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THE WEAK DROP PROPERTY AND
THE DE LA VALLÉE POUSSIN THEOREM

Abstract. We prove that a closed bounded convex set is uniformly
integrable if and only if it has the weak drop property. We extract
the weakly compact subsets of the Henstock integrable functions on
the H-Orlicz spaces with the weak drop property via de la Vallée
Poussin Theorem.
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1. Introduction and preliminaries. The weak drop property was
introduced by Giles, Sims, and Yorke (see [6]). Rolewicz [18] introduced
the sequential approach to the drop property. Qiu established the fol-
lowing fact: in a locally convex space, every weakly sequentially compact
convex set possesses the weak drop property, and every weakly compact
convex set possesses the quasi-weak drop condition (see [19]). Bhayo et
al. [3] introduced convexity and concavity of a function with the identric
and Alzer mean. The class of spaces with norm having the drop property
resides between the classes of nearly uniformly convex and nearly strictly
convex Banach spaces (see [4]). For details of the drop property, one can
see [12], [19] and reference therein. It can be traced to as early as 1915,
the publications of de-la Vallée Poussin, although it was the Banach space
research of 1920’s that formally gave birth to what were later called the
Orlicz spaces, first proposed by Z. W. Birnbaum and W. Orlicz. Later this
space was further studied by Orlicz himself. Orlicz spaces are generaliza-
tions of 𝐿𝑝 spaces. Further, Luxemburg developed the theory of Orlicz
spaces. Details of this theory can be found in [1], [13], [17].

Kurzweil first proposed a solution to the primitives problem in 1957,
and then Henstock did the same in 1963. It is a generalized form of the
Riemann integral, commonly known as the Henstock-Kurzweil integral
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(HK-integral); Kurzweil and Henstock each proposed this generalization
independently. The Henstock-Kurzweil integral is similar to the Riemann
integral, but is stronger than the Lebesgue integral. Additionally, it is well
known that the HK-integral can resolve the issue of primitives in the real
line. The limit of Riemann sums over the appropriate integration domain
partitions is referred to as the HK-valued integrals. The HK-integral has
a constructive definition. Within the HK-integral, a gauge-like positive
function is employed to assess a partition’s fineness, rather than a constant
as in the Riemann integral: this is the fundamental distinction between
the two definitions. One can see [5], [7], [8], [10] and references therein for
details of Henstock-Kurzweil integrals.

Hazarika and Kalita [7] introduced the H-Orlicz space with non-absolute
integrable functions. They proved that 𝐶∞

0 is dense in the H-Orlicz space,
but is not dense in the classical Orlicz space. It is known that if a func-
tion 𝑓 is bounded with compact support, then the following statements
are equivalent:
(a) 𝑓 is Henstock–Kurzweil integrable,
(b) 𝑓 is Lebesgue integrable,
(c) 𝑓 is Lebesgue measurable.
In general, every Henstock-Kurzweil integrable function is measurable,
and 𝑓 is Lebesgue integrable if and only if both 𝑓 and |𝑓 | are Henstock-
Kurzweil integrable. This means that the Henstock-Kurzweil integral can
be thought of as a “non-absolutely convergent Lebesgue integral". This
fact relies on compact support in H-Orlicz space. Of course, we are work-
ing with H-Orlicz spaces without compact support. In this case, H-Orlicz
spaces are not equivalent to Classical Orlicz spaces.

Let 𝑓 be a function defined on [0, 1] that has values in a Banach space
𝑋. If 𝑓 has an integrable majorant and 𝑋 is separable, Caponetti et al.
demonstrated in [5] that the limit set 𝐼𝐻𝐾(𝑓) of Henstock-Kurzweil inte-
gral sums is non-empty and convex. They provided a detailed explanation
of the limit set in the same setting.

In several contexts, the de la Vallée-Poussin Theorem has been taken
into account. For instance, in the space of measures with values in a
countably additive Banach space. The de la Vallée-Poussin Theorem is
used to characterise the strongly measurable vector functions that are
Pettis integrable through the compactness of a certain set of scalar func-
tions in a specific space of Orlicz, as well as the countably additivity of
the Dunford integral of vector functions (see [2]). The characterization
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of the countable additivity of the Henstock-Dunford integrable functions
with the help of de la Vallée Poussin Theorem was discussed by Kalita and
Hazarika in [8]. Recently, Volosivets [20] has studied de la Vallée-Poussin’s
mean in weighted Orlicz spaces.

The paper is organized as follows: In Section 1, the basic concepts and
terminology are introduced together with some definitions and results.
In Section 2, we prove that a closed bounded convex set has weak drop
property only if it also possesses uniform integrability: Theorem 5. In
Section 3, several properties of H-Orlicz spaces with drop property are
discussed. In Section 4, with the help of Theorem 5, we find relatively
weakly compact subset in H-Orlicz space via weak drop property.

