CHARACTERIZATION OF POLYNOMIALS VIA A RAISING OPERATOR

Abstract

This paper investigates a first-order linear differential operator \mathcal{J}_{ξ}, where $\xi=\left(\xi_{1}, \xi_{2}\right) \in \mathbb{C}^{2} \backslash(0,0)$, and $D:=\frac{d}{d x}$. The operator is defined as $\mathcal{J}_{\xi}:=x(x D+\mathbb{I})+\xi_{1} \mathbb{I}+\xi_{2} D$, with \mathbb{I} representing the identity on the space of polynomials with complex coefficients. The focus is on exploring the \mathcal{J}_{ξ}-classical orthogonal polynomials and analyzing properties of the resulting sequences. This work contributes to the understanding of these polynomials and their characteristics.

Key words: orthogonal polynomials, classical polynomials, secondorder differential equation, raising operator
2020 Mathematical Subject Classification: Primary 33C45; Secondary: $42 C 05$

1. Introduction. An orthogonal polynomial sequence $\left\{P_{n}\right\}_{n \geqslant 0}$ is called classical, if $\left\{P_{n}^{\prime}\right\}_{n \geqslant 0}$ is also orthogonal. This characterization is essentially the Hahn-Sonine characterization (see [9], [14]) of the classical orthogonal polynomials.

In a more general setting, let \mathcal{O} be a linear operator acting on the space of polynomials, which sends polynomials of degree n to polynomials of degree $n+n_{0}$, where n_{0} is a fixed integer $\left(n \geqslant 0\right.$ if $n_{0} \geqslant 0$ and $n \geqslant n_{0}$ if $\left.n_{0}<0\right)$. We call a sequence $\left\{p_{n}\right\}_{n \geqslant 0}$ of orthogonal polynomials \mathcal{O}-classical if $\left\{\mathcal{O} p_{n}\right\}_{n \geqslant 0}$ is also orthogonal.

In this paper, we consider the raising operator, $\mathcal{J}_{\xi}:=x(x D+\mathbb{I})+\xi_{1} \mathbb{I}+$ $+\xi_{2} D$, where $\xi=\left(\xi_{1}, \xi_{2}\right)$ is a nonzero free parameter and \mathbb{I} represents the identity operator. We describe all the \mathcal{J}_{ξ}-classical orthogonal polynomial sequences.

The basic idea has been deduced by starting from the raising operator $\mathcal{U}_{\xi_{2}}:=x(x D+\mathbb{I})+\xi_{2} D($ see [1]). Now, to obtain a raising operator, we can add $\xi_{1} \mathbb{I}$ to $\mathcal{U}_{\xi_{2}}$. Then we can consider the perturbed operator, given
in the previous paragraph, $\mathcal{J}_{\xi}:=\mathcal{U}_{\xi_{2}}+\xi_{1} \mathbb{I}$, where $\left(\xi_{1}, \xi_{2}\right) \neq(0,0)$ because the orthogonality is not preserved for $\left(\xi_{1}, \xi_{2}\right)=(0,0)$.

As a result associated to $\mathcal{U}_{\xi_{2}}$, we have that the scaled Chebyshev polynomial sequence $\left\{a^{-n} U_{n}(a x)\right\}_{n \geqslant 0}$ with $a^{2}=-\xi_{2}^{-1}$ is the only $\mathcal{U}_{\xi_{2}}$-classical sequence, (for more details see [1]). In [2] the others prove that the scaled Bessel polynomial sequence $\left\{B_{n}^{\left(\frac{3}{(3)}\right.}\right\}_{n \geqslant 0}$ is the only \mathcal{J}_{ξ}-classical orthogonal polynomial sequence for $\xi_{2}=0$. For the raising operator \mathcal{J}_{ξ}, the result is completely different. More precisely, in $\xi_{1} \neq 0, \xi_{2} \neq 0$ the Jacobi polynomial sequence $\left\{P_{n}^{(\alpha, \beta)}\right\}_{n \geqslant 0}$ is the only \mathcal{J}_{ξ}-classical orthogonal polynomial sequence with $\alpha=\frac{1-i \xi_{1} \mu}{2}, \beta=\frac{1+i \xi_{1} \mu}{2}, \mu^{2}=\xi_{2}$, and $\xi_{1} \mu \neq i(2 k+1)$, $k \in \mathbb{Z}_{\{\{-1,0\}}$.

The structure of the paper is the following: In Section 2, a basic background about forms, orthogonal polynomials is given. In Section 3, we find the \mathcal{J}_{ξ}-classical orthogonal polynomials. In Section 4, we give some properties of the sequence obtained.
2. Preliminaries. Let \mathbb{P} be the linear space of polynomials in one variable with complex coefficients. The algebraic dual space of \mathbb{P} will be represented by \mathbb{P}^{\prime}. We denote by $\langle u, p\rangle$ the action of $u \in \mathbb{P}^{\prime}$ on $p \in \mathbb{P}$ and by $(u)_{n}:=\left\langle u, x^{n}\right\rangle, n \geqslant 0$, the sequence of moments of u with respect to the polynomial sequence $\left\{x^{n}\right\}_{n \geqslant 0}$.

