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SOME EMBEDDINGS RELATED TO HOMOGENEOUS
TRIEBEL-LIZORKIN SPACES AND THE BMO

FUNCTIONS

Abstract. As the homogeneous Triebel-Lizorkin space 9𝐹 𝑠
𝑝, 𝑞 and

the space 𝐵𝑀𝑂 are defined modulo polynomials and constants,
respectively, we prove that 𝐵𝑀𝑂 coincides with the realized space
of 9𝐹 0

8, 2 and cannot be directly identified with 9𝐹 0
8, 2. In case 𝑝 ă 8,

we also prove that the realized space of 9𝐹
𝑛{𝑝
𝑝, 𝑞 is strictly embedded

into 𝐵𝑀𝑂. Then we deduce other results in this paper, that are
extensions to homogeneous and inhomogeneous Besov spaces, 9𝐵𝑠

𝑝, 𝑞

and 𝐵𝑠
𝑝, 𝑞, respectively. We show embeddings between 𝐵𝑀𝑂 and

the classical Besov space 𝐵0
8,8 in the first case and the realized

spaces of 9𝐵0
8, 2 and 9𝐵0

8,8 in the second one. On the other hand,
as an application, we discuss the acting of the Riesz operator ℐ𝛽
on 𝐵𝑀𝑂 space, where we obtain embeddings related to realized
versions of 9𝐵𝛽

8, 2 and 9𝐵𝛽
8,8.
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1. Introduction and the main result. The main result of this pa-
per is the embeddings between the bounded mean oscillation space 𝐵𝑀𝑂
and the homogeneous Triebel-Lizorkin spaces 9𝐹 𝑠

𝑝, 𝑞 in a certain sense. The
spaces 9𝐹 𝑠

𝑝, 𝑞 defined by the Littlewood-Paley decomposition (abbreviated
by LPd), in particular 9𝐹 0

8, 2, as defined, e. g., in [10, (5.1)], are given by
distributions modulo all polynomials; however, the space 𝐵𝑀𝑂 is modulo
constants, as defined, e. g., in [9]. We then observe that 9𝐹 0

8, 2 cannot be
identified with 𝐵𝑀𝑂, since for any polynomial 𝑓 of degree > 1 it holds
that }𝑓} 9𝐹 0

8,2
“ 0, while }𝑓}𝐵𝑀𝑂 “ 8. Concerning this identification, e. g.,

in [21, p. 243], the author replaced the space 𝐵𝑀𝑂-modulo constants by a
space modulo polynomials (denoting it by 𝐵𝑀𝑂p˚q), which coincides with
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9𝐹 0
8, 2, we have 𝐵𝑀𝑂 Ł 𝐵𝑀𝑂p˚q; we refer, e. g., to the short comment at

the end of [10, p. 70].
Another way to investigate the above identification is to introduce the

realized space 9̃𝐹 𝑠
𝑝, 𝑞 (Definition 5 below) of 9𝐹 𝑠

𝑝, 𝑞, which is a subspace of 𝒮 1𝜈
(the collection of all tempered distributions modulo polynomials of degree
ă 𝜈) for some minimal values 𝜈, which depend on 𝑠´ 𝑛{𝑝, see (2).

The concept of realization was introduced by G. Bourdaud in [4] for the
homogeneous Besov spaces 9𝐵𝑠

𝑝, 𝑞. This has an advantage in some fields,
since there is no need to consider the spaces modulo polynomials. In
general, realizations of homogeneous Besov and Triebel-Lizorkin spaces are
defined up to a polynomial whose degree is less than an integer, denoted
here by 𝜈, which plays a crucial role in studying the convergence of the
series associated to the LPd of such functions, see, e. g., [6], [7], see also
the comment below at the beginning of Subsection 2.2.2 just after formula
(2).

Nowadays, we know a lot of concrete characterizations on realized
spaces (see e. g. Remarks 2 and 3 below), and there are many papers
in this subject, e. g., [13], [14]. There are also various works related to
the realizations of certain homogeneous spaces, as, e. g., in Navier-Stokes,
Hardy, and Gagliardo-Nirenberg type estimates, pseudodifferential oper-
ators, pointwise multipliers and wavelets, see, e. g., [2], [12], [15], see also
[1], in which further references on these topics may be found.

