DOI: 10.15393/j3.art.2024.14050

UDC 517.587, 517.521, 517.538.3

J. Souissi

CHARACTERIZATION OF POLYNOMIALS VIA A RAISING OPERATOR

Abstract. This paper investigates a first-order linear differential operator \mathcal{J}_{ξ} , where $\xi = (\xi_1, \xi_2) \in \mathbb{C}^2 \setminus (0, 0)$, and $D := \frac{d}{dx}$. The operator is defined as $\mathcal{J}_{\xi} := x(xD + \mathbb{I}) + \xi_1 \mathbb{I} + \xi_2 D$, with \mathbb{I} representing the identity on the space of polynomials with complex coefficients. The focus is on exploring the \mathcal{J}_{ξ} -classical orthogonal polynomials and analyzing properties of the resulting sequences. This work contributes to the understanding of these polynomials and their characteristics.

Key words: orthogonal polynomials, classical polynomials, secondorder differential equation, raising operator

2020 Mathematical Subject Classification: Primary 33C45; Secondary: 42C05

1. Introduction. An orthogonal polynomial sequence $\{P_n\}_{n\geq 0}$ is called *classical*, if $\{P'_n\}_{n\geq 0}$ is also orthogonal. This characterization is essentially the Hahn-Sonine characterization (see [9], [14]) of the classical orthogonal polynomials.

In a more general setting, let \mathcal{O} be a linear operator acting on the space of polynomials, which sends polynomials of degree n to polynomials of degree $n + n_0$, where n_0 is a fixed integer $(n \ge 0 \text{ if } n_0 \ge 0 \text{ and } n \ge n_0 \text{ if } n_0 < 0)$. We call a sequence $\{p_n\}_{n\ge 0}$ of orthogonal polynomials \mathcal{O} -classical if $\{\mathcal{O}p_n\}_{n\ge 0}$ is also orthogonal.

In this paper, we consider the raising operator, $\mathcal{J}_{\xi} := x(xD + \mathbb{I}) + \xi_1\mathbb{I} + \xi_2D$, where $\xi = (\xi_1, \xi_2)$ is a nonzero free parameter and \mathbb{I} represents the identity operator. We describe all the \mathcal{J}_{ξ} -classical orthogonal polynomial sequences.

The basic idea has been deduced by starting from the raising operator $\mathcal{U}_{\xi_2} := x(xD + \mathbb{I}) + \xi_2 D$ (see [1]). Now, to obtain a raising operator, we can add $\xi_1 \mathbb{I}$ to \mathcal{U}_{ξ_2} . Then we can consider the perturbed operator, given

[©] Petrozavodsk State University, 2024

in the previous paragraph, $\mathcal{J}_{\xi} := \mathcal{U}_{\xi_2} + \xi_1 \mathbb{I}$, where $(\xi_1, \xi_2) \neq (0, 0)$ because the orthogonality is not preserved for $(\xi_1, \xi_2) = (0, 0)$.

As a result associated to \mathcal{U}_{ξ_2} , we have that the scaled Chebyshev polynomial sequence $\{a^{-n}U_n(ax)\}_{n\geq 0}$ with $a^2 = -\xi_2^{-1}$ is the only \mathcal{U}_{ξ_2} -classical sequence, (for more details see [1]). In [2] the others prove that the scaled Bessel polynomial sequence $\{B_n^{(\frac{3}{2})}\}_{n\geq 0}$ is the only \mathcal{J}_{ξ} -classical orthogonal polynomial sequence for $\xi_2 = 0$. For the raising operator \mathcal{J}_{ξ} , the result is completely different. More precisely, in $\xi_1 \neq 0, \xi_2 \neq 0$ the Jacobi polynomial sequence $\{P_n^{(\alpha,\beta)}\}_{n\geq 0}$ is the only \mathcal{J}_{ξ} -classical orthogonal polynomial sequence with $\alpha = \frac{1-i\xi_1\mu}{2}, \beta = \frac{1+i\xi_1\mu}{2}, \mu^2 = \xi_2$, and $\xi_1\mu \neq i(2k+1), k \in \mathbb{Z}_{\setminus\{-1,0\}}$.