Let us define the following operations in \mathbb{P}^{\prime}. For linear functionals u, any polynomial g, and any $(a, b) \in \mathbb{C} \backslash\{0\} \times \mathbb{C}$, let $D u=u^{\prime}, g u, \tau_{-b} u$ and $h_{a} u$ be the linear functionals defined by duality, [11]:

$$
\begin{aligned}
&\left\langle u^{\prime}, f\right\rangle:=-\left\langle u, f^{\prime}\right\rangle, \quad\langle g u, f\rangle:=\langle u, g f\rangle, f \in \mathcal{P}, \\
&\left\langle h_{a} u, f\right\rangle:=\left\langle u, h_{a} f\right\rangle=\langle u, f(a x)\rangle,\left\langle\tau_{-b} u, f\right\rangle:=\left\langle u, \tau_{b} f\right\rangle=\langle u, f(x-b)\rangle, f \in \mathcal{P} .
\end{aligned}
$$

A linear functional u is called normalized if it satisfies $(u)_{0}=1$.
Lemma 1. [13], [11] For any $u \in \mathbb{P}^{\prime}$ and any integer $m \geqslant 1$, the following statements are equivalent:
(i) $\left\langle u, P_{m-1}\right\rangle \neq 0,\left\langle u, P_{n}\right\rangle=0, n \geqslant m$.
(ii) $\exists \lambda_{k} \in \mathbb{C}, 0 \leqslant k \leqslant m-1, \lambda_{m-1} \neq 0$, such that $u=\sum_{k=0}^{m-1} \lambda_{k} u_{k}$.

As a consequence, the dual sequence $\left\{u_{n}^{[1]}\right\}_{n \geqslant 0}$ of $\left\{P_{n}^{[1]}\right\}_{n \geqslant 0}$, where $P_{n}^{[1]}(x):=(n+1)^{-1} P_{n+1}^{\prime}(x), n \geqslant 0$, is given by

$$
D u_{n}^{[1]}=-(n+1) u_{n+1}, n \geqslant 0
$$

Similarly, the dual sequence $\left\{\tilde{u}_{n}\right\}_{n \geqslant 0}$ of $\left\{\tilde{P}_{n}\right\}_{n \geqslant 0}$, where $\tilde{P}_{n}(x):=a^{-n} P_{n}(a x+$ $+b)$ with $(a, b) \in \mathbb{C} \backslash\{0\} \times \mathbb{C}$, is given by

$$
\tilde{u}_{n}=a^{n}\left(h_{a^{-1}} \circ \tau_{-b}\right) u_{n}, n \geqslant 0 .
$$

The form u is called regular if we can associate with it a sequence $\left\{P_{n}\right\}_{n \geqslant 0}$, such that

$$
\left\langle u, P_{n} P_{m}\right\rangle=r_{n} \delta_{n, m}, \quad n, m \geqslant 0, \quad r_{n} \neq 0, \quad n \geqslant 0 .
$$

The sequence $\left\{P_{n}\right\}_{n \geqslant 0}$ is then called a monic orthogonal polynomial sequence (MOPS) with respect to u. Note that $u=(u)_{0} u_{0}$, with $(u)_{0} \neq 0$. When u is regular, let F be a polynomial, such that $F u=0$. Then $F=0$ [11].
Proposition 1. [11]. Let $\left\{P_{n}\right\}_{n \geqslant 0}$ be a MOPS with $\operatorname{deg} P_{n}=n$, $n \geqslant 0$, and let $\left\{u_{n}\right\}_{n \geqslant 0}$ be its dual sequence. The following statements are equivalent:
(i) $\left\{P_{n}\right\}_{n \geqslant 0}$ is orthogonal with respect to u_{0};
(ii) $u_{n}=\left\langle u_{0}, P_{n}^{2}\right\rangle^{-1} P_{n} u_{0}, n \geqslant 0$;
(iii) $\left\{P_{n}\right\}_{n \geqslant 0}$ satisfies the three-term recurrence relation

$$
\left\{\begin{array}{l}
P_{0}(x)=1, \quad P_{1}(x)=x-\beta_{0} \tag{1}\\
P_{n+2}(x)=\left(x-\beta_{n+1}\right) P_{n+1}(x)-\gamma_{n+1} P_{n}(x), n \geqslant 0
\end{array}\right.
$$

where

$$
\begin{aligned}
& \beta_{n}=\left\langle u_{0}, x P_{n}^{2}\right\rangle\left\langle u_{0}, P_{n}^{2}\right\rangle^{-1}, n \geqslant 0 \\
& \gamma_{n+1}=\left\langle u_{0}, P_{n+1}^{2}\right\rangle\left\langle u_{0}, P_{n}^{2}\right\rangle^{-1} \neq 0, n \geqslant 0
\end{aligned}
$$