Thus, we show:

Theorem 1.
(i) The identity 𝐵𝑀𝑂 “ 9̃𝐹 0

8, 2 holds with equivalent seminorms.

(ii) If 0 ă 𝑝 ă 8, then the embedding 9̃𝐹
𝑛{𝑝
𝑝, 𝑞 ãÑ 𝐵𝑀𝑂 is proper.

In relation with Theorem 1(i), the following statement (see, e. g., [5,
Thm. VII.12, p. 147]) is proved:

Proposition 1. A function 𝑓 P 𝐿loc
2 belongs to 𝐵𝑀𝑂 if and only if

(i)
ż

R𝑛

`

1` |𝑥|𝑛`1
˘´1

|𝑓p𝑥q| 𝑑𝑥 ă 8,

(ii) sup
𝑦PR𝑛, 𝑘PZ

2𝑛𝑘

ż

|𝑥´𝑦|ă2´𝑘

ÿ

𝑗>𝑘

|𝑄𝑗𝑓p𝑥q|
2 𝑑𝑥 ă 8.

The operators 𝑄𝑗 are defined in Subsection 2.1 below. This assertion
gives a characterization of 𝐵𝑀𝑂; its proof has a certain history:
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• The authors of [9, Thm. 3] have previously proved it by using the

condition sup
𝑦PR𝑛, ℎą0

ℎ´𝑛
ż

|𝑥´𝑦|ăℎ

ℎ
ż

0

𝑡|∇𝑃𝑡𝑓p𝑥q|
2𝑑𝑡 𝑑𝑥 ă 8, where 𝑃𝑡𝑓 is

the Poisson integral of 𝑓 , instead of (ii). Hence, it seems interesting
to see if 9̃𝐹 0

8, 2 can be endowed with seminorms defined by the Poisson
semi-group (probably, open).

• In [20, Sect. 2], the author has considered (ii) in a continuous form,
that is, the formula (1.1) in this reference. The same situation is
given, e. g., in [18, IV.4.3, p. 159].

We turn to the embedding given in Theorem 1(ii); the authors in [19,
Thm. 2(a)] proved: if 1 ă 𝑝 ă 8 then

}𝒥𝑛{𝑝𝑓}𝐵𝑀𝑂 6 𝑐 sup
𝑡ą0

𝑡
ˇ

ˇt𝑥 : |𝑓p𝑥q| ą 𝑡u
ˇ

ˇ

1{𝑝
,

where 𝒥𝑛{𝑝 is the Bessel operator defined as 𝒥𝑠𝑓 :“ ℱ´1pp1` |𝜉|2q´𝑠{2 p𝑓 q,
𝑠 P R, and |t. . .u| denotes the Lebesgue measure of the set t. . .u; the
right-hand side can be easily estimated by 𝑐}𝑓}𝑝. Then (which is well
known)

𝐻𝑛{𝑝
𝑝 ãÑ 𝐵𝑀𝑂 p1 ă 𝑝 ă 8q, (1)

where 𝐻𝑛{𝑝
𝑝 (1 ă 𝑝 ă 8) is the Bessel-potential space defined as the set

of all functions 𝑓 satisfying }𝑓}
𝐻

𝑛{𝑝
𝑝

:“ }𝒥´𝑛{𝑝𝑓}𝑝 ă 8, but it is also well

known that 𝐻𝑛{𝑝
𝑝 coincides with the inhomogeneous Triebel-Lizorkin space

𝐹
𝑛{𝑝
𝑝,2 ; then the embedding properties of 𝐹 𝑠

𝑝, 𝑞 provide that 𝐹 𝑛{𝑝
𝑝, 𝑞 ãÑ 𝐵𝑀𝑂

is satisfied for all 0 ă 𝑝 ă 8 and all 0 ă 𝑞 6 8. Hence, dealing with 9̃𝐹
𝑛{𝑝
𝑝, 𝑞

(0 ă 𝑝 ă 8) presents the contribution of Theorem 1(ii), and now we can
obtain (1) without using the operator 𝒥𝑠, indeed we have 𝐹 𝑛{𝑝

𝑝, 𝑞 ãÑ
9̃𝐹
𝑛{𝑝
𝑝, 𝑞

since 𝐹 𝑛{𝑝
𝑝, 𝑞 “ 𝐿𝑝 X 9𝐹

𝑛{𝑝
𝑝, 𝑞 (see [15, Prop. 2.5]).