Definition 1. [6] Let C be a closed convex set. A drop 𝐷(𝑥,C) deter-
mined by a point 𝑥 /∈ C is the convex hull of the set {𝑥} ∪ C. The set C
is said to have drop property if for every non empty closed set A disjoint
from C, there exists a point 𝑎 ∈ A, such that 𝐷(𝑎,C) ∩ A = {𝑎}.

Next we recall the concept of weakly sequentially closed set below.

Definition 2. [11] A set A is weakly sequentially closed if every A-valued
weakly convergent sequence has its limit in A.

Definition 3. [18] A closed convex set C is said to have the weak drop
property if for every weakly sequentially closed set A disjoint from C there
is an 𝑎 ∈ A, such that 𝐷(𝑎,C) ∩ 𝐴 = {𝑎}.

Recalling a closed bounded convex set C, a sequence {𝑥𝑛} in 𝑋 ∖ C,
such that 𝑥𝑛+1 ∈ 𝐷(𝑥𝑛,C) ∀𝑛 ∈ N is called a stream. It is known that
the norm ‖ · ‖ has drop property if and only if each stream in 𝑋 ∖ 𝐵(𝑋)
contains a convergent subsequence (see [18]). Giles et al. in [6] showed
that the norm ‖ · ‖ has weak drop property if and only if each stream in
𝑋 ∖𝐵(𝑋) contains a weakly convergent subsequence.

Definition 4. [14, Definition 2.5] A subset F of 𝐿1(Ω) is said to be
uniformly integrable if F is a bounded subset of 𝐿1(Ω), such that

lim
𝑐→∞

sup
𝑓∈F

∫︁
{|𝑓 |⩾𝑐}

|𝑓 |𝑑𝜇 = 0.

Recall de la Vallée Poussin Theorem from [17], as follows:

Theorem 1. Let F be a family of scalar measurable functions on a finite
measure space (Ω,Σ, 𝜇). Then the following conditions are equivalent:
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1) F =
{︀
𝑓𝛼 : 𝛼 is in an index set

}︀
is uniformly integrable.

2) There exists a convex function 𝜃 : R+ → R+, such that 𝜃(0) = 0,
𝜃(−𝑥) = 𝜃(𝑥) and 𝜃(𝑥)/𝑥 → ∞ as 𝑥 → ∞, in terms of which
sup
𝛼

∫︀
Ω

𝜃(𝑓𝛼)𝑠𝜇 <∞.

Definition 5. [1, Definition 1.1] Let 𝑚 : R+ → R+ be a non-decreasing
right-continuous and non-negative function satisfying

𝑚(0) = 0, and lim
𝑡→∞

𝑚(𝑡) = ∞.

A function 𝜃 : R+ → R+ is called an 𝑁 -function if there is a function ”𝑚”
satisfying the assumptions above and such that

𝜃(𝑢) =

|𝑢|∫︁
0

𝑚(𝑡)𝑑𝑡.

Evidently, 𝜃 is an 𝑁 -function if it is continuous, convex, even, satisfies

lim
𝑢→∞

𝜃(𝑢)

𝑢
= ∞ and lim

𝑢→0

𝜃(𝑢)

𝑢
= 0.

For example, 𝜃𝑝(𝑥) = 𝑥𝑝; 𝑝 > 1. One can see [9] and references therein
for details of 𝑁 -functions.

Definition 6. ( [17, Definition 7, p 28], [1, Definition 1.5, 1.6])

(a) An 𝑁 -function 𝜃 is said to satisfy ∆
′ condition if there is a 𝑘 > 0,

so that

𝜃(𝑥𝑦) ⩽ 𝑘𝜃(𝑥)𝜃(𝑦) for large values of 𝑥 and 𝑦.

(b) An 𝑁 -function 𝜃 is said to satisfy ∆2 condition if there is a 𝑘 > 0,
so that

𝜃(2𝑥) ⩽ 𝑘𝜃(𝑥) for large values of 𝑥.

Theorem 2. [18] Every closed bounded convex set with weak drop prop-
erty is weakly compact.