If $\left\{P_{n}\right\}_{n \geqslant 0}$ is a MOPS with respect to the regular form u_{0}, then $\left\{\tilde{P}_{n}\right\}_{n \geqslant 0}$ is a MOPS with respect to the regular form $\tilde{u}_{0}=\left(h_{a^{-1}} \circ \tau_{-b}\right) u_{0}$, and satisfies [13]

$$
\left\{\begin{array}{l}
\tilde{P}_{0}(x)=1, \quad \tilde{P}_{1}(x)=x-\tilde{\beta}_{0} \\
\tilde{P}_{n+2}(x)=\left(x-\tilde{\beta}_{n+1}\right) \tilde{P}_{n+1}(x)-\tilde{\gamma}_{n+1} \tilde{P}_{n}(x), n \geqslant 0
\end{array}\right.
$$

where $\tilde{\beta}_{n}=a^{-1}\left(\beta_{n}-b\right)$ and $\tilde{\gamma}_{n+1}=a^{-2} \gamma_{n+1}$.

An orthogonal polynomial sequence $\left\{P_{n}\right\}_{n \geqslant 0}$ is called D-classical, if $\left\{P_{n}^{[1]}\right\}_{n \geqslant 0}$ is also orthogonal (Hermite, Laguerre, Bessel or Jacobi), [7], [9]. A second characterization of these polynomials, which will play the leading role in the sequel, is that they are the only polynomial solutions of the Second-Order Differential Equation (Bochner [5])

$$
\begin{equation*}
(\mathrm{SODE}): \quad \phi(x) P_{n+1}^{\prime \prime}(x)-\psi(x) P_{n+1}^{\prime}(x)=\lambda_{n} P_{n+1}(x), n \geqslant 0 \tag{2}
\end{equation*}
$$

where ϕ, ψ are polynomials, ϕ monic, $\operatorname{deg} \phi=t \leqslant 2$, $\operatorname{deg} \psi=1$, and $\lambda_{n}=(n+1)\left(\frac{1}{2} \phi^{\prime \prime}(0) n-\psi^{\prime}(0)\right) \neq 0, n \geqslant 0$.
If $\left\{P_{n}\right\}_{n \geqslant 0}$ is a classical sequence satisfying (2), then $\left\{\tilde{P}_{n}\right\}_{n \geqslant 0}$ is also classical and satisfies (see [11])

$$
\begin{equation*}
(\operatorname{SODE}): \quad \tilde{\phi}(x) \tilde{P}_{n+1}^{\prime \prime}(x)-\tilde{\psi}(x) \tilde{P}_{n+1}^{\prime}(x)=\lambda_{n} \tilde{P}_{n+1}(x), n \geqslant 0 \tag{3}
\end{equation*}
$$

where $\tilde{\phi}(x)=a^{-t} \phi(a x+b)$ and $\tilde{\psi}(x)=a^{1-t} \psi(a x+b)$.
Now let us provide a summary of some basic characteristics of classical orthogonal polynomials. We focus on two families: the Bessel orthogonal polynomials (C1) and the Jacobi orthogonal polynomials (C2).
Bessel Orthogonal Polynomials (C1): For $n \geqslant 0$ and $\alpha \neq-\frac{n}{2}$, the Bessel orthogonal polynomials are denoted by $P_{n}(x)=B_{n}^{(\alpha)}(x)$, with $u_{0}=\mathcal{B}^{(\alpha)}$. The coefficients are given by:

$$
\begin{gathered}
\beta_{0}=-\frac{1}{\alpha}, \quad \beta_{n}=\frac{1-\alpha}{(n+\alpha-1)(n+\alpha)}, \quad n \geqslant 0 \\
\gamma_{n}=-\frac{n(n+2 \alpha-2)}{(2 n+2 \alpha-3)(n+\alpha-1)^{2}(2 n+2 \alpha-1)}, \quad n \geqslant 1
\end{gathered}
$$

