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A CLASS OF HARMONIC (p, q)-STARLIKE FUNCTIONS
INVOLVING A GENERALIZED (p, q)-BERNARDI
INTEGRAL OPERATOR

Abstract. With the aid of g-calculus, this paper introduces a new
generalized (p,q)-Bernardi integral operator Bl ;f(z). Then, we
define a new subclass of harmonic (p, ¢)-starlike functions of com-
plex order associated with the operator Bj ,f(z). For this new
subclass, a necessary and sufficient condition, compact and convex
combination theorems, a distortion theorem, and extreme points
are investigated. Finally, we discuss the weight mean theorem for
functions belonging to this class. This research highlights the sig-
nificant connections between the results presented in this study and
previous works.
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1. Main concepts of quantum calculus. The principle of quantum
calculus (or g-calculus) has greatly influenced the study of the theory of
geometric functions, and its significant applications in other areas, such
as mathematical science and quantum physics. This principle is simi-
lar to traditional calculus but with no need for limits. The idea of the
g-calculus, including the g-derivative and the g-integral, has been initially
provided by Jackson [8]. With the expansion of the g-calculus study, many
relevant facts have also been investigated, including the ¢-Gamma and
g-Beta functions, the ¢-Laplace transform, the ¢-Taylor expansion, and
the ¢-Mittag-Leffler function (for more review, see [5] and [6]). In the Ge-
ometric Function Theory, the g-calculus has been effectively applied in the
studies of functions classes, which include the classes of univalent S and
p-valent S(p) functions. Ismail et al. [7] have introduced g-calculus in the
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field and scope of geometric function theory; consequently, several Ma and
Minda classes of analytic functions on the open unit disc have been devel-
oped, and these classes are closely related to the subordination concept.
Furthermore, g-calculus operators, such as the fractional of ¢-integral and
g-derivative operators, have been employed to establish various analytic
functions. Additionally, numerous works have examined certain classes
of functions that are analytic in the open unit disc U = {z € C: |2| < 1}
using ¢-calculus (for example, see [14], [15], and [17]).

This work begins with the basic concepts and, consequently, an in-
depth analysis of our proposed applications of the ¢-calculus. Throughout
this paper, assume that 0 < ¢ < 1. The following definitions provide an
introduction to the g-calculus operators for a complex-valued function f.

Let S(p) be the class of analytic and p-valent functions f in U with
the normalized form:

f(z) =2+ Z a;z’, (peN). (1)

Definition 1. For 0 < ¢ < 1, the ¢g-number [k], is given by
1—gq"
1—q’

n—1
PN (k =neN).
k=0

(ke C),
[klg =

Definition 2. The g-derivative operator D, is given by

flgz) — f(2)
(g—1)z

The g-derivative of the function f in (1) is given by

D,/ (2) = (2 #0).

Duf(2) = [l + Y] o

Jj=p+1

The g-factorial indicated by [j],! is defined by
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so that
f(z) := 1}{1,9 { o277t + Z Glea;2?~ 1} =
1 Jj=p+1
w .
= pP 4 Z jajzj_l.

Jj=p+1

Jackson [9] defined the g-integral of any function f(z) as follows:

jyﬂu) 1—q§

Let o€ R and j € N be positive integers.
The g-generalized Pochhammer is given by

[0;71q = lelglo + 1[0+ 2]y [0+ — 1],

2. Harmonic functions, definitions and motivation. In the
complex domain D < U, if the values v and v are real harmonic, then the
continuous function f = wu + iv is called the harmonic function in D. In
any simply connected domain D, the function f can be stated by

f=F+G, (2)

where both F and G are analytic functions in D. The function F is called
analytic of f, and G the conjugate-analytic (or co-analytic) of f. Clunie
and Sheil-Small [2] discovered that |F'(z)| > |G'(2)| is a necessary and
sufficient condition for the harmonic functions (2) to be locally multivalent
and sense-preserving in D (also, see [13]).