Remark. All Young’s functions are convex. It is easy to claim that every
closed bounded set of Young’s functions with weak drop property is weakly
compact. Also, every bounded closed convex set of 𝑁 -function with weak
drop property is weakly compact.
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Henstock-Kurzweil integral is defined as follows:

Definition 7. [8] A function 𝑓 : [𝑎, 𝑏] → R is said to be Henstock-
Kurzweil integrable on a set [𝑎, 𝑏] if there is an element 𝐼[𝑎,𝑏] ∈ R, such
that for every 𝜖 > 0 there is a positive function 𝛿 (called gauge) on [𝑎, 𝑏]
with ⃒⃒

𝑆(𝑓, 𝑃 )− 𝐼[𝑎,𝑏]
⃒⃒
< 𝜖

whenever 𝑃 =
{︀
𝑎 = 𝑥0 ⩽ 𝑥1 ⩽ 𝑥2 . . . ⩽ 𝑥𝑛 = 𝑏

}︀
is a 𝛿-fine partition of

[𝑎, 𝑏] and 𝑆(𝑓, 𝑃 ) =
𝑛∑︀

𝑖=1

𝑓(𝑡𝑖)(𝑥𝑖 − 𝑥𝑖−1) is a Riemann sum.

Through out the article, the space of Henstock-Kurzweil integrable
functions is denoted by 𝐻𝐾(𝜇). This space is not complete with the
Alexiewicz semi-norm

‖𝑓‖𝐴 = sup
[𝑎,𝑏]⊂R

|
∫︁ 𝑏

𝑎

𝑓 |,

where the integral is in the sense of Henstock-Kurzweil.

Theorem 3. [7, Theorem 1.1] If 𝑓 : 𝐼0 ⊆ [0, 1] → R is a measurable func-
tion with the gauge 𝛿 : 𝐼0 → R, then 𝑔 = 𝜃(𝑓) : [0, 1] → R+ is Henstock-
Kurzweil integrable.

Let (𝑋,Σ, 𝜇) be a measure space and 𝑋 be a Banach space. The Orlicz
space 𝐿𝜃

*(𝑋,Σ, 𝜇) or 𝐿𝜃
*(𝜇) is defined as follows: if 𝜃(𝑓) = (𝐿)

∫︀
𝜃(𝑓)𝑑𝜇,

then
𝐿𝜃(𝜇) =

{︀
𝑓 measurable : 𝜃(𝑓) <∞

}︀
. (1)

The space 𝐿𝜃(𝜇) is absolutely convex, i.e., if 𝑓, 𝑔 ∈ 𝐿𝜃(𝜇) and 𝛼, 𝛽 are
scalars, such that |𝛼| + |𝛽| ⩽ 1, then 𝛼𝑓 + 𝛽𝑔 ∈ 𝐿𝜃(𝜇). Also, if 𝜃 ∈ ∆2,
then 𝐿𝜃(𝜇) is a linear space (see [17, Theorem 2]). If 𝜃 : R+ → R+ is a
Young function, then it can be represented as

𝜃(𝑥) =

𝑥∫︁
0

𝜑(𝑥)𝑑𝑥, 𝑥 ∈ R+,

where 𝜑(0) = 0, 𝜑 : R+ → R+ is non-decreasing left-continuous, and if
𝜑(𝑥) = +∞ for 𝑥 ⩾ 𝑎, 𝑥 ⩾ 𝑎 > 0, then 𝜃(𝑥) = +∞ for 𝑥 ⩾ 𝑎. The
function 𝜑 is called the complementary function of 𝜃 (see [17, Corollary 2]).
If 𝜑 denotes the complementary in Young’s sense function to 𝜃, and

𝐿𝜃
*(𝜇) =

{︁
𝑓 measurable :

⃒⃒
(𝐿)

∫︁
𝑓𝑔𝑑𝜇

⃒⃒
<∞ for all 𝑔 ∈ 𝐿𝜑(𝜇)

}︁
,
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the collection 𝐿𝜃
*(𝜇) is then a linear space. The collection

(︁
𝐿𝜃
*(𝜇), ‖ · ‖𝐿𝜃

*

)︁
is a Banach space called an Orlicz space, where

‖𝑓‖𝐿𝜃
*
= sup

{︁⃒⃒ ∫︁
𝑓𝑔𝑑𝜇

⃒⃒
: 𝜑(𝑔) ⩽ 1

}︁
.

Moreover, let ‖ · ‖(𝜃) be the Minkowski functional associated with the
convex set

{︀
𝑓 ∈ 𝐿𝜃

*(𝜇) : 𝜃(𝑓) ⩽ 1
}︀
. In the sequel, ‖ · ‖(𝜃) is an equivalent

norm on 𝐿𝜃
*(𝜇), called the Luxemberg norm. Indeed,

‖𝑓‖(𝜃) ⩽ ‖𝑓‖𝐿𝜃
*
⩽ 2‖𝑓‖(𝜃) for all 𝑓 ∈ 𝐿𝜃

*(𝜇).

For details of Orlicz spaces, see [1], [9], [13], [17] and references therein. It
is clear that ∆2 conditions of the Young function play crucial role for the
reflexivity of the Orlicz space (see [9], [13], [17]). Now, we recall reflexivity
of Orlicz space.