The polynomials ϕ and ψ are x^{2} and $-2(\alpha x+1)$, respectively, and λ_{n} are $(n+1)(n+2 \alpha)$ for $n \geqslant 0$.
Jacobi Orthogonal Polynomials (C2): For $n \geqslant 0$ and ($\alpha, \beta \neq-n$, $\alpha+\beta \neq-n-1, n \geqslant 1$), the Jacobi orthogonal polynomials are denoted by $P_{n}(x)=J_{n}^{(\alpha, \beta)}(x)$, with $u_{0}=\mathcal{J}^{(\alpha, \beta)}$. The coefficients are given by:

$$
\begin{gathered}
\beta_{0}=\frac{\alpha-\beta}{\alpha+\beta+2}, \quad \beta_{n}=\frac{\alpha^{2}-\beta^{2}}{(2 n+\alpha+\beta)(2 n+\alpha+\beta+2)} \\
\gamma_{n}=\frac{4 n(n+\alpha+\beta)(n+\alpha)(n+\beta)}{(2 n+\alpha+\beta-1)(2 n+\alpha+\beta)^{2}(2 n+\alpha+\beta+1)}, \quad n \geqslant 1
\end{gathered}
$$

The polynomials ϕ and ψ are $x^{2}-1$ and $-(\alpha+\beta+2) x+\alpha-\beta$, respectively, and λ_{n} are $(n+1)(n+\alpha+\beta+2)$ for $n \geqslant 0$.
3. The \mathcal{J}_{ξ}-classical orthogonal polynomials. Recall the operator

$$
\begin{aligned}
\mathcal{J}_{\xi}: \mathbb{P} & \longrightarrow \mathbb{P} \\
f & \longmapsto \mathcal{J}_{\xi}(f)=\left(x^{2}+\xi_{2}\right) f^{\prime}+\left(x+\xi_{1}\right) f .
\end{aligned}
$$

Definition 1. We call a sequence $\left\{P_{n}\right\}_{n \geqslant 0}$ of orthogonal polynomials \mathcal{J}_{ξ}-classical if there exist a sequence $\left\{Q_{n}\right\}_{n \geqslant 0}$ of orthogonal polynomials, such that $\mathcal{J}_{\xi} P_{n}=Q_{n+1}, n \geqslant 0$.

For any MPS $\left\{P_{n}\right\}_{n \geqslant 0}$, we define the $\operatorname{MPS}\left\{Q_{n}\right\}_{n \geqslant 0}$, given by $Q_{n+1}(x):=\frac{\mathcal{J}_{\xi} P_{n}(x)}{n+1}, n \geqslant 0$, or, equivalently,

$$
\begin{equation*}
(n+1) Q_{n+1}(x):=\left(x^{2}+\xi_{2}\right) P_{n}^{\prime}(x)+\left(x+\xi_{1}\right) P_{n}(x), n \geqslant 0 \tag{4}
\end{equation*}
$$

with the initial value $Q_{0}(x)=1$.
Our next goal is to describe all the \mathcal{J}_{ξ}-classical polynomial sequences. Note that we need $\xi \neq 0$ to ensure that $\left\{Q_{n}\right\}_{n \geqslant 0}$ is an orthogonal sequence. Indeed, if we suppose that $\xi=\left(\xi_{1}, \xi_{2}\right)=0$, the relation (4) becomes, for $x=0, Q_{n+1}(0)=0, n \geqslant 0$, which contradicts the orthogonality of $\left\{Q_{n}\right\}_{n \geqslant 0}$.

The operator \mathcal{J}_{ξ} raises the degree of any polynomial. Such operator is called raising operator $[6,10,15]$. By transposition of the operator \mathcal{J}_{ξ}, we get

$$
\begin{equation*}
{ }^{t} \mathcal{J}_{\xi}=-\mathcal{J}_{\xi}+2 \xi_{2} \mathbb{I} . \tag{5}
\end{equation*}
$$

Denote by $\left\{u_{n}\right\}_{n \geqslant 0}$ and $\left\{v_{n}\right\}_{n \geqslant 0}$ the dual basis in \mathbb{P}^{\prime} corresponding to $\left\{P_{n}\right\}_{n \geqslant 0}$ and $\left\{Q_{n}\right\}_{n \geqslant 0}$, respectively. Then, according to Lemma 1 and (5), the relation

$$
\begin{equation*}
\left(x^{2}+\xi_{2}\right) v_{n+1}^{\prime}+\left(x-\xi_{1}\right) v_{n+1}=-(n+1) u_{n}, \quad n \geqslant 0 \tag{6}
\end{equation*}
$$

holds. Assume that $\left\{P_{n}\right\}_{n \geqslant 0}$ and $\left\{Q_{n}\right\}_{n \geqslant 0}$ are MOPS satisfying

$$
\begin{align*}
& \left\{\begin{array}{l}
P_{0}(x)=1, P_{1}(x)=x-\beta_{0}, \\
P_{n+2}(x)=\left(x-\beta_{n+1}\right) P_{n+1}(x)-\gamma_{n+1} P_{n}(x), \gamma_{n+1} \neq 0, n \geqslant 0,
\end{array}\right. \tag{7}\\
& \left\{\begin{array}{l}
Q_{0}(x)=1, Q_{1}(x)=x-\rho_{0}, \\
Q_{n+2}(x)=\left(x-\rho_{n+1}\right) Q_{n+1}(x)-\varrho_{n+1} Q_{n}(x), \varrho_{n+1} \neq 0, n \geqslant 0 .
\end{array}\right. \tag{8}
\end{align*}
$$

Next, the first result will be deduced as a consequence of the relations (4), (7), and (8).