The paper is organized as follows: In Section 2, we collect the useful
tools, in particular some characterizations of the realized spaces. Section 3
is devoted to the proof of Theorem 1. In the last section, we discuss
two corollaries (Subsection 4.1) of the main result for the inhomogeneous
Besov spaces and their realized counterparts, and give some applications
(Subsection 4.2) related to the actions of Riesz operator on 𝐵𝑀𝑂.

Notation. We denote by N the set of all positive integers,
N0 “ N Y t0u. We work in Euclidean space R𝑛, then one writes 𝐶8pR𝑛q



4 B. Gheribi, M. Moussai

as 𝐶8, 𝒮pR𝑛q as 𝒮, etc. For 𝑠 P R, r𝑠s denotes its integer part. For 𝑎 P R,
we set 𝑎` :“ maxp0, 𝑎q. The symbol ãÑ means a continuous embedding.
We denote by 𝑃𝑘, 𝜇 (𝑘 P Z, 𝜇 P Z𝑛) the dyadic cube 2´𝑘pr0, 1r𝑛`𝜇q. By
}¨}𝑝 we denote the 𝐿𝑝 quasi-norm. 𝐿loc

𝑝 denotes the space of functions in
𝐿𝑝pΩq for any compact set Ω in R𝑛. 𝒟 denotes the set of compactly sup-
ported functions in 𝐶8. The operators of translation 𝜏𝑎 (𝑎 P R𝑛) and of
dilation ℎ𝜆 (𝜆 ą 0) are defined by 𝜏𝑎𝑓 :“ 𝑓p¨ ´ 𝑎q and ℎ𝜆𝑓 :“ 𝑓p𝜆´1 ¨q,
respectively. For a measurable function 𝑓 , 𝑚𝑄𝑓 :“ |𝑄|´1

ş

𝑄

𝑓p𝑥q𝑑𝑥 is its

mean value over the set 𝑄. For 𝑓 P 𝐿1, the Fourier transform is defined by

ℱ𝑓p𝜉q “ p𝑓p𝜉q :“

ż

R𝑛

e´𝑖𝑥¨𝜉𝑓p𝑥q 𝑑𝑥,

the inverse by ℱ´1𝑓p𝑥q :“ p2𝜋q´𝑛 p𝑓p´𝑥q. The operator ℱ can be extended
to the space 𝒮 1 of tempered distributions in the usual way. For 𝑚 P N,
we denote by 𝒫𝑚 the set of all polynomials in R𝑛 of degree ă 𝑚, e. g.,
𝒫1 :“ t𝑐 : 𝑐 P Cu. We put 𝒫0 :“ t0u and 𝒫8 the set of all polynomials
in R𝑛. For 𝑚 P N0 Y t8u, the symbol 𝒮𝑚 will be used for the set of
functions 𝜙 P 𝒮 (the Schwartz space), such that x𝑢, 𝜙y “ 0 for all 𝑢 P 𝒫𝑚,
its topological dual is denoted by 𝒮 1𝑚. If 𝑓 P 𝒮 1, then r𝑓 s𝑚 denotes its
equivalence class modulo 𝒫𝑚. The constants 𝑐, 𝑐1, . . . are strictly positive,
depend only on the fixed parameters as 𝑛, 𝑠, 𝑝, 𝑞, . . . and some fixed
functions, their values may change from one line to another.

Throughout the paper, the real numbers 𝑠, 𝑝, 𝑞 satisfy 𝑠 P R and
𝑝, 𝑞 Ps0,8s, unless otherwise stated.