Theorem 4. [1], [9] The Orlicz space 𝐿𝜃
*(𝜇) is reflexive if and only if

𝜃 ∈ ∆2.

2. Uniform integrability and weak drop property. In this sec-
tion, we prove that a closed and bounded convex set of 𝐻𝐾(𝜇) is uniform
integrable if and only if the set has weak drop property. Consider a finite
collection 𝑃 =

{︁
(∆𝑖, 𝑡𝑖) : 𝑖 = 1, 2, . . . , 𝑝

}︁
, where ∆𝑖 are non-overlapping

intervals in [0, 1], 𝑡𝑖 ∈ ∆𝑖 and
𝑝⋃︀

𝑖=1

∆𝑖 = [0, 1].

A strictly positive function 𝛿 on 𝐼0 ⊂ [0, 1] is called a gauge on 𝐼0.
Given a gauge 𝛿 on [0, 1], a partition 𝑃 =

{︁
(∆𝑖, 𝑡𝑖) : 𝑖 = 1, 2, . . . , 𝑝

}︁
of

[0, 1] is called 𝛿-fine if ∆𝑖 ⊂ (𝑡𝑖 − 𝛿(𝑡𝑖), 𝑡𝑖 + 𝛿(𝑡𝑖)) for 𝑖 = 1, 2, . . . , 𝑝. Given
a partition 𝑃 =

{︁
(∆𝑖, 𝑡𝑖) : 𝑖 = 1, 2, . . . , 𝑝

}︁
of [0, 1], Henstock-Kurzweil

integral sum 𝑆(𝑃, 𝑔) =
∑︀𝑝

𝑖=1 𝑔(𝑡𝑖)|∆𝑖|.
Definition 8. [5] Let 𝑔 : [0, 1] → 𝑋, 𝑥 ∈ 𝑋. We say 𝑥 is a Henstock-
Kurzweil point of 𝑔, if for every 𝜖 > 0 and for every gauge 𝛿 on [0, 1] there
is a 𝛿-fine partition 𝑃 of [0, 1], such that ‖𝑆(𝑃, 𝑔) − 𝑥‖ < 𝜖. We denote
𝐼𝐻𝐾(𝑔) the set of all Henstock-Kurzweil points of 𝑔.

It can be seen from the Theorem 3 that we get a class of subsets of
𝐻𝐾(𝜇) as follows: {︁

𝐼𝐻𝐾(𝑔) : 𝑔 =

∫︁
[0,1]

𝜃(𝑓) ∈ 𝐻𝐾(𝜇)
}︁
.
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Let F = {𝐼𝐻𝐾(𝑔) : 𝑔 = 𝜃(𝑓) ∈ 𝐻𝐾(𝜇)} be a bounded closed subset of
𝐻𝐾(𝜇). Clearly, F is a convex set.

Definition 9. Let 𝑔 : [0, 1] → 𝑋 be an arbitrary function. We will say
that a point 𝑥 ∈ 𝑋 belongs to the weak limit set 𝑊𝐼𝐻𝐾(𝑔) of 𝑔, if for any
weak neighborhood 𝑈 of 𝑥 and any partition 𝑃 of [0, 1] there exists a finer
partition 𝑄 > 𝑃 , such that 𝑆(𝑄, 𝑔) ∈ 𝑈 .

For 𝜖 > 0, we set

𝜈(F, 𝜖) = sup
{︁
(𝐻𝐾)

∫︁
𝐴

|𝜉|𝑑𝜇 : 𝜉 ∈ F, 𝐴 ∈ Σ, 𝜇(𝐴) ⩽ 𝜖
}︁

and define the modulus of uniform integrability 𝜈(F) of F by

𝜈(F) = lim
𝜖→0

𝜈(F, 𝜖) = inf
𝜖>0

𝜈(F, 𝜖).

Lemma 1. Let F be a subset of 𝐻𝐾(𝜇). Then the following are equiv-
alent:

1) F has weak drop property.
2) F is weakly sequentially compact in 𝐻𝐾(𝜇).
3) F is a bounded subset of 𝐻𝐾(𝜇) satisfying the two properties:

𝜈(F) = 0 and for every 𝜖 > 0 there exists [0, 1]𝜖 ∈ Σ, such that
𝜇([0, 1]𝜖) <∞ and

sup
𝜉∈F

(𝐻𝐾)

∫︁
[0,1]∖[0,1]𝜖

|𝜉|𝑑𝜇 ⩽ 𝜖.

Proof. For (1) =⇒ (2) : Suppose F has weak drop property. The [15,
Proposition 4.4.7] states that F is weakly compact. Clearly, Eberlein-
Smulian theorem says that F is weakly sequentially compact in 𝐻𝐾(𝜇).