The structure of the paper is the following: In Section 2, a basic background about forms, orthogonal polynomials is given. In Section 3, we find the \mathcal{J}_{ξ} -classical orthogonal polynomials. In Section 4, we give some properties of the sequence obtained.

2. Preliminaries. Let \mathbb{P} be the linear space of polynomials in one variable with complex coefficients. The algebraic dual space of \mathbb{P} will be represented by \mathbb{P}' . We denote by $\langle u, p \rangle$ the action of $u \in \mathbb{P}'$ on $p \in \mathbb{P}$ and by $(u)_n := \langle u, x^n \rangle$, $n \ge 0$, the sequence of moments of u with respect to the polynomial sequence $\{x^n\}_{n\ge 0}$.

Let us define the following operations in \mathbb{P}' . For linear functionals u, any polynomial g, and any $(a, b) \in \mathbb{C} \setminus \{0\} \times \mathbb{C}$, let $Du = u', gu, \tau_{-b}u$ and $h_a u$ be the linear functionals defined by duality, [11]:

$$\langle u', f \rangle := -\langle u, f' \rangle, \quad \langle gu, f \rangle := \langle u, gf \rangle, \ f \in \mathcal{P},$$
$$\langle h_a u, f \rangle := \langle u, h_a f \rangle = \langle u, f(ax) \rangle, \ \langle \tau_{-b} u, f \rangle := \langle u, \tau_b f \rangle = \langle u, f(x-b) \rangle, \ f \in \mathcal{P}$$

A linear functional u is called *normalized* if it satisfies $(u)_0 = 1$.

Lemma 1. [13], [11] For any $u \in \mathbb{P}'$ and any integer $m \ge 1$, the following statements are equivalent:

(i) $\langle u, P_{m-1} \rangle \neq 0, \langle u, P_n \rangle = 0, n \ge m.$

(ii) $\exists \lambda_k \in \mathbb{C}, \ 0 \leq k \leq m-1, \ \lambda_{m-1} \neq 0$, such that $u = \sum_{k=0}^{m-1} \lambda_k u_k$.

As a consequence, the dual sequence $\{u_n^{[1]}\}_{n\geq 0}$ of $\{P_n^{[1]}\}_{n\geq 0}$, where $P_n^{[1]}(x) := (n+1)^{-1}P'_{n+1}(x), n \geq 0$, is given by

$$Du_n^{[1]} = -(n+1)u_{n+1}, n \ge 0.$$

Similarly, the dual sequence $\{\tilde{u}_n\}_{n\geq 0}$ of $\{\tilde{P}_n\}_{n\geq 0}$, where $\tilde{P}_n(x) := a^{-n}P_n(ax+b)$ with $(a,b) \in \mathbb{C} \setminus \{0\} \times \mathbb{C}$, is given by

$$\tilde{u}_n = a^n (h_{a^{-1}} \circ \tau_{-b}) u_n, \ n \ge 0.$$

The form u is called *regular* if we can associate with it a sequence $\{P_n\}_{n\geq 0}$, such that

$$\langle u, P_n P_m \rangle = r_n \delta_{n,m}, \quad n, \ m \ge 0, \quad r_n \ne 0, \quad n \ge 0.$$

The sequence $\{P_n\}_{n\geq 0}$ is then called a monic *orthogonal* polynomial sequence (MOPS) with respect to u. Note that $u = (u)_0 u_0$, with $(u)_0 \neq 0$. When u is regular, let F be a polynomial, such that Fu = 0. Then F = 0 [11].

Proposition 1. [11]. Let $\{P_n\}_{n\geq 0}$ be a MOPS with deg $P_n = n$, $n \geq 0$, and let $\{u_n\}_{n\geq 0}$ be its dual sequence. The following statements are equivalent:

- (i) $\{P_n\}_{n\geq 0}$ is orthogonal with respect to u_0 ;
- (ii) $u_n = \langle u_0, P_n^2 \rangle^{-1} P_n u_0, \ n \ge 0;$
- (iii) $\{P_n\}_{n\geq 0}$ satisfies the three-term recurrence relation

$$\begin{cases} P_0(x) = 1, & P_1(x) = x - \beta_0, \\ P_{n+2}(x) = (x - \beta_{n+1})P_{n+1}(x) - \gamma_{n+1}P_n(x), & n \ge 0, \end{cases}$$
(1)

where

$$\beta_n = \langle u_0, x P_n^2 \rangle \langle u_0, P_n^2 \rangle^{-1}, \ n \ge 0,$$

$$\gamma_{n+1} = \langle u_0, P_{n+1}^2 \rangle \langle u_0, P_n^2 \rangle^{-1} \ne 0, \ n \ge 0.$$

If $\{P_n\}_{n\geq 0}$ is a MOPS with respect to the regular form u_0 , then $\{\tilde{P}_n\}_{n\geq 0}$ is a MOPS with respect to the regular form $\tilde{u}_0 = (h_{a^{-1}} \circ \tau_{-b})u_0$, and satisfies [13]

$$\begin{cases} \tilde{P}_0(x) = 1, & \tilde{P}_1(x) = x - \tilde{\beta}_0, \\ \tilde{P}_{n+2}(x) = (x - \tilde{\beta}_{n+1})\tilde{P}_{n+1}(x) - \tilde{\gamma}_{n+1}\tilde{P}_n(x), & n \ge 0, \end{cases}$$

where $\tilde{\beta}_n = a^{-1}(\beta_n - b)$ and $\tilde{\gamma}_{n+1} = a^{-2}\gamma_{n+1}$.

An orthogonal polynomial sequence $\{P_n\}_{n\geq 0}$ is called *D*-classical, if $\{P_n^{[1]}\}_{n\geq 0}$ is also orthogonal (*Hermite, Laguerre, Bessel or Jacobi*), [7], [9]. A second characterization of these polynomials, which will play the leading role in the sequel, is that they are the only polynomial solutions of the Second-Order Differential Equation (Bochner [5])

(SODE):
$$\phi(x)P_{n+1}'(x) - \psi(x)P_{n+1}'(x) = \lambda_n P_{n+1}(x), \ n \ge 0,$$
 (2)

where ϕ, ψ are polynomials, ϕ monic, $\deg \phi = t \leq 2$, $\deg \psi = 1$, and $\lambda_n = (n+1)(\frac{1}{2}\phi''(0)n - \psi'(0)) \neq 0$, $n \geq 0$.

If $\{P_n\}_{n\geq 0}$ is a classical sequence satisfying (2), then $\{\tilde{P}_n\}_{n\geq 0}$ is also classical and satisfies (see [11])

(SODE):
$$\tilde{\phi}(x)\tilde{P}_{n+1}''(x) - \tilde{\psi}(x)\tilde{P}_{n+1}'(x) = \lambda_n\tilde{P}_{n+1}(x), \ n \ge 0,$$
 (3)

where $\tilde{\phi}(x) = a^{-t}\phi(ax+b)$ and $\tilde{\psi}(x) = a^{1-t}\psi(ax+b)$.

Now let us provide a summary of some basic characteristics of classical orthogonal polynomials. We focus on two families: the Bessel orthogonal polynomials (C1) and the Jacobi orthogonal polynomials (C2).

Bessel Orthogonal Polynomials (C1): For $n \ge 0$ and $\alpha \ne -\frac{n}{2}$, the Bessel orthogonal polynomials are denoted by $P_n(x) = B_n^{(\alpha)}(x)$, with $u_0 = \mathcal{B}^{(\alpha)}$. The coefficients are given by:

$$\beta_0 = -\frac{1}{\alpha}, \quad \beta_n = \frac{1-\alpha}{(n+\alpha-1)(n+\alpha)}, \quad n \ge 0,$$

$$\gamma_n = -\frac{n(n+2\alpha-2)}{(2n+2\alpha-3)(n+\alpha-1)^2(2n+2\alpha-1)}, \quad n \ge 1.$$

The polynomials ϕ and ψ are x^2 and $-2(\alpha x + 1)$, respectively, and λ_n are $(n+1)(n+2\alpha)$ for $n \ge 0$.