2. Various function spaces.
2.1. Definition of Besov and Triebel-Lizorkin spaces. Through-

out this work, we fix in 𝐶8 a radial function 𝜌, such that 0 6 𝜌 6 1,
𝜌p𝜉q “ 1 if |𝜉| 6 1 and 𝜌p𝜉q “ 0 if |𝜉| > 3{2. We set 𝛾p𝜉q :“
𝜌p𝜉q ´ 𝜌p2𝜉q, which has support in the annulus 1{2 6 |𝜉| 6 3{2 and
𝛾p𝜉q “ 1 in 3{4 6 |𝜉| 6 1. We define the operators 𝑆𝑗 and 𝑄𝑗 (@𝑗 P Z) by
y𝑆𝑗𝑓p𝜉q :“ 𝜌p2´𝑗𝜉q p𝑓p𝜉q and y𝑄𝑗𝑓p𝜉q :“ 𝛾p2´𝑗𝜉q p𝑓p𝜉q, which are defined on
𝒮 1, take values in the space of analytical functions of exponential type
(see the Paley-Wiener theorem), and are uniformly bounded in ℒp𝐿𝑝q

(1 6 𝑝 6 8) by virtue of the convolution Young inequality. We obtain
the inhomogeneous LPd as follows:

For all 𝑓 P 𝒮 (resp. 𝒮 1) and all 𝑘 P Z, we have 𝑓 “ 𝑆𝑘𝑓 `
ř

𝑗ą𝑘

𝑄𝑗𝑓 in 𝒮
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(resp. 𝒮 1). Recall that 𝜌p2´𝑘𝜉q `
ř

𝑗ą𝑘

𝛾p2´𝑗𝜉q “ 1 for 𝜉 P R𝑛.

We have the following definition:

Definition 1.

(i) The inhomogeneous Besov space 𝐵𝑠
𝑝, 𝑞 is the set of all 𝑓 P 𝒮 1, such

that }𝑓}𝐵𝑠
𝑝,𝑞

:“ }𝑆0𝑓}𝑝 `
`
ř

𝑗>1

p2𝑗𝑠}𝑄𝑗𝑓}𝑝q
𝑞
˘1{𝑞

ă 8.

(ii) Let 0 ă 𝑝 ă 8. The inhomogeneous Triebel-Lizorkin space 𝐹 𝑠
𝑝, 𝑞 is

the set of all 𝑓 P 𝒮 1, such that

}𝑓}𝐹 𝑠
𝑝,𝑞

:“ }𝑆0𝑓}𝑝 `
›

›

›

´

ÿ

𝑗>1

p2𝑗𝑠
|𝑄𝑗𝑓 |q

𝑞
¯1{𝑞›

›

›

𝑝
ă 8.

To extend the definition to 𝒮 18, we use the following convention:

If 𝑓 P 𝒮 18, we define 𝑄𝑗𝑓 :“ 𝑄𝑗𝑓1 for any 𝑓1 P 𝒮 1, such that r𝑓1s8 “ 𝑓 .

Thus, 𝑄𝑗 are well-defined on 𝒮 18, since 𝑄𝑗𝑓 “ 0 (@𝑗 P Z) if and only if
𝑓 P 𝒫8 and:

For all 𝑓 P 𝒮8 (resp. 𝒮 18), we have 𝑓 “
ř

𝑗PZ
𝑄𝑗𝑓 in 𝒮8 (resp. 𝒮 18).

Recall that
ř

𝑗PZ
𝛾p2𝑗𝜉q “ 1 for 𝜉 ‰ 0.

We get the following definition:

Definition 2.

(i) The homogeneous Besov space 9𝐵𝑠
𝑝, 𝑞 is the set of all 𝑓 P 𝒮 18, such

that }𝑓} 9𝐵𝑠
𝑝,𝑞

:“
´

ř

𝑗PZ
p2𝑗𝑠}𝑄𝑗𝑓}𝑝q

𝑞
¯1{𝑞

ă 8.