(2) =⇒ (3) follows from [14, Theorem 2.3].
For (3) =⇒ (1) : Given F is a bounded subset of𝐻𝐾(𝜇) satisfying the

two properties: 𝜈(F) = 0 and for every 𝜖 > 0 there exist [0,1]𝜖 ∈ Σ, such
that 𝜇([0, 1]𝜖) < ∞ and sup

𝜉∈F
(𝐻𝐾)

∫︀
[0,1]∖[0,1]𝜖 |𝜉|𝑑𝜇 ⩽ 𝜖. Since 𝜈(F) = 0 and

F is a bounded subset of 𝐻𝐾(𝜇), we can confirm from [14, Proposition 2.6]
that F is uniformly integrable. Hence, from Prokhorov’s theorem (see [16,
Theorem 1.12]) F =

[︁
(𝐻𝐾)

∫︀
[0,1]

𝜉𝑑𝜇, (𝐻𝐾)
∫︀
[0,1]

𝜉𝑑𝜇
]︁

is weakly sequentially
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pre-compact. The definition of weakly sequentially pre-compact is: every
sequence {𝜉𝑛} in F has a subsequence {𝜉𝑛𝑘

} that converges weakly to some
𝜉 ∈ 𝐻𝐾(𝜇).

Suppose F does not have weak drop property. Then there exists a
weakly sequentially closed set C of 𝐻𝐾(𝜇) disjoint from F, such that
𝑐 ∈ C, inf

{︁
𝑑(𝑥,F) : 𝑥 ∈ C ∩ 𝐷(𝑐,F)

}︁
= 0. So, there exists a sequence

{𝑥𝑛} in C, such that 𝑥𝑛+1 ∈ 𝐷(𝑥𝑛,F) and there exists a sequence {𝑦𝑛} in
F, such that ‖𝑥𝑛 − 𝑦𝑛‖ → 0. As a stream {𝑥𝑛} has a subsequence {𝑥𝑛𝑘

}
weakly convergent to some 𝑥0 and C is weakly sequentially closed, 𝑥0 ∈ C,
but ‖𝑥𝑛𝑘

− 𝑦𝑛𝑘
‖ → 0. So, {𝑦𝑛𝑘

} is weakly convergent to 𝑥0. Since F is
closed and convex, in both cases 𝑥0 ∈ F. This is a contradiction to the
fact that C & F are disjoint. Hence, F has weak drop property. □

Theorem 5. A closed bounded convex subset F of 𝐻𝐾(𝜇) is uniformly
integrable if and only if F has weak drop property.

Proof. The proof follows directly from Lemma 1. □

Proposition 1. A subset F of 𝐻𝐾(𝜇) is bounded and uniformly inte-
grable if and only if there is an 𝑁 -function 𝜃, such that

sup
{︁
𝐼𝐻𝐾(𝑔) : 𝑔 = 𝜃(𝑓) ∈ 𝐻𝐾(𝜇)

}︁
<∞.

3. H-Orlicz spaces and weak drop property. In this section, we
discuss the reflexivity of the H-Orlicz spaces with the drop property. For
an 𝑁 -function 𝜃 and a measurable 𝑓 define 𝑔 = (𝐻𝐾)

∫︀
[0,1]

𝜃(𝑓)𝑑𝜇.
Let

𝐻𝜃 =
{︁
𝑓 m𝑒𝑎𝑠𝑢𝑟𝑎𝑏𝑙𝑒 : 𝑔 <∞

}︁
.

If 𝜑 is the complement of 𝜃, we assume

𝐻𝜃
* =

{︁
𝑓 m𝑒𝑎𝑠𝑢𝑟𝑎𝑏𝑙𝑒 : |(𝐻𝐾)

∫︁
𝑓 f| <∞ 𝑓𝑜𝑟𝑎𝑙𝑙 f ∈ 𝐻𝜑

}︁
.

The collection 𝐻𝜃
* is a linear space. For 𝑓 ∈ 𝐻𝜃

* , define

‖𝑓‖𝜃 = sup

{︂
|(𝐻𝐾)

∫︁
𝑓 f𝑑𝜇| : g ⩽ 1

}︂
, g = (𝐻𝐾)

∫︁
[0,1]

𝜑(f)𝑑𝜇.

Then (𝐻𝜃
* , ‖ · ‖𝜃) is a Banach space called an H-Orlicz space. Moreover,

letting ‖ · ‖(𝜃) be the Minkowski functional associated with the convex set
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{︀
𝑓 ∈ 𝐻𝜃

* : g ⩽ 1
}︀
, we have the fact that ‖ · ‖(𝜃) is an equivalent norm on

𝐻𝜃
* , called the Luxemberg norm.

In fact, ‖𝑓‖(𝜃) ⩽ ‖𝑓‖𝜃 ⩽ 2‖𝑓‖(𝜃), for all 𝑓 ∈ 𝐻𝜃
* .