Proposition 2. The sequences $\left\{P_{n}\right\}_{n \geqslant 0}$ and $\left\{Q_{n}\right\}_{n \geqslant 0}$ satisfy the following finite-type relation:

$$
\left(x^{2}+\xi_{2}\right) P_{n}(x)=Q_{n+2}(x)+\theta_{n} Q_{n+1}(x)+\varpi_{n} Q_{n}(x), n \geqslant 0
$$

where

$$
\begin{aligned}
\theta_{n} & =(n+1)\left(\beta_{n}-\rho_{n+1}\right), \quad n \geqslant 0, \\
\varpi_{n} & =n \gamma_{n}-(n+1) \varrho_{n+1}, \quad n \geqslant 0,
\end{aligned}
$$

with the convention $\gamma_{0}=0$.
Proof. By differentiating (7), we obtain

$$
P_{n+2}^{\prime}(x)=\left(x-\beta_{n+1}\right) P_{n+1}^{\prime}(x)-\gamma_{n+1} P_{n}^{\prime}(x)+P_{n+1}(x), n \geqslant 0 .
$$

Multiplying the last equation by $x^{2}+\xi_{2}$ and the relation (7) by $x+\xi_{1}$, take the sum of the two resulting equations, and substitute (4). Then we get

$$
\begin{array}{r}
(n+3) Q_{n+3}(x)=(n+2)\left(x-\beta_{n+1}\right) Q_{n+2}(x)-(n+1) \gamma_{n+1} Q_{n+1}(x)+ \\
+\left(x^{2}+\xi_{2}\right) P_{n+1}(x), \quad n \geqslant 0 .
\end{array}
$$

Using the three-term recurrence relation (8), we get

$$
\begin{aligned}
\left(x^{2}+\xi_{2}\right) P_{n+1}(x)= & Q_{n+3}(x)+(n+2)\left(\beta_{n+1}-\rho_{n+2}\right) Q_{n+2}(x)+ \\
& +\left((n+1) \gamma_{n+1}-(n+2) \varrho_{n+2}\right) Q_{n+1}(x), \quad n \geqslant 0
\end{aligned}
$$

In fact, this result is valid for $n+1$ replaced by n. More precisely, we have, for all $n \geqslant 0$,

$$
\begin{aligned}
& \left(x^{2}+\xi_{2}\right) P_{n}(x)= \\
& =Q_{n+2}(x)+(n+1)\left(\beta_{n}-\rho_{n+1}\right) Q_{n+1}(x)+\left(n \gamma_{n}-(n+1) \varrho_{n+1}\right) Q_{n}(x)
\end{aligned}
$$

with the convention $\gamma_{0}=0$. Hence the desired result.
Note that, for $n=0$, the Proposition 2 gives

$$
Q_{2}(x)+\left(\beta_{0}-\rho_{1}\right) Q_{1}(x)=x^{2}+\xi_{2}+\varrho_{1},
$$

and using the fact that $Q_{1}(x)=x+\xi_{1}$, we obtain

$$
\begin{equation*}
Q_{2}(x)=x^{2}+\left(\xi_{1}-\rho_{1}\right) x-\rho_{1} \xi_{1}-\varrho_{1} . \tag{9}
\end{equation*}
$$

By comparing (9) and (8) for $n=0$, we obtain $\rho_{1}=\frac{\beta_{0}+\xi_{1}}{2}$ and $\varrho_{1}=-\frac{\xi_{1}^{2}+\xi_{2}}{2}$.
Now we establish, in the next lemma, an algebraic relation between the forms u_{0} and v_{0}.
Lemma 2. The forms u_{0} and v_{0} satisfy the following relation:

$$
\left(x^{2}+\xi_{2}\right) v_{0}=-\varrho_{1} u_{0} .
$$

Proof. According to Proposition 2, we obtain

$$
\begin{equation*}
\left\langle\left(x^{2}+\xi_{2}\right) v_{0}, P_{n}\right\rangle=0, n \geqslant 1 . \tag{10}
\end{equation*}
$$

On the other hand, by (9), we have $\left(x^{2}+\xi_{2}\right)=Q_{2}+\left(\beta_{0}-\rho_{1}\right) Q_{1}-\varrho_{1}$, and then

$$
\begin{equation*}
\left\langle\left(x^{2}+\xi_{2}\right) v_{0}, P_{0}\right\rangle=\left\langle v_{0}, Q_{2}+\left(\beta_{0}-\rho_{1}\right) Q_{1}\right\rangle-\varrho_{1}\left(v_{0}\right)_{0}=-\varrho_{1}, \tag{11}
\end{equation*}
$$

since $\left\{Q_{n}\right\}_{n \geqslant 0}$ is orthogonal with respect to the form v_{0}, where v_{0} is supposed normalized. According to Lemma 1 and using (10) and (11), we obtain the desired result.