(ii) Let 0 ă 𝑝 ă 8. The homogeneous Triebel-Lizorkin space 9𝐹 𝑠
𝑝, 𝑞 is the

set of all 𝑓 P 𝒮 18, such that }𝑓} 9𝐹 𝑠
𝑝,𝑞

:“
›

›

›

´

ř

𝑗PZ
p2𝑗𝑠|𝑄𝑗𝑓 |q

𝑞
¯1{𝑞›

›

›

𝑝
ă 8.

(iii) Let 0 ă 𝑞 ă 8. The homogeneous space 9𝐹 𝑠
8, 𝑞 is the set of all 𝑓 P 𝒮 18,

such that

}𝑓} 9𝐹 𝑠
8,𝑞

:“ sup
𝑘PZ, 𝜇PZ𝑛

ˆ

2𝑘𝑛

ż

𝑃𝑘,𝜇

ÿ

𝑗>𝑘

p2𝑗𝑠
|𝑄𝑗𝑓p𝑥q|q

𝑞 𝑑𝑥

˙1{𝑞

ă 8.
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(iv) For 𝑞 “ 8, we set 9𝐹 𝑠
8,8 “

9𝐵𝑠
8,8.

The spaces 𝐵, 𝐹 (resp. 9𝐵, 9𝐹 ) are quasi-Banach for the above defined
quasi-norms (resp. quasi-seminorms). Their definitions are independent
of the choice of 𝜌, see, e. g., [16], [21, Sect. 2.3] and [10, Coro. 5.3]. In the
above definitions, we can, also, change 𝑄𝑗𝑓 by 𝑣𝑗 ˚ 𝑓 , where
𝑣𝑗 :“ 2𝑗𝑛ℱ´1𝑣p2𝑗p¨qq with 𝑣 P 𝒟pR𝑛zt0uq be such that 𝑣 > 0 and for
𝑏 ą 2𝑎 ą 0, 𝑣p𝜉q > 𝑐 ą 0 if 𝑎 6 |𝜉| 6 𝑏; see [6, Lem. 2.1.2] and again
page 46 and Corollary 5.3 of [10]. On the other hand, it holds that:

(P1) 𝒮 ãÑ 𝐵,𝐹 ãÑ 𝒮 1.
(P2) 𝒮8 ãÑ 9𝐵, 9𝐹 ãÑ 𝒮 18.
(P3) 9𝐵𝑠

𝑝,minp𝑝, 𝑞q ãÑ 9𝐹 𝑠
𝑝, 𝑞 ãÑ 9𝐵𝑠

𝑝,maxp𝑝, 𝑞q, with 0 ă 𝑝 ă 8.
(P4) if 0 ă 𝑞, 𝑟 6 8, 𝑠1 ą 𝑠2, and 0 ă 𝑝1 ă 𝑝2 ă 8 are such that

𝑠1´𝑛{𝑝1 “ 𝑠2´𝑛{𝑝2 then 9𝐵𝑠1
𝑝1, 𝑞

ãÑ 9𝐵𝑠2
𝑝2, 𝑞

ãÑ 9𝐵
𝑠2´𝑛{𝑝2
8, 𝑞 , 9𝐹 𝑠1

𝑝1, 𝑞
ãÑ 9𝐵𝑠2

𝑝2, 𝑝1

and 9𝐹 𝑠1
𝑝1, 𝑞

ãÑ 9𝐹 𝑠2
𝑝2, 𝑟

, see [11].

(P5) 𝜆𝑠´𝑛{𝑝}ℎ𝜆𝑓} 9𝐹 𝑠
𝑝, 𝑞
„ }𝑓} 9𝐹 𝑠

𝑝, 𝑞
for all 𝑓 P 9𝐹 𝑠

𝑝, 𝑞 and all 𝜆 ą 0, if 𝑝 ă 8;
see, e. g., [21, Rem. 5.1.3/4], in case 𝑝 “ 8 see [1]. The same holds
when 9𝐹 is replaced with 9𝐵.