Theorem 6. The H-Orlicz space 𝐻𝜃
* (𝜇) is reflexive if and only if 𝜃 ∈ ∆2.

Proof. The proof is similar to the proof [13, Theorem 5]. □

Theorem 7. Let 𝜃 be a 𝑁 -function and 𝐸𝜃 be the closure of the bounded
functions in 𝐻𝜃

* . Then the conjugate space (𝐸𝜃, ‖ · ‖(𝜃)) is isometrically
isomorphic to (𝐻𝜑

* , ‖ · ‖(𝜑)), where 𝜑 is the complement of 𝜃.

Proof. Let 𝑣𝜃 ∈ 𝐻𝜃
* ; define 𝑓 : 𝐸𝜃 → R by

𝑓(𝑢𝜃) = (𝐻𝐾)

∫︁
[0,1]

< 𝑣𝜃(𝑡), 𝑢𝜃(𝑡) > 𝑑𝜇.

Then 𝑓 is well defined. Also 𝑢𝜃, 𝑣𝜃 are limits of simple functions, so that
< 𝑣𝜃, 𝑢𝜃 > is measurable. So,

(𝐻𝐾)

∫︁
[0,1]

| < 𝑣𝜃, 𝑢𝜃 > |𝑑𝜇 ⩽ (𝐻𝐾)

∫︁
[0,1]

‖𝑣𝜃(𝑡)‖𝐻𝐾 .‖𝑢𝜃(𝑡)‖𝐻𝐾𝑑𝜇

⩽ ‖𝑣𝜃‖𝜃.‖𝑢𝜃‖𝜑.

Consequently, 𝑓(𝑣𝜃) = (𝐻𝐾)
∫︀
[0,1]

< 𝑣𝜃(𝑡), 𝑢𝜃(𝑡) > 𝑑𝜇 is linear and

‖𝑓‖𝐻𝐾 ⩽ ‖𝑣‖𝜃. Consider 𝑣𝜃 =
∞∑︀
𝑖=1

𝑥𝑖𝜒ℰ𝑖 , 𝑥𝑖 ∈ 𝑋, 𝑖 = 1, 2, . . ., and
{︀
ℰ𝑖
}︀∞
𝑖=1

is a countable partition of [0, 1] with 𝜇(ℰ𝑖) > 0, 𝑖 = 1, 2 . . .. Now, for
𝜖 > 0, |𝑣𝜃| ∈ 𝐻𝜃

* (𝜇), so there exists a non-negative ℎ ∈ 𝐸𝜑(𝜇) ⊂ 𝐻𝐾(𝜇),
0 < ‖ℎ‖𝜑 ⩽ 1, such that

‖𝑣𝜃‖𝜃 −
𝜖

2
< (𝐻𝐾)

∫︁
[0,1]

‖𝑣𝜃(𝑡)‖𝐻𝐾ℎ(𝑡)𝑑𝜇.

If ‖𝑥𝑖‖ = 1, so that
‖𝑥*𝑖 ‖ −

𝜖

2
‖ℎ‖−1

𝐻𝐾 ⩽ 𝑥*𝑖 (𝑥𝑖)

and 𝑢𝜃 =
∞∑︀
𝑖=1

𝑥𝑖ℎ𝜒ℰ𝑖 , then for 𝛼 > 0 we have

(𝐻𝐾)

∫︁
[0,1]

𝜃
(︀
‖𝛼𝑢𝜃(𝑡)‖

)︀
𝑑𝜇 =

∞∑︁
𝑖=1

(𝐻𝐾)

∫︁
ℰ𝑖

𝜃(‖𝛼𝑥𝑖ℎ(𝑡)‖)𝑑𝜇 =
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=
∞∑︁
𝑖=1

(𝐻𝐾)

∫︁
ℰ𝑖

𝜃(𝛼|ℎ(𝑡)|)𝑑𝜇 = (𝐻𝐾)

∫︁
[0,1]

𝜃(𝛼|ℎ(𝑡))𝑑𝜇 <∞.

Thus, 𝑢𝜃 ∈ 𝐸𝜃 and

‖𝑢𝜃‖𝜃 = inf
{︁
𝛼 > 0: (𝐻𝐾)

∫︁
[0,1]

𝜃
(︁ |𝑢|
𝛼

)︁
⩽ 1
}︁
=

= inf
{︁
𝛼 > 0:

∞∑︁
𝑖=1

(𝐻𝐾)

∫︁
ℰ𝑖

𝜃
(︁ |ℎ(𝑡)|

𝛼

)︁
𝑑𝜇 ⩽ 1

}︁
=

= ‖ℎ‖𝜃 ⩽ 1.