It is clear that the formula (4) is a first-order differential equation satisfied by $\left\{P_{n}\right\}_{n \geqslant 0}$. Based on the last lemma, we obtain a first-order differential equation satisfied by $\left\{Q_{n}\right\}_{n \geqslant 0}$.
Proposition 3. The following fundamental relation holds:

$$
\begin{equation*}
Q_{n+1}^{\prime}(x)=(n+1) P_{n}(x), n \geqslant 0 . \tag{12}
\end{equation*}
$$

Proof. According to Proposition 1 (ii), the relation (6) can be written as follows:

$$
\begin{equation*}
\left(x^{2}+\xi_{2}\right)\left[Q_{n+1}^{\prime}(x) v_{0}+Q_{n+1}(x) v_{0}^{\prime}\right]+\left(x-\xi_{1}\right) Q_{n+1} v_{0}=\lambda_{n} P_{n}(x) u_{0}, n \geqslant 0 \tag{13}
\end{equation*}
$$

where $\lambda_{n}:=-(n+1)\left\langle v_{0}, Q_{n+1}^{2}\right\rangle\left\langle u_{0}, P_{n}^{2}\right\rangle^{-1}, n \geqslant 0$.
Making $n=0$ in (13), we get $\left(x^{2}+\xi_{2}\right) v_{0}^{\prime}=\left(\xi_{1}-x\right) v_{0} . \quad\left(\lambda_{0}=-\varrho_{1}\right)$. Substituting this relation in (13), we obtain

$$
\left(\lambda_{n} P_{n}-\varrho_{1} Q_{n+1}^{\prime}\right) u_{0}=0
$$

Using the Lemma 2 and the fact that $\lambda_{0}=-\varrho_{1}$ and taking into account regularity of u_{0}, we finally obtain $\lambda_{0} Q_{n+1}^{\prime}(x)=\lambda_{n} P_{n}(x), n \geqslant 0$. Comparing the degrees in the last equation, we get $\lambda_{n}=(n+1) \lambda_{0}, n \geqslant 0$, and, then, $Q_{n+1}^{\prime}(x)=(n+1) P_{n}(x), n \geqslant 0$.

According to Proposition 3, and using the Böchner characterization, we get the \mathcal{J}_{ξ}-classical orthogonal sequence. Now, we will describe all of the \mathcal{J}_{ξ}-classical polynomial sequences.
Theorem 1. The \mathcal{J}_{ξ}-classical polynomial sequences are, up to a suitable affine transformation in the variable, one of the following D-classical polynomial sequences:
(a) if $\xi_{1}=0, P_{n}(x)=a^{-n} U_{n}(a x), n \geqslant 0$, with $a^{2}=-\xi_{2}^{-1}$.
(b) if $\xi_{2}=0, P_{n}(x)=B_{n}^{(3 / 2)}(x)$, with $\xi_{1}=2$.
(c) if $\xi_{1} \neq 0$ and $\xi_{2}=-1, P_{n}(x)=P_{n}^{\left(\frac{1-\xi_{1}}{2}, \frac{\left.1+\xi_{1}\right)}{2}\right)}(x)$, with $\xi_{1} \neq 2 k+1$, $k \in \mathbb{Z} \backslash\{-1,0\}$.
(d) if $\left(\xi_{1}, \xi_{2}\right) \in \mathbb{C}_{\backslash\{(0,0)\}}^{2}, P_{n}(x)=P_{n}^{(\alpha, \beta)}(x)$, with $\alpha=\frac{1-i \xi_{1} \mu}{2}, \beta=\frac{1+i \xi_{1} \mu}{2}$, or $\mu^{2}=\xi_{2}$,
with $\xi_{1} \mu \neq i(2 k+1), k \in \mathbb{Z} \backslash\{-1,0\}$.
Proof. Assume that $\left\{P_{n}\right\}_{n \geqslant 0}$ is a monic \mathcal{J}_{ξ}-classical orthogonal sequence. Then there exists a monic orthogonal sequence $\left\{Q_{n}\right\}_{n \geqslant 0}$ satisfying (4), which gives after differentiating and inserting (12), the following SODE:

$$
\begin{equation*}
\left(x^{2}+\xi_{2}\right) P_{n+1}^{\prime \prime}(x)+\left(3 x+\xi_{1}\right) P_{n+1}^{\prime}(x)=(n+1)(n+3) P_{n+1}(x), n \geqslant 0 \tag{14}
\end{equation*}
$$