Let H(p, j) be the family of harmonic multivalent functions f = F +G
that are orientation-keeping the open unit disc U. The analytic functions
F and G are defined by

F =22+ Z ajzj and indjzj

=p+1 Jj=p
and

f=F+G=2"+ > a7 +) d;7, 3)

Jj=p+1 Jj=p
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where p > 1 and |d,| < 1.

The family #H(1,j) = H(j) of harmonic univalent functions has been
presented by Jahangiri et al. [10] (also see [12]).

Also, we consider the subclass H(p, j) of the family H(p, j) that con-
sists of functions f = F + G, where the functions F and G are defined
as:

0 0

Fl)=2"— 3 a7 and G(z) == 14|27, (Idp| <1). (4)

Jj=p+1 Jj=p

Recently, many articles have concentrated on the study of the concept of
multivalent harmonic functions and their applications (for example, see [1]
and [3]).

If the analytic functions f,h € H(p,j), then the function f is subor-
dinate to the function h, denoted by (f < h), if there exists a Schwarz
function ® with

®(0) = 0, |B(2)| < 1 (z € U),

such that

In addition, we get the following equivalence if the function A is univalent
in U:
f(z) < h(z) « f(0) = h(0) and f(U) < (D).

Many diverse subclasses of analytic functions, g¢-starlike functions, and
symmetric ¢-starlike functions have been studied and analyzed by using
g-analogous values of integral and derivative operators. The purpose of
this paper is to present the generalized g-Bernardi integral operator for
harmonic p-valent functions. Additionally, the paper defines a new sub-
class of the (p, ¢)-starlike functions in the open unit disc U by utilizing this
operator. Moreover, the paper discusses the advantages and applications
of various new geometric subclasses of (p, ¢)-starlike harmonic functions,
including coefficient estimates, compactness, convex combination, extreme
points, and distortion bounds are investigated. The weight mean theorem
for functions belonging to this class is also studied.

More recently, Srivastava et al. [19] studied the generalized
(p, q)-Bernardi integral operator for p-valent functions as follows:
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Definition 3. For f(z) € S(p), the generalized (p, q)-Bernardi integral
operator for p-valent functions B,  f(z): S(p) — S(p) is defined by

By, (Br_1,f(2), (neN)
By f(z) = (5)
f(2), (n =0),

where BY ,f(2) is given by

By f(z) =2

From BY ,f(2), we deduce that

B, () = BL L) -2+ Y (EE) ws, =) @)
and
Bh f(z) =27+ Z ( > a;22, (neN, w>-p). (8)

Jj=p+1

Remark. We illustrate the following particular cases:

1) If n = 1, we obtain the g-Bernardi integral operator for p-valent
functions (see [14]).

2) When q — 1—, we obtain the Bernardi integral operator (see [16]).
Also we get the Srivastava-Attiya operator for p-valent functions

(see [20]).

3) Taking p = 1, we have the g-Srivastava-Attiya operator (see [17]).

4) Taking n = 1 and p = 1, we get the g-Bernardi integral operator
(see [15]).

5) Taking w = 1 and ¢ — 1—, we have the Jung-Kim-Srivastava oper-
ator for p-valent functions (see [4]).
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For f(z2) € H(p, j), we define the operator B,  f(z) as follows:

By f(2) =By, F(z) + BneG(2), (9)
where
o0
[p + wlg\"
B F(z) =22+ , a2’
! j=zp_:i_1 <[j + U.J]q) !
and

For the (p, ¢)-Bernardi integral operator Bf  f(z) in (9), we introduce a
new class HF, (11, 12,73) as follows:

Definition 4. A multivalent function f = F +G € H(p, j) is said to be
in the class HF, q(n1,m2,n3) if

1 Bh f(z) DB, f(2))
Y= —1(1- 4 4 14 > >1
e
(10)
where m; € C\{0},0 <72 < 1,0 < m3 < 1.
We also define
ﬁp,q("hﬂha 7]3) = H‘Fp,q(nla 7]27773> ﬂj:apa.]) (11)

Remark. Several special subclasses are being listed here:

1) If p = 1, we have a subclass HF1 4(n1,12,n3) introduced by Shah et
al. [18].