Now,

𝑓(𝑢𝜃) =< 𝑣𝜃, 𝑢𝜃 >= (𝐻𝐾)

∫︁
[0,1]

< 𝑣𝜃, 𝑢𝜃 > 𝑑𝜇 =

= (𝐻𝐾)

∫︁
[0,1]

ℎ(𝑡)
∞∑︁
𝑖=1

𝑥*𝑖 (𝑥𝑖)𝜒ℰ𝑖𝑑𝜇 ⩾

⩾ (𝐻𝐾)

∫︁
[0,1]

ℎ(𝑡)
∞∑︁
𝑖=1

(︂
‖𝑥*𝑖 ‖ −

𝜖

2
‖ℎ‖−1

𝐻𝐾

)︂
𝑑𝜇 =

= (𝐻𝐾)

∫︁
[0,1]

ℎ(𝑡)‖𝑢𝜃(𝑡)‖𝑑𝜇− 𝜖

2
.

(𝐻𝐾)
∫︀

[0,1]

ℎ(𝑡)𝑑𝜇

‖ℎ‖𝐻𝐾

⩾

⩾ ‖𝑣𝜃‖𝜑 −
𝜖

2
− 𝜖

2
.

So, ‖𝑓‖𝐻𝐾 ⩾ ‖𝑣𝜃‖𝜑. Hence, ‖𝑓‖𝐻𝐾 = ‖𝑣𝜃‖𝜑 and 0 ⩽ ‖𝑓 − 𝑓𝑛‖𝐻𝐾 ⩽
⩽ ‖𝑣𝜃−𝑣𝜃𝑛‖𝜑 → 0. Therefore, ‖𝑓‖𝐻𝐾 = lim

𝑛→∞
‖𝑓𝑛‖ = lim

𝑛→∞
‖𝑣𝜃𝑛‖𝜑 = ‖𝑣𝜃‖𝜑.

So, 𝐻𝜑
* is isometrically isomorphic to a subspace of 𝐸𝜃. □

Theorem 8. The H-Orlicz space 𝐻𝜃
* (𝜇) has weak drop property if and

only if 𝜃 ∈ ∆2.

Proof. The H-Orlicz space 𝐻𝜃
* (𝜇) is reflexive if and only if 𝜃 ∈ ∆2.

We can conclude the complete proof with a similar way of the proof of
the [6, Theorem 5]. □
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4. Some consequences for relatively weakly compact subset
in H-Orlicz spaces. In this section, we discuss the subsets of 𝐻𝐾(𝜇)
with weak drop property that are relatively weakly compact in 𝐻𝜃

* (𝜇).

Theorem 9. A closed and bounded convex subset F of 𝐻𝐾(𝜇) has weak
drop property if and only if there is an 𝑁 -function 𝜃 with ∆′ condition,
such that F is relatively weakly compact in 𝐻𝜃

* (𝜇).

Proof. Suppose a closed and bounded convex subset F of 𝐻𝐾(𝜇) has
weak drop property. From the Theorem 5, F is uniform integrable.

Take an 𝑁 -function 𝜃 ∈ ∆′ with 𝜃(𝜃(𝑥)) ⩽ 𝜃1(𝑥), where 𝜃1 is
an 𝑁 -function for large values of 𝑥.

Then sup
{︁
(𝐻𝐾)

∫︀
[0,1]

𝜃(𝜃(𝜉))𝑑𝜉 : 𝜉 ∈ F
}︁
< ∞. So, by de la Vallée

Poussin’s theorem, F =
{︁
𝐼𝐻𝐾(𝑔) : 𝑔 =

∫︀
[0,1]

𝜃(𝑓)
}︁

is uniformly integrable in

𝐻𝐾(𝜇). The modulus of uniform integrability vanishes: 𝜈(F) = 0 in 𝐻𝜃
* .

Since F has weak drop property, so, F is relatively compact in 𝐻𝐾(𝜇).
It is also relatively compact in the topology of convergence in measure.
Hence, F is relatively compact in 𝐻𝜃

* (𝜇). □

Theorem 10. Let 𝜃 ∈ ∆2 and suppose that its complement 𝜑 satisfies
lim
𝑡→∞

𝜑(𝑐𝑡)
𝜑(𝑡)

= ∞ for some 𝑐 > 0; then there is a closed bounded convex set

F ⊂ 𝐻𝜃
* (𝜇) that is relatively weakly compact if and only if 𝜈(F) = 0.

Proof. Let us consider the closed bounded convex set F ⊂ 𝐻𝜃
* (𝜇) that is

relatively compact. If possible, assume 𝜈(F) ̸= 0; then there is an 𝜖0 > 0,
a sequence (𝑓𝑛) ⊂ F, and a measurable sequence (ℰ𝑛) with 𝜇(ℰ𝑛) → 0, so
‖𝜒ℰ𝑛𝑓𝑛‖ > 𝜖0 for each 𝑛 ∈ N.