Jacobi Orthogonal Polynomials (C2): For $n \ge 0$ and $(\alpha, \beta \ne -n, \alpha + \beta \ne -n - 1, n \ge 1)$, the Jacobi orthogonal polynomials are denoted by $P_n(x) = J_n^{(\alpha,\beta)}(x)$, with $u_0 = \mathcal{J}^{(\alpha,\beta)}$. The coefficients are given by:

$$\beta_0 = \frac{\alpha - \beta}{\alpha + \beta + 2}, \quad \beta_n = \frac{\alpha^2 - \beta^2}{(2n + \alpha + \beta)(2n + \alpha + \beta + 2)},$$
$$\gamma_n = \frac{4n(n + \alpha + \beta)(n + \alpha)(n + \beta)}{(2n + \alpha + \beta - 1)(2n + \alpha + \beta)^2(2n + \alpha + \beta + 1)}, \quad n \ge 1.$$

The polynomials ϕ and ψ are $x^2 - 1$ and $-(\alpha + \beta + 2)x + \alpha - \beta$, respectively, and λ_n are $(n+1)(n+\alpha+\beta+2)$ for $n \ge 0$.

3. The \mathcal{J}_{ξ} -classical orthogonal polynomials. Recall the operator

$$\mathcal{J}_{\xi} : \mathbb{P} \longrightarrow \mathbb{P}$$

 $f \longmapsto \mathcal{J}_{\xi}(f) = (x^2 + \xi_2)f' + (x + \xi_1)f.$

Definition 1. We call a sequence $\{P_n\}_{n\geq 0}$ of orthogonal polynomials \mathcal{J}_{ξ} -classical if there exist a sequence $\{Q_n\}_{n\geq 0}$ of orthogonal polynomials, such that $\mathcal{J}_{\xi}P_n = Q_{n+1}, n \geq 0$.

For any MPS $\{P_n\}_{n\geq 0}$, we define the MPS $\{Q_n\}_{n\geq 0}$, given by $Q_{n+1}(x) := \frac{\mathcal{J}_{\xi}P_n(x)}{n+1}, n \geq 0$, or, equivalently,

$$(n+1)Q_{n+1}(x) := (x^2 + \xi_2)P'_n(x) + (x + \xi_1)P_n(x), \ n \ge 0,$$
(4)

with the initial value $Q_0(x) = 1$.

Our next goal is to describe all the \mathcal{J}_{ξ} -classical polynomial sequences. Note that we need $\xi \neq 0$ to ensure that $\{Q_n\}_{n\geq 0}$ is an orthogonal sequence. Indeed, if we suppose that $\xi = (\xi_1, \xi_2) = 0$, the relation (4) becomes, for x = 0, $Q_{n+1}(0) = 0$, $n \geq 0$, which contradicts the orthogonality of $\{Q_n\}_{n\geq 0}$.

The operator \mathcal{J}_{ξ} raises the degree of any polynomial. Such operator is called *raising operator* [6, 10, 15]. By transposition of the operator \mathcal{J}_{ξ} , we get

$${}^{t}\mathcal{J}_{\xi} = -\mathcal{J}_{\xi} + 2\xi_{2}\mathbb{I}.$$
(5)

Denote by $\{u_n\}_{n\geq 0}$ and $\{v_n\}_{n\geq 0}$ the dual basis in \mathbb{P}' corresponding to $\{P_n\}_{n\geq 0}$ and $\{Q_n\}_{n\geq 0}$, respectively. Then, according to Lemma 1 and (5), the relation

$$(x^{2} + \xi_{2})v_{n+1}' + (x - \xi_{1})v_{n+1} = -(n+1)u_{n}, \quad n \ge 0,$$
(6)

holds. Assume that $\{P_n\}_{n\geq 0}$ and $\{Q_n\}_{n\geq 0}$ are MOPS satisfying

$$\begin{cases} P_0(x) = 1, P_1(x) = x - \beta_0, \\ P_{n+2}(x) = (x - \beta_{n+1})P_{n+1}(x) - \gamma_{n+1}P_n(x), \gamma_{n+1} \neq 0, n \ge 0, \end{cases}$$
(7)

$$\begin{cases} Q_0(x) = 1, Q_1(x) = x - \rho_0, \\ Q_{n+2}(x) = (x - \rho_{n+1})Q_{n+1}(x) - \varrho_{n+1}Q_n(x), \ \varrho_{n+1} \neq 0, \ n \ge 0. \end{cases}$$
(8)

Next, the first result will be deduced as a consequence of the relations (4), (7), and (8).