2) When n = 0, the class HFp4(m1,n2,1n3) becomes

A =

3) If ¢ — 1—, the class HF, 4(n1,1m2,m3) reduces to the subclass

Bi.f(z) (B f(2)
p 2 pzp 1

R[p + %{(1 )

o
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3. The Main Results. Firstly, we have to prove the necessary and
sufficient condition of the class HF, 4(n1, 12, M3)-

Theorem 1. Let f = F +G € H(p,j) as in (3). Let the following
inequality hold:

X (0w (o) el
+§ (1 + <%Z - 1>772> (Ei:k)n ;| < (p —m3)m, (12)

where n € N,n; € C\{0},0 < 72 < 1, and 0 < 3 < 1. Then the harmonic
function f(z) is orientation preserving in U and f(z) € HF (11,12, 73)-

Proof. To prove that f(z) is orientation preserving, it suffices to show

that |F'(z)| > |G'(2)]-

oe]

Do(F()) = [Plal=P~t = 35 [lelagl 2P >

j=p+1

* w0 Lo 1) p, ) ( 2ele n
> [ply — Z [ |a;| = [plq — Z <1 + ([p]q 1>77 )([Jer]q)

a;| >
i=p+1 i (p —m3)m
(e GE-0mt),
[plq [1+wlq ) -
g d;| > dil |27 = [D4(G(2))] -
2 (0 — 1) 4] ;mu nE 0,(G(2))]
Then

lim [Dy(F(2))] > |D4(G(2))] = |F(2)] > |G'(2)].

g—1-

Let us demonstrate that f(z) € HF, 4(m1,m2,n3). From the fact T > n3 if
and only if [p —n3 + Y| > |p + 13 — Y|, we just need to prove that

‘p -3+ [p+ %{(1 — 772)62’15(2) + 7729(1[(;??;;(12)) B 1}” >
> ‘p + 13 — [p * %{(1 a 772)8272;:@) - mgq[(jf’qp]i(lz» - 1}”

and, equivalently,
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: Yl
p D (BP
— s — (1 —1m2) n,qu(z) — 1) q[;]zgpf(l ) + 1‘ >0
Now, using the function B},  f(z) in (9), we obtain
By D,(BE
o=+ ()2l DTy
Bl ) DB
- ’771773 — (1 —mn2) o — 12 (7], 1‘
= ‘(2]9—773)771+(1—772){1+ Z (%)najzj_uz (E; i ﬁq>nd‘,zﬂ—p}+
j=p+1 q j=p q
o (el s, s (et el Ll
ewfte 3 (G0 e B pear) w1k

e 0-mfie Y (Y o 3 (2 ehy

Pt Ml A+ wlg
eofie 3 () e S () ol

this implies
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Rleomengl G e
T 3 [0 el (G e
Rl m gl e
<t -mnfi- 3 [ (G e (s o
-2 G-l )

The last expression is non-negative. Then f(z) € HF, ,(m,n2,n3). For
the following harmonic function, the coefficient bound (12) is sharp.

- . ‘
=P+ Z (P =) (U w]q> s ;20 +
j= p+1 1+ ([p]q — 1)772] [p + w]q

o (p—ms) U+l
g ([p]q 1>n2]<[p+w]q> R

with 3 [yl + 3 [yl = 1.0

Jj=p+1 Jj=p

If n = 0, the following corollary is deduced:

Corollary. Let f = F +G e H(p,j) as in (3). If the following inequality
holds:

> (1 (e 1)) joy1+
= [plq
S 714
+ <1 + (— - 1)772) |d;] < (p—m3)m, (13)
j=p [P,
wheren, € C\{0},0 < 79 < 1, and 0 < n3 < 1, then the harmonic function

f(Z) € H‘Fp,q(n17?72an3)'

When ¢ — 1—, Theorem 1 becomes as below:
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Corollary. Let f = F +G € H(p, j) as in (3). If the following inequality
holds:

Z (1 (2 1)) (22 ol +
i<1+(__1)">(§1w> |d;| < (p —ns)m, (14)

where n € Ny, € C\{0},0 < my < 1, and 0 < n3 < 1, then the harmonic
function f(z) € H.Fp,q<771,7]2,773).