(a) if $\xi_{1}=0, P_{n}(x)=a^{-n} U_{n}(a x), n \geqslant 0$, with $a^{2}=-\xi_{2}^{-1}$. (see [1])
(b) if $\xi_{2}=0$,

$$
x^{2} P_{n+1}^{\prime \prime}(x)-\left(-3 x-\xi_{1}\right) P_{n+1}^{\prime}(x)=(n+1)(n+3) P_{n+1}(x), n \geqslant 0 .
$$

According to Table $C_{1},\left\{P_{n}\right\}_{n \geqslant 0}$ is the Bessel sequence of parameter α if $-2(\alpha x+1)=-3 x-\xi_{1}$; in this case $\alpha=\frac{3}{2}$ and $\xi_{1}=2$.
(c) if $\xi_{1} \neq 0$ and $\xi_{2}=-1$,

$$
\left(x^{2}-1\right) P_{n+1}^{\prime \prime}(x)+\left(3 x+\xi_{1}\right) P_{n+1}^{\prime}(x)=(n+1)(n+3) P_{n+1}(x), n \geqslant 0 .
$$

According to Table $C_{2},\left\{P_{n}\right\}_{n \geqslant 0}$ is the Jacobi sequence of parameter (α, β) if $-(\alpha+\beta+2) x+\alpha-\beta=-3 x-\xi_{1}$; in this case $\alpha=\frac{1-\xi_{1}}{2}$ and $\beta=\frac{1+\xi_{1}}{2}$, with $\xi_{1} \neq 2 k+1, k \in \mathbb{Z} \backslash\{-1,0\}$.
(d) if $\left(\xi_{1}, \xi_{2}\right) \in \mathbb{C}^{2} \backslash\{(0,0)\}$,

$$
\left(x^{2}+\xi_{2}\right) P_{n+1}^{\prime \prime}(x)+\left(3 x+\xi_{1}\right) P_{n+1}^{\prime}(x)=(n+1)(n+3) P_{n+1}(x), n \geqslant 0 .
$$

According to Table $C_{2},\left\{P_{n}\right\}_{n \geqslant 0}$ is the Jacobi sequence by a suitable affine transformation, $P_{n}(x)=\zeta^{-n} P_{n}^{(\alpha, \beta)}(\zeta x)$, with $\zeta^{2}=-\xi_{2}^{-1}$, $\alpha=\frac{1-i \xi_{1} \mu}{2}, \beta=\frac{1+i \xi_{1} \mu}{2}$, or $\mu^{2}=\xi_{2}$, with $\xi_{1} \mu \neq i(2 k+1)$, $k \in \mathbb{Z} \backslash\{-1,0\}$.
4. Some properties of the sequence obtained. In the polynomial function space \mathbb{P}, we can introduce the linear operator, denoted here by \mathbb{L} :

$$
\mathbb{L}:=D .
$$

Using (12), we obtain

$$
\begin{equation*}
\mathbb{L}\left(Q_{n+1}\right)=(n+1) P_{n}, \quad n \geqslant 0 . \tag{15}
\end{equation*}
$$

The operator \mathbb{L} decreases the degree of a polynomial but preserves the orthogonality of the sequence $\left\{P_{n}\right\}_{n \geqslant 0}$.

We have the following result:
Theorem 2. There exists a differential linear operator of order two \mathcal{L}, for which the polynomial $P_{n}(x), n \geqslant 0$, is an eigenfunction. More precisely, we have:

$$
\begin{equation*}
\mathcal{L}\left(P_{n}\right)=\theta_{n} P_{n}, \quad n \geqslant 0 . \tag{16}
\end{equation*}
$$

with $\theta_{n}=(n+1)^{2}$ as the corresponding eigenvalues, and where

$$
\mathcal{L}:=a_{1}(x) D^{2}+a_{2}(x) D+a_{3}(x) \mathbb{I},
$$

where

$$
a_{1}(x)=x^{2}+\xi_{2}, \quad a_{2}(x)=3 x+\xi_{1}, \quad a_{3}(x)=1 .
$$

Proof. Applying the \mathcal{J}_{ξ} operator, and according to (4), we get

$$
D \circ \mathcal{J}_{\xi}\left(P_{n}\right)=(n+1)^{2} P_{n}, \quad n \geqslant 0 .
$$

This gives, after a simple calculation, the desired result. \square
Note that, by applying the \mathcal{L} operator to the $X^{n}, n \geqslant 0$, we obtain

$$
\mathcal{L}\left(X^{n}\right)=\theta_{n} X^{n}+n \xi_{1} X^{n-1}+n(n-1) \xi_{2} X^{n-2}, n \geqslant 0 .
$$