Using the Eberlein-Smulian theorem, we can have 𝑓 ∈ 𝐻𝜃
* and a subse-

quence (𝑓𝑛𝑘
) of (𝑓𝑛), so that 𝑓𝑛𝑘

→ 𝑓 weakly in 𝐻𝜃
* (𝜇). We can state that

‖ · ‖𝜃 has weak drop from [6, Theorem 5]. The Lemma 1 gives 𝜈(F) = 0.

Conversely, suppose 𝜈(F) = 0 and F ⊂ 𝐸𝜃. If (𝑓𝑛) is a sequence in F,
it is bounded in 𝐻𝐾(𝜇)-norm as (𝑓𝑛) is bounded in 𝐻𝜃

* -norm. Now, by
Komlós’s theorem, there is a subsequence (𝑓𝑛𝑘

) that has 𝜇-a.e. convergent
arithmetic means to 𝑓 . When 𝜑 is the complement of 𝜃, we have, for any
measurable subset ℰ ⊂ [0, 1] and 𝑔 ∈ 𝐻𝜃

* with ‖𝑔‖𝜑 ⩽ 1:

𝜈(F) = |(𝐻𝐾)

∫︁
𝑔𝜒ℰ𝑓𝑑𝜇| ⩽ (𝐻𝐾)

∫︁
|𝑔𝜒ℰ𝑓 |𝑑𝜇 ⩽
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⩽ lim
𝑛

inf(𝐻𝐾)

∫︁
|𝑔𝜒ℰ

1

𝑛

𝑛∑︁
𝑘=1

𝑓𝑛𝑘
|𝑑𝜇 ⩽ sup

𝑛

1

𝑛

𝑛∑︁
𝑘=1

(𝐻𝐾)

∫︁
|𝑔𝜒ℰ𝑓𝑛𝑘

|𝑑𝜇 ⩽

⩽ sup
𝑛

1

𝑛

𝑛∑︁
𝑘=1

‖𝑔‖(𝜑).‖𝜒ℰ𝑓𝑛𝑘
‖𝜃 ⩽ sup

{︁
‖𝜒ℰℎ‖𝜃 : ℎ ∈ F

}︁
= 0

Thus,

‖𝜒ℰ𝑓‖𝜃 ⩽ sup
{︁
|(𝐻𝐾)

∫︁
𝑔𝜒ℰ𝑓𝑑𝜇| : ‖𝑔‖(𝜑) ⩽ 1

}︁
⩽

⩽ sup
{︁
‖𝜒ℰℎ‖𝜃 : ℎ ∈ F

}︁
= 0

So, 𝑓 ∈ 𝐻𝜃
* (𝜇) with absolutely continuous norm. Assume 𝑎𝑛 = 1

𝑛

∑︀𝑛
𝑘=1 ℎ𝑘.

Since the inclusion map: 𝐻𝜑
* → 𝐻𝐾(𝜇) is continuous, there is a 𝐾 > 0,

such that ‖𝑔‖𝐻𝐾 ⩽ 𝐾‖𝑔‖𝜑 ∀ 𝑔 ∈ 𝐻𝜑
* . Now for any 𝜖 > 0 choose 𝛿 > 0, so

that sup
{︁
|𝜒ℰℎ‖𝜃 : ℎ ∈ F

}︁
= 0 whenever 𝜇(ℰ) < 𝛿. By Egorov’s theorem,

there is a measurable set ℰ with 𝜇([0, 1]∖ℰ) < 𝛿, so that 𝑎𝑛 → 𝑓 uniformly
on ℰ . Choose 𝑁 ∈ N, so that ‖𝜒ℰ(𝑎𝑛−𝑓)‖∞ → 0 whenever 𝑛 ⩾ 𝑁 . Then,
for 𝑔 ∈ 𝐻𝜑

* with ‖𝑔‖𝜑 ⩽ 1 and 𝑛 ⩾ 𝑁, |(𝐻𝐾)
∫︀
𝑔(𝑎𝑛 − 𝑓)𝑑𝜇| → 0. So, F

is a Banach-Saks set in 𝐻𝜃
* . Since 𝑓𝑛𝑘

→ 𝑓 weakly in 𝐻𝜃
* , so, by Eberlein

Smulian theorem, F is relatively weakly compact in 𝐻𝜃
* . □

Conclusions. In this article, we have studied uniform integrability of
a closed bounded convex sets with weak drop property. Relatively weakly
compactness of some subsets of 𝐻𝐾(𝜇) with weak drop property that are
relatively weakly compact in 𝐻𝜃

* (𝜇) have been also discussed.
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