Proposition 2. The sequences $\{P_n\}_{n\geq 0}$ and $\{Q_n\}_{n\geq 0}$ satisfy the following finite-type relation:

$$(x^{2} + \xi_{2})P_{n}(x) = Q_{n+2}(x) + \theta_{n}Q_{n+1}(x) + \varpi_{n}Q_{n}(x), \ n \ge 0.$$

where

$$\begin{aligned} \theta_n &= (n+1)(\beta_n - \rho_{n+1}), \quad n \ge 0, \\ \varpi_n &= n\gamma_n - (n+1)\varrho_{n+1}, \quad n \ge 0, \end{aligned}$$

with the convention $\gamma_0 = 0$.

Proof. By differentiating (7), we obtain

$$P'_{n+2}(x) = (x - \beta_{n+1})P'_{n+1}(x) - \gamma_{n+1}P'_n(x) + P_{n+1}(x), \ n \ge 0.$$

Multiplying the last equation by $x^2 + \xi_2$ and the relation (7) by $x + \xi_1$, take the sum of the two resulting equations, and substitute (4). Then we get

$$(n+3)Q_{n+3}(x) = (n+2)(x-\beta_{n+1})Q_{n+2}(x) - (n+1)\gamma_{n+1}Q_{n+1}(x) + (x^2+\xi_2)P_{n+1}(x), \quad n \ge 0.$$

Using the three-term recurrence relation (8), we get

$$(x^{2} + \xi_{2})P_{n+1}(x) = Q_{n+3}(x) + (n+2)(\beta_{n+1} - \rho_{n+2})Q_{n+2}(x) + + ((n+1)\gamma_{n+1} - (n+2)\varrho_{n+2})Q_{n+1}(x), \quad n \ge 0.$$

In fact, this result is valid for n + 1 replaced by n. More precisely, we have, for all $n \ge 0$,

$$(x^{2} + \xi_{2})P_{n}(x) =$$

= $Q_{n+2}(x) + (n+1)(\beta_{n} - \rho_{n+1})Q_{n+1}(x) + (n\gamma_{n} - (n+1)\varrho_{n+1})Q_{n}(x),$

with the convention $\gamma_0 = 0$. Hence the desired result. \Box

Note that, for n = 0, the Proposition 2 gives

$$Q_2(x) + (\beta_0 - \rho_1)Q_1(x) = x^2 + \xi_2 + \varrho_1,$$

and using the fact that $Q_1(x) = x + \xi_1$, we obtain

$$Q_2(x) = x^2 + (\xi_1 - \rho_1)x - \rho_1\xi_1 - \varrho_1.$$
(9)

By comparing (9) and (8) for n = 0, we obtain $\rho_1 = \frac{\beta_0 + \xi_1}{2}$ and $\rho_1 = -\frac{\xi_1^2 + \xi_2}{2}$.

Now we establish, in the next lemma, an algebraic relation between the forms u_0 and v_0 .

Lemma 2. The forms u_0 and v_0 satisfy the following relation:

$$(x^2 + \xi_2)v_0 = -\varrho_1 u_0.$$

Proof. According to Proposition 2, we obtain

$$\left\langle (x^2 + \xi_2)v_0, P_n \right\rangle = 0, \ n \ge 1.$$
(10)

On the other hand, by (9), we have $(x^2 + \xi_2) = Q_2 + (\beta_0 - \rho_1)Q_1 - \varrho_1$, and then

$$\langle (x^2 + \xi_2)v_0, P_0 \rangle = \langle v_0, Q_2 + (\beta_0 - \rho_1)Q_1 \rangle - \varrho_1(v_0)_0 = -\varrho_1,$$
 (11)

since $\{Q_n\}_{n\geq 0}$ is orthogonal with respect to the form v_0 , where v_0 is supposed normalized. According to Lemma 1 and using (10) and (11), we obtain the desired result. \Box

It is clear that the formula (4) is a first-order differential equation satisfied by $\{P_n\}_{n\geq 0}$. Based on the last lemma, we obtain a first-order differential equation satisfied by $\{Q_n\}_{n\geq 0}$.