Next, we prove that the inequality condition is necessary for p-valent
functions f = F + G € H(p, j) in the subclass HF, ,(n1, 72, 13)-

Theorem 2. Let f = F +G € H(p,j) as in (4). Then the harmonic
functions f(z) € HF,4(m,n2,n3) if and only if

j—;m (1 " G%Z N 1)772> (E)i—ﬁzy Ja;] +
+i <1 + (Ei—t - 1)772) (Ei—ﬁj)nw < (p—ns)m, (15)

where n € Ny € C\{0},0 <72 < 1,and 0 < n3 < 1.

Proof. Since HF (11,02, 113) © HF (1, 72, 13), the sufficient condition
holds due to Theorem 1. Now, we have to prove the necessity condition.
Suppose that f € HF, ,(n,n2,713); then, due to (11),

R[p + %{(1 - nz)Bg";i(z) + nz@q[ﬁf;pflz)) - 1} - 773] >0. (16)

yields. Also, equivalently,

R[(p —n3)m + {(1 - 772)82";:(2) + nzgq[(jf’quf_(lz))

Using the function B?,  f(z) in (9), we conclude that

- 1}] >0. (17)

0

RI(p —n3)m + (1—772){1_ Z <[P+W]q>"‘aj|sz_

j=p+1 [j +w]q
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i( bz p}w{l 2

J=p J

This yields

Rl(p—ns)m — [1+(@— )n]([p“’] )"z 27—

2 T, )

- Y0+ (- Dl () ) = 0

Note that the desired condition (18) must hold for all values z in U.
Selecting the values z on the positive real axis, where 0 < z = r < 1, we get

(p—mn3)n i [ %—Dn}(%iﬁj)n\aﬂ”_p—

S G-l ey o 0o

Plq

When r — 1 and if the condition (12) is not satisfied, the inequality (19)
is also not satisfied. In the range (0,1), we may thus identify at least
one zy = 1o for which the quotient (19) is greater than 1. This conflicts

with the prerequisite for f € HF, ,(n1,m2,73), so we obtain the condi-
tion (12). [J

Lemma 1. [11] The class £ < H(p,j) is compact if and only if £ is
closed and locally uniformly bounded.

Theorem 3. The subclass 7/-[\]?10@(771,772,773) is a convex and compact

subclass of the family of functions f = F + G € ﬁ(p,j), where F and G
have been mentioned in (4).

Proof. Let f;(z) € ﬁp,q(m,ng,ng) be defined as

Z |a; ;| 27 —Z|du|z1 (i=1,2). (20)

j=p+1
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Then
J(2) =1f1;(2) + (1 =) fo;(2) =
=22 — > (Iarg + (1= Dlazy))z Z |d1 5] + (1= T)|do,])27,

Jj=p+1 Jj=p

also belongs to the subclass ﬁp,q(m, ne,m3) for 0 < I < 1.
By the result of Theorem 2, we obtain

33 [+ (g (g, g

[7 +wlg
Sl el (e

r-1] i [+ ([% - 1)772]([]?+ u’]q)n|az,j|+

[7 +wlq
e (B e (b

<A((p=n3)m) + (1 =D((p—m)m) = (p—n3)m.