So, the matrix of the endomorphism \mathcal{L} in the canonical basis $\left\{X^{n}\right\}_{n \geqslant 0}$ of \mathbb{P} is given by

$$
\mathbf{M}_{\mathcal{L}}=\left(\begin{array}{cccccc}
\theta_{0} & \xi_{1} & 2 \xi_{2} & 0 & \cdots & 0 \\
0 & \theta_{1} & 2 \xi_{1} & \ddots & \ddots & \vdots \\
& & \theta_{2} & \ddots & n(n-1) \xi_{2} & 0 \\
& & & \ddots & n \xi_{1} & \ddots \\
& & & & \theta_{n} & \ddots \\
0 & & & & & \ddots
\end{array}\right) .
$$

Using the relation (16), we can write the matrix $\mathbf{M}_{\mathcal{L}}$ in the bases $\left\{P_{n}\right\}_{n \geqslant 0}$ as follows:

$$
\mathbf{L}=\left(\begin{array}{ccccc}
\theta_{0} & 0 & \cdots & \cdots & 0 \\
0 & \theta_{1} & \ddots & & \vdots \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
\vdots & & \ddots & \theta_{n} & 0 \\
0 & \cdots & \cdots & 0 & \ddots
\end{array}\right)
$$

Acknowledgment. The author is very grateful to the referees for their constructive comments. Their suggestions and remarks have contributed to improve substantially the presentation of the manuscript.

References

[1] Aloui B. Chebyshev polynomials of the second kind via raising operator preserving the orthogonality. Period. Math. Hung., 2018, no. 76, pp. 126-132. DOI: https://doi.org/10.1007/s10998-017-0219-7
[2] Aloui B., Khériji L. A note on the Bessel form of parameter 3/2. Transylv. J. Math. Mech., 2019, no. 11, pp. 09-13.
[3] Aloui B., Souissi J. Hahn's problem with respect to some perturbations of the raising operator $X-c$. Ural. Math. J., 2020, vol. 6(2), pp. 15-24. DOI: https://doi.org/10.15826/umj.2020.2.002
[4] Atia M.J., Alaya J. Some classical polynomials seen from another side. Period. Math. Hung., 1999, vol. 38 (1-2), pp. 1-13.
[5] Böchner S. Über Sturm-Liouvillesche Polynomsysteme. Z. Math., 1929, no. 29, pp. 730-736. DOI: https://doi.org/10.1007/BF01180560
[6] Chaggara H. Operational rules and a generalized Hermite polynomials. J. Math. Anal. Appl., 2007, no. 332, pp. 11-21. DOI: https://doi.org/10.1016/j.jmaa.2006.09.068
[7] Chihara T. S. An Introduction to Orthogonal Polynomials. Gordon and Breach, New York, 1978.
[8] Dattoli G., Ricci P. E. Laguerre-type exponentials, and the relevant L-circular and L-hyperbolic functions. Georgian Math. J., 2003, no. 10, pp. 481-494. DOI: https://doi.org/10.1515/GMJ. 2003.481
[9] Hahn W. Über die jacobischen polynome und zwei verwandte polynomklassen. Math. Z., 1935, no. 39, pp. 634-638.
[10] Koornwinder T. H. Lowering and raising operators for some special orthogonal polynomials. in: Jack, Hall-Littlewood and Macdonald Polynomials, Contemporary Mathematics, 2006, vol. 417. DOI: https://doi.org/10.48550/arXiv.math/0505378
[11] Maroni P. Une théorie algébrique des polynômes orthogonaux Applications aux polynômes orthogonaux semi-classiques. In Orthogonal Polynomials and their Applications. C. Brezinski et al. Editors, IMACS Ann. Comput. Appl. Math., 1991, no. 9, pp. 95-130.
[12] Maroni P. Variations autour des polynômes orthogonaux classiques, C. R. Acad. Sci. Paris Sér. I Math., 1991, vol. 313, pp. 209-212.
[13] Maroni P. Fonctions Eulériennes, Polynômes Orthogonaux Classiques. Techniques de l'Ingénieur, Traité Généralités (Sciences Fondamentales)., 1994, no. A 154 Paris., pp. 1-30.
[14] Sonine N. J. On the approximate computation of definite integrals and on the entire functions occurring there. Warsch. Univ. Izv., 1887, no. 18, pp. 1-76.
[15] Srivastava H. M., Ben Cheikh Y. Orthogonality of some polynomial sets via quasi-monomiality. Appl. Math. Comput., 2003, no. 141, pp. 415-425. DOI: https://doi.org/10.1016/S0096-3003(02)00961-X

Received September 18, 2023.
Accepted November 12, 2023.
Published online December 10, 2023.

Jihad Souissi
Faculty of Sciences of Gabes
Department of Mathematics, Gabes University
Street Erriadh 6072 Gabes, Tunisia
E-mail: jihadsuissi@gmail.com \& jihad.souissi@fsg.rnu.tn