Proposition 3. The following fundamental relation holds:

$$Q'_{n+1}(x) = (n+1)P_n(x), \ n \ge 0.$$
(12)

Proof. According to Proposition 1 (ii), the relation (6) can be written as follows:

$$(x^{2} + \xi_{2})[Q_{n+1}'(x)v_{0} + Q_{n+1}(x)v_{0}'] + (x - \xi_{1})Q_{n+1}v_{0} = \lambda_{n}P_{n}(x)u_{0}, \ n \ge 0,$$
(13)

where $\lambda_n := -(n+1)\langle v_0, Q_{n+1}^2 \rangle \langle u_0, P_n^2 \rangle^{-1}, n \ge 0.$ Making n = 0 in (13), we get $(x^2 + \xi_2)v'_0 = (\xi_1 - x)v_0.$ $(\lambda_0 = -\varrho_1).$ Substituting this relation in (13), we obtain

$$(\lambda_n P_n - \varrho_1 Q'_{n+1})u_0 = 0.$$

Using the Lemma 2 and the fact that $\lambda_0 = -\rho_1$ and taking into account regularity of u_0 , we finally obtain $\lambda_0 Q'_{n+1}(x) = \lambda_n P_n(x)$, $n \ge 0$. Comparing the degrees in the last equation, we get $\lambda_n = (n+1)\lambda_0$, $n \ge 0$, and, then, $Q'_{n+1}(x) = (n+1)P_n(x)$, $n \ge 0$. \Box

According to Proposition 3, and using the Böchner characterization, we get the \mathcal{J}_{ξ} -classical orthogonal sequence. Now, we will describe all of the \mathcal{J}_{ξ} -classical polynomial sequences.

Theorem 1. The \mathcal{J}_{ξ} -classical polynomial sequences are, up to a suitable affine transformation in the variable, one of the following *D*-classical polynomial sequences:

(a) if $\xi_1 = 0$, $P_n(x) = a^{-n}U_n(ax)$, $n \ge 0$, with $a^2 = -\xi_2^{-1}$.

(b) if
$$\xi_2 = 0$$
, $P_n(x) = B_n^{(3/2)}(x)$, with $\xi_1 = 2$.

- (c) if $\xi_1 \neq 0$ and $\xi_2 = -1$, $P_n(x) = P_n^{(\frac{1-\xi_1}{2}, \frac{1+\xi_1}{2})}(x)$, with $\xi_1 \neq 2k+1$, $k \in \mathbb{Z} \setminus \{-1, 0\}$.
- (d) if $(\xi_1, \xi_2) \in \mathbb{C}^2_{\setminus \{(0,0)\}}$, $P_n(x) = P_n^{(\alpha,\beta)}(x)$, with $\alpha = \frac{1-i\xi_1\mu}{2}$, $\beta = \frac{1+i\xi_1\mu}{2}$, or $\mu^2 = \xi_2$, with $\xi_1\mu \neq i(2k+1)$, $k \in \mathbb{Z} \setminus \{-1,0\}$.

Proof. Assume that $\{P_n\}_{n\geq 0}$ is a monic \mathcal{J}_{ξ} -classical orthogonal sequence. Then there exists a monic orthogonal sequence $\{Q_n\}_{n\geq 0}$ satisfying (4), which gives after differentiating and inserting (12), the following SODE:

$$(x^{2} + \xi_{2})P_{n+1}''(x) + (3x + \xi_{1})P_{n+1}'(x) = (n+1)(n+3)P_{n+1}(x), \ n \ge 0.$$
(14)
(a) if $\xi_{1} = 0, \ P_{n}(x) = a^{-n}U_{n}(ax), \ n \ge 0$, with $a^{2} = -\xi_{2}^{-1}$. (see [1])
(b) if $\xi_{2} = 0$,
 $x^{2}P_{n+1}''(x) - (-3x - \xi_{1})P_{n+1}'(x) = (n+1)(n+3)P_{n+1}(x), \ n \ge 0.$