As J(z) e ﬁp,q(m,% 7]3); ﬁp,q(nla 12,73) is a convex set.
However, if fi(z) € HF,q(m,m2,m3), (i € N) as in the form (20), we
get, using Theorem 2:

Then, for |z| <7 (0 <r < 1),

0

i@ = (= dighr” = > (laig| + |dis)r >
Jj=p+1
— 1 n
> (1= |dip)r” b= m)milp +1+ )

(B 1) ([ + w],)
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g el
Pl (p=m)m(lp+1+wly)"
(p—m)m(lp+1+wly)"

[1+ (ke — 1] ([p + w],)”

e [1 + <% — 1)7]2] ([p+wly)™

’ HZH{ (p—n3)m ([ + wlg)”

(p—mz)m(lp+1+wly)"

P*(%%ﬁ—ﬁwk@+whwx

d:
X {1 — <|+p|}rp“ > (1 — |dip))r? — ArPth

(Jai] + |digl) o+t >

> (1= |dip))r” -

(laig] + Idij|)rPt >

> (1= |dip)r" -

P = n3)m
where
A¢:<@+1+why{ (p=mg)m 1 MM]
[+l 1+<%—1>n2 1+(%—1)n2
Similarly, we have
i) < (14 [dipl)r? + APt (22)

Then the subclass ﬁpﬁq(m, 12, 73) is locally uniformly bounded. If we let
fi — f, then we deduce that |a; ;| — |a;| and |d; ;| — |d;| as i — oo, for
Jj=2,3,.... We find from (21) that

£ 0 () (B2

e 300 (B2 () < e 29

As a result, f(z) € ’;T-[\]/-"p,q(m, n2,13), and the class ’;T-[\]/-"p,q(m, 12, 13) is also
closed. This shows the compactness of the class HF, ,(m1, 12,73). O

Corollary. For |z|=r<1,if f € ﬁp,q(m,ng,n;;), then

(1= |dy|) 1P — AP < | f(2)] < (1 + |dp]) 7P + ArP .
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Moreover,
{u: Jul < (1=@Q1) — (1= Q2)|dy[} = f(U),
o (pmms)m([pH1+w]g)™ . ([p+1+4w]g)™
where Q1= G BHL ey 2P0 92 T TR

If p = 1, we obtain the following results:
Corollary. |[18] For |z| =r <1,if f€ 7'/[\]'/—1’q<7]1,772,7’]3), then

(1—|di)r —Tr* <|f(2)] < (A +|di])r + Tr?,

where

_ (2rwleyr (A —my)m 1
7= ([1 +W]q> |:1 + ([Q]q — 1)772 - 1+ ([Q]q_ 1)772 ’dl‘]

Moreover,

{u: lu| < (1— @1) —(1- @2) || } < f(U),

(1=n3)m ([2+w]q ([2+w]g)"
where Q1 := {1+([]7743%n2}([1+w w and Qz = T, D) (Tl

e @] ©¢]
Theorem 4. Let fi(2) = 22— Y, |ajs|2" — > |d;s|z7 (s =1,2,...) be
Jj=p+l Jj=p+l

in the subfamily ﬁp,q(m, n2,1M3). Then the function

m

J(2) = ) ksfo(2) 02@—1

s=1

also belongs to the subclass ’}f-[\]/:p,q(m,m,ng). This means that
HF p.q(m1,m2,m3) is closed under the convex combination.

Proof. Since f,(z) € 7’-[\]/-“”](771’,72’773)’ then
j—; <1 ’ <59_L - 1>77 ) (E % )n jajs| +

i ( ( p] - 1>772> (Eizt)n|dﬁs| < (p—n3)m-

Jj=p

Now,
0 o0

= - Z Zﬁs’a]s _Z(Z Rs‘dj:SDZj' (24>

j=p+1 s=1 j=p s=1
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By Theorem 2, we conclude that
3w (e (B (5 o)+
" i (1+ (@ — 1)) (E?Iﬂz)n(zm 5] ) %

Jj=p p]q
‘ i{w 0 (e = 1) (E20) s+
i <[j;T] 772)(%;1512) } Z s(p—n3)m = (p—n3)m.

