∫︁
𝑡𝑛−1

𝛼(𝑡)

𝑡2
𝑑𝑡 ⩽
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⩽ lim
𝑛→∞

1

𝜙(𝑡𝑛−1)

𝑡𝑛−1∫︁
𝜆𝑁

𝛼(𝑡)

𝑡2
𝑑𝑡+ lim

𝑛→∞

𝛼(𝑡𝑛−1)

𝜙(𝑡𝑛−1)𝑡𝑛−1

= 0.

Assuming the condition(33), we get a contradiction with the condition
(31). So, indeed the condition (32) takes place. Let

lim
𝑛→∞

1

𝜙(𝑡𝑛)

𝑡𝑛∫︁
𝜆𝑁

𝛼(𝑡)

𝑡2
𝑑𝑡 = 𝛽 > 0 (𝑛 ⩾ 1).

It follows that there is a sequence {𝜏𝑘} = {𝑡𝑛𝑘
}, such that

1

𝜙(𝜏𝑘)

𝜏𝑘∫︁
𝜆𝑁

𝛼(𝑡)

𝑡2
𝑑𝑡 ⩾ 𝛽1 > 0 (𝑘 ∈ ℕ). (34)

We introduce a sequence {𝑥𝑛}∞𝑛=1, such that

𝑥𝑛 =
𝐺𝑛+1 −𝐺𝑛

𝑡𝑛+1 − 𝑡𝑛
, 𝐺𝑛 = 𝑡𝑛𝐼(𝑡𝑛),

where

𝐼(𝑡𝑛) =

𝑡𝑛∫︁
𝜆𝑁

𝑔(𝑡)

𝑡2
𝑑𝑡, 𝑔(𝑡) = 𝑞𝛼(𝑡), 0 < 𝑞 < 1 (𝑛 ⩾ 1).

As in [3], we construct a convex Newton polygon 𝐿 with vertices
𝑃𝑛 = (𝑡𝑛;𝐺𝑛) for the Dirichlet series

𝐹 (𝑠) =
∞∑︁
𝑘=1

𝑎𝑘𝑒
𝜆𝑘𝑠 (𝑠 = 𝜎 + 𝑖𝑡), (35)

where

𝑎𝑘 =

{︃
𝑒−𝐺𝑛 , 𝜆𝑛 = 𝜏𝑘,

0, 𝜆𝑛 ̸= 𝜏𝑘.

Note that {𝜏𝑘}∞𝑘=1 is a sequence of central exponents of the absolutely
convergent series (35) in the whole plane. Taking this fact into account,
we estimate from above the maximal term of the series (35).
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For 𝑥𝑛−1 ⩽ 𝜎 < 𝑥𝑛, we have [3]:

ln𝜇(𝜎) = 𝜏𝑛(−𝐼(𝜏𝑛) + 𝜎) <
𝜏𝑛𝜏𝑛+1

𝜏𝑛+1 − 𝜏𝑛

𝜏𝑛+1∫︁
𝜏𝑛

𝑔(𝑡)

𝑡2
𝑑𝑡 = 𝑞𝛼𝑛 (𝑛 ⩾ 1).

On the other hand,

𝜇*
𝑏(𝜎) ⩾ |𝑎𝑗𝑛𝑏𝑗𝑛| 𝑒𝜆𝑗𝑛𝜎 (𝜆𝑗𝑛 = 𝜏𝑛, 𝑛 ⩾ 1).

Since 𝑏𝑗𝑛 = 𝑒𝛼(𝑡𝑛) = 𝑒𝛼𝑛 , for 𝑥𝑛−1 ⩽ 𝜎 < 𝑥𝑛 (𝑛 ⩾ 1) we have

ln𝜇*
𝑏(𝜎) ⩾ 𝛼𝑛 − 𝜏𝑛𝐼(𝜏𝑛) + 𝜏𝑛𝜎 = 𝛼𝑛 + ln𝜇(𝜎) > 𝛼𝑛 (𝑛 ⩾ 1).

Thus, for 𝑥𝑛−1 ⩽ 𝜎 < 𝑥𝑛 (𝑛 ⩾ 1) we have

ln𝜇(𝜎)

ln𝜇*
𝑏(𝜎)

< 𝑞 < 1. (36)

It remains to prove that 𝐹 ∈ 𝐷(Φ), where Φ is the inverse of 𝜙. Indeed,
from (34) it follows that

𝐼(𝜏𝑛) ⩾ 𝛽1𝜙(𝜏𝑛) (𝑛 ⩾ 1),

i. e.,

𝑀(𝜎) = sup
|𝑡|<∞

|𝐹 (𝜎 + 𝑖𝑡)| ⩽
∞∑︁
𝑛=1

𝑒−𝛽1𝜏𝑛𝜙(𝜏𝑛)+𝜏𝑛𝜎.

Since 𝜏𝑛 = 𝜆𝑗𝑛 , from (4) it follows that ln𝑛 = 𝑜(𝜆𝑛𝜙(𝜆𝑛)) as 𝑛→ ∞, and,
so, 2 ln𝑛 ⩽ 𝛽1

2
𝜏𝑛𝜙(𝜏𝑛), 𝑛 ⩾ 𝑛0. Given this, we get

𝑀(𝜎) ⩽ 𝑐0 exp
{︁
max
𝑡⩾0

[︁
− 𝛽1

2
𝑡𝜙(𝑡) + (𝜎 +𝑚)𝑡

]︁}︁
, 0 < 𝑐0 <∞.

Note that the maximum is attained at a point 𝑡* ⩽ Φ(2(𝜎+𝑚)
𝛽1

). Conse-
quently,

𝑀(𝜎) ⩽ 𝑐0𝑒
(𝜎+𝑚)𝑡* ⩽ 𝑐0𝑒

𝐴𝜎Φ(𝐴𝜎
𝛽1

)
, 0 < 𝐴 <∞.

However, Φ is a convex function from the class 𝑀 . Hence,
ln𝑀(𝜎) ⩽ 𝐵𝜎Φ(𝐴𝜎

𝛽1
) < Φ(𝐾𝐿𝜎), where 𝐿 = max(𝐵, 𝐴

𝛽1
), 𝜎 ⩾ 𝜎0. Taking

into account this, we finally get ln𝑀(𝜎) ⩽ Φ(𝑚𝜎) (𝜎 > 0 is any number,
𝑚 is a natural number). This means that 𝐹 ∈ 𝐷(Φ).
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So, if (10) fails, there is a function 𝐹 ∈𝐷(Φ) satisfying estimate (36).
In the case when 𝐵 > 0, the example is constructed similarly.
The necessity is established, and thus the theorem is fully proved.

Acknowledgment. This work supported by the Russian Foundation
grant №21–11–00168.
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