According to Table C_1 , $\{P_n\}_{n \ge 0}$ is the Bessel sequence of parameter α if $-2(\alpha x + 1) = -3x - \xi_1$; in this case $\alpha = \frac{3}{2}$ and $\xi_1 = 2$. (c) if $\xi_1 \neq 0$ and $\xi_2 = -1$,

$$(x^{2}-1)P_{n+1}''(x) + (3x+\xi_{1})P_{n+1}'(x) = (n+1)(n+3)P_{n+1}(x), \ n \ge 0.$$

According to Table C_2 , $\{P_n\}_{n \ge 0}$ is the Jacobi sequence of parameter (α, β) if $-(\alpha + \beta + 2)x + \alpha - \beta = -3x - \xi_1$; in this case $\alpha = \frac{1-\xi_1}{2}$ and $\beta = \frac{1+\xi_1}{2}$, with $\xi_1 \neq 2k+1$, $k \in \mathbb{Z} \setminus \{-1, 0\}$.

(d) if $(\xi_1, \xi_2) \in \mathbb{C}^2 \setminus \{(0, 0)\},\$

$$(x^{2} + \xi_{2})P_{n+1}''(x) + (3x + \xi_{1})P_{n+1}'(x) = (n+1)(n+3)P_{n+1}(x), \ n \ge 0.$$

According to Table C_2 , $\{P_n\}_{n\geq 0}$ is the Jacobi sequence by a suitable affine transformation, $P_n(x) = \zeta^{-n} P_n^{(\alpha,\beta)}(\zeta x)$, with $\zeta^2 = -\xi_2^{-1}$, $\alpha = \frac{1-i\xi_1\mu}{2}$, $\beta = \frac{1+i\xi_1\mu}{2}$, or $\mu^2 = \xi_2$, with $\xi_1\mu \neq i(2k+1)$, $k \in \mathbb{Z} \setminus \{-1, 0\}$.

4. Some properties of the sequence obtained. In the polynomial function space \mathbb{P} , we can introduce the linear operator, denoted here by \mathbb{L} :

$$\mathbb{L} := D.$$

Using (12), we obtain

$$\mathbb{L}(Q_{n+1}) = (n+1)P_n, \quad n \ge 0.$$
(15)

The operator \mathbb{L} decreases the degree of a polynomial but preserves the orthogonality of the sequence $\{P_n\}_{n \ge 0}$.

We have the following result:

Theorem 2. There exists a differential linear operator of order two \mathcal{L} , for which the polynomial $P_n(x)$, $n \ge 0$, is an eigenfunction. More precisely, we have:

$$\mathcal{L}(P_n) = \theta_n P_n, \quad n \ge 0. \tag{16}$$

with $\theta_n = (n+1)^2$ as the corresponding eigenvalues, and where

$$\mathcal{L} := a_1(x)D^2 + a_2(x)D + a_3(x)\mathbb{I},$$

where

$$a_1(x) = x^2 + \xi_2, \qquad a_2(x) = 3x + \xi_1, \qquad a_3(x) = 1.$$

Proof. Applying the \mathcal{J}_{ξ} operator, and according to (4), we get

$$D \circ \mathcal{J}_{\xi}(P_n) = (n+1)^2 P_n, \quad n \ge 0.$$

This gives, after a simple calculation, the desired result. \Box

Note that, by applying the \mathcal{L} operator to the X^n , $n \ge 0$, we obtain

$$\mathcal{L}(X^{n}) = \theta_{n} X^{n} + n\xi_{1} X^{n-1} + n(n-1)\xi_{2} X^{n-2}, \ n \ge 0.$$

So, the matrix of the endomorphism \mathcal{L} in the canonical basis $\{X^n\}_{n\geq 0}$ of \mathbb{P} is given by

$$\mathbf{M}_{\mathcal{L}} = \begin{pmatrix} \theta_0 & \xi_1 & 2\xi_2 & 0 & \cdots & 0 \\ 0 & \theta_1 & 2\xi_1 & \ddots & \ddots & \vdots \\ & \theta_2 & \ddots & n(n-1)\xi_2 & 0 \\ & & \ddots & n\xi_1 & \ddots \\ & & & \theta_n & \ddots \\ 0 & & & & \ddots \end{pmatrix}.$$