Hence, J € ﬁp,q(m,m,%)- L]

__ Next, we state the extreme points of closed convex hulls of the class
,H}-p,q (7717 12, 773)

Theorem 5. The function f(z) € 7f-[\]?p7q(771, n2,n3) if and only if

f(z) = Z(QSJ]:J + SOJQJ)7 <25)
Jj=p
where F, = z
(p—n3)m Jj+wlg\"
F;=2F . 2y (J=p+1,p+2,...)
’ 1+ (%_Q%([p—kw]q) (
and
g; = 2" — (p — ns)m ([j+w]q)nzj; (G=pp+1,...),
[p+w]q

Ll
1+ ([p]i 1)772

ee]
with > (¢j+¢;) = 1,¢0; > 0, and ¢; > 0. Particularly, the extreme points
Jj=p

of the class ﬁpvq(m, n2,m3) are {F;} and {G;}.
Proof. Assume that f(z) is given by
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\
O
n
s

(¢j"r + ijgj) -

<.
I
]

[o0]

) _JZP;H 1 j[—%”:f”ll)% <59 : w]q)n¢fzj_

[p
_Z IZ%__ ) <[j+w}q>n¢j5j. (26)

I
s

<.
I
i

From the above function, we find that

| — (p_773)771 [j-|-w]q o
|a]| 1+ <%—1>n2<[p+w]q) ?;
and ( | ! |
di| = pP—n3)Mm j+wlg\"
" 1+(%_1>772([ +W]q> v
Now
0 1+<%— >772 [p—l—w]qn
j;l (P = n3)m <[j+w]q) ||+
ool—i-(H —1>7]2 [p+wq ”
+j§’ (p = 1) <[]+W ) §¢J+% ¢p=1—¢,<1. (27)

This leads to the result f € ?—Tqu(m, M2, 13)-
Conversely: Let f € H]:pq(m, N2, 7M3); assume that

14+ ([j]q o 1)772

[plq [p+ w]\» .

b; = ( ) ajl; J=p+1,p+2,...
’ (p — m3)m lasl; )

and

. qndﬂ j:p7p+1aa
[j+w]q>|]| ( )
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Q0
with > (¢; + ¢;) =
J=p
o0
We get f(2) = > (¢;F; + ¢;G;) by substituting the values of |a;| and |d;|
J=p
from the previous relations to (4). [
Theorem 6. For i = 1,2, let f; € ?/L\}/"p,q(m,ng,ny,). Then, for any real
number k, the weighted mean uy(z) defined by

(o) = {L=BAC) 1 DAE), .

also belongs to ﬁp7q(n1, N2, 13)-

Proof. From the value of ux(2), we can rewrite

o Z a]1+(1+k)a]22j

Jj=p+1

i ]1+(1+k;)d]223

In order to demonstrate that u(z) € 77.7?,3761(771,772,7)3), we consider

—Kk)a; 1+ k)a;
Jaji+ (1 + )a],2‘+

O () Gy 1
o3 (1 (g ) (B e e
= % (e (e () (5 et 5 )+
S (o () () (5 el + 5 P ) -
=050 3 (o (f ) (gt + s
3 (e (20 o+ 030 <
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<(1;khp—nmh+(1;m

(p—m3)m = (p—n3)m.

Therefore, from Theorem 2, we get uy(z) € 71[\.7?1,7,1(771, M2,M3). (]

Concluding Remarks. In this article, we have introduced a new
subclass of (p, q)-starlike functions of complex order using the generalized
(p, q)-Bernardi integral operator for harmonic p-valent functions. Then
we verified that the class is harmonic p-valent and sense-preserving in the
open unit disc. For this class, which is formed with the aid of ¢-starlike
functions, we have discussed the necessary and sufficient conditions. Addi-
tionally, we have examined the distortion bounds, topological properties,
extreme points, and some important properties. This study will guide fur-
ther papers and illuminate new concepts in the field of geometric function
theory.

Acknowledgment. The authors are grateful to the reviewers of this
article, that gave valuable remarks, comments, and advices, in order to
revise and improve the results of the paper.
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