Using the relation (16), we can write the matrix $\mathbf{M}_{\mathcal{L}}$ in the bases $\{P_n\}_{n\geq 0}$ as follows:

$$\mathbf{L} = \begin{pmatrix} \theta_0 & 0 & \cdots & \cdots & 0 \\ 0 & \theta_1 & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \theta_n & 0 \\ 0 & \cdots & \cdots & 0 & \ddots \end{pmatrix}.$$

Acknowledgment. The author is very grateful to the referees for their constructive comments. Their suggestions and remarks have contributed to improve substantially the presentation of the manuscript.

References

- Aloui B. Chebyshev polynomials of the second kind via raising operator preserving the orthogonality. Period. Math. Hung., 2018, no. 76, pp. 126-132. DOI: https://doi.org/10.1007/s10998-017-0219-7
- [2] Aloui B., Khériji L. A note on the Bessel form of parameter 3/2. Transylv. J. Math. Mech., 2019, no. 11, pp. 09-13.
- [3] Aloui B., Souissi J. Hahn's problem with respect to some perturbations of the raising operator X - c. Ural. Math. J., 2020, vol. 6(2), pp. 15-24.
 DOI: https://doi.org/10.15826/umj.2020.2.002
- [4] Atia M.J., Alaya J. Some classical polynomials seen from another side. Period. Math. Hung., 1999, vol. 38 (1-2), pp. 1-13.
- [5] Böchner S. Uber Sturm-Liouvillesche Polynomsysteme. Z. Math., 1929, no. 29, pp. 730-736. DOI: https://doi.org/10.1007/BF01180560

- [6] Chaggara H. Operational rules and a generalized Hermite polynomials. J. Math. Anal. Appl., 2007, no. 332, pp. 11-21. DOI: https://doi.org/10.1016/j.jmaa.2006.09.068
- [7] Chihara T. S. An Introduction to Orthogonal Polynomials. Gordon and Breach, New York, 1978.
- [8] Dattoli G., Ricci P. E. Laguerre-type exponentials, and the relevant L-circular and L-hyperbolic functions. Georgian Math. J., 2003, no. 10, pp. 481-494. DOI: https://doi.org/10.1515/GMJ.2003.481
- Hahn W. Über die jacobischen polynome und zwei verwandte polynomklassen. Math. Z., 1935, no. 39, pp. 634-638.
- Koornwinder T. H. Lowering and raising operators for some special orthogonal polynomials. in: Jack, Hall-Littlewood and Macdonald Polynomials, Contemporary Mathematics, 2006, vol. 417.
 DOI: https://doi.org/10.48550/arXiv.math/0505378
- [11] Maroni P. Une théorie algébrique des polynômes orthogonaux Applications aux polynômes orthogonaux semi-classiques. In Orthogonal Polynomials and their Applications. C. Brezinski et al. Editors, IMACS Ann. Comput. Appl. Math., 1991, no. 9, pp. 95-130.
- [12] Maroni P. Variations autour des polynômes orthogonaux classiques, C. R. Acad. Sci. Paris Sér. I Math., 1991, vol. 313, pp. 209–212.
- [13] Maroni P. Fonctions Eulériennes, Polynômes Orthogonaux Classiques. Techniques de l'Ingénieur, Traité Généralités (Sciences Fondamentales)., 1994, no. A 154 Paris., pp. 1–30.
- [14] Sonine N. J. On the approximate computation of definite integrals and on the entire functions occurring there. Warsch. Univ. Izv., 1887, no. 18, pp. 1-76.
- Srivastava H. M., Ben Cheikh Y. Orthogonality of some polynomial sets via quasi-monomiality. Appl. Math. Comput., 2003, no. 141, pp. 415-425.
 DOI: https://doi.org/10.1016/S0096-3003(02)00961-X

Received September 18, 2023. Accepted November 12, 2023. Published online December 10, 2023.

Jihad Souissi Faculty of Sciences of Gabes Department of Mathematics, Gabes University Street Erriadh 6072 Gabes, Tunisia E-mail: jihadsuissi@gmail.com & jihad.souissi@fsg.rnu.tn