(P6) 9𝐹 𝑠
8, 𝑞 ãÑ 9𝐵𝑠

8,8, see [1, Lem. 3]. Also, using the homogeneous Triebel-
Lizorkin-type space 9𝐹 𝑠, 𝜏

𝑝, 𝑞 , the set of all 𝑓 P 𝒮 18, such that

}𝑓} 9𝐹 𝑠, 𝜏
𝑝, 𝑞

:“ sup
𝑘PZ

sup
𝜇PZ𝑛

2𝑘𝑛𝜏
›

›

›

´

ÿ

𝑗>𝑘

p2𝑗𝑠
|𝑄𝑗𝑓 |q

𝑞
¯1{𝑞›

›

›

𝐿𝑝p𝑃𝑘,𝜇q
ă 8,

where 0 ă 𝑝 ă 8 and 0 6 𝜏 ă 8, see [22], we have 9𝐹 𝑠
8, 𝑞 “

9𝐹
𝑠, 1{𝑝
𝑝, 𝑞

and 9𝐹 𝑠,𝜏
𝑝, 𝑞 ãÑ 9𝐵

𝑠`𝑛𝜏´𝑛{𝑝
8,8 , see again [22, Prop. 4.1], then taking 𝜏 “ 1{𝑝

in the last embedding, we obtain the desired assertion.

Proposition 2. A member 𝑓 of 𝒮 18 belongs to 9𝐹 𝑠
𝑝,𝑞 if and only if its first-

order derivatives Bℓ𝑓 , ℓ “ 1, . . . , 𝑛, belong to 9𝐹 𝑠´1
𝑝,𝑞 . Moreover,

𝑛
ř

ℓ“1

}Bℓ𝑓} 9𝐹 𝑠´1
𝑝, 𝑞

is an equivalent quasi-seminorm in 9𝐹 𝑠
𝑝, 𝑞. The same holds when 9𝐹 is re-

placed with 9𝐵.

Proof. See, e. g., [8, Prop. 5]. The same proof, given in [6, Prop. 2.1.1] for
the case of 9𝐵, can be used to obtain the case of 9𝐹 , and also with 𝑝 “ 8,
since 𝑄𝑗 can be written as

ř𝑛
ℓ“1 2´𝑗𝑣ℓp2

´𝑗𝐷q ˝ Bℓ, where 𝑣ℓ P 𝒟pR𝑛zt0uq
depends on 𝛾. l
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For further properties of the spaces 9𝐵, 9𝐹 , 𝐵, and 𝐹 , we refer the readers
to, e. g., [10], [16], [21]. We also refer to the survey [22] in which the
homogeneous Besov and Triebel-Lizorkin type spaces, 9𝐵𝑠,𝜏

𝑝, 𝑞 and 9𝐹 𝑠, 𝜏
𝑝, 𝑞 , are

studied (see (P6)); these spaces coincide with 9𝐵𝑠
𝑝, 𝑞 and 9𝐹 𝑠

𝑝, 𝑞, respectively,
if 𝜏 “ 0.

2.2. The realized spaces.
2.2.1. Generalities on realizations. We introduce the following

definition and some remarks with respect to [6], [7], [13], [14].

Definition 3. Let 𝑚 P N0Y t8u and 𝑘 P t0, . . . ,𝑚u. Let 𝐸 be a vector
subspace of 𝒮 1𝑚 endowed with a quasi-seminorm, such that 𝐸 ãÑ 𝒮 1𝑚 holds.
A realization of 𝐸 in 𝒮 1𝑘 is a continuous linear mapping

𝜎 : 𝐸 Ñ 𝒮 1𝑘 such that r𝜎p𝑓qs𝑚 “ 𝑓 for all 𝑓 P 𝐸.

The image set 𝜎p𝐸q is called the realized space of 𝐸 with respect to 𝜎.

For every 𝑓 in 𝐸, the element 𝜎p𝑓q is the unique representative of 𝑓
in 𝜎p𝐸q; consequently, 𝜎 is completely characterized by its range. We say
that a realization 𝜎 of 𝐸 commutes with translations (resp. dilations) if
𝜏𝑎 ˝ 𝜎 “ 𝜎 ˝ 𝜏𝑎, 𝑎 P R𝑛, (resp. ℎ𝜆 ˝ 𝜎 “ 𝜎 ˝ ℎ𝜆, 𝜆 ą 0); this goes if and only
if the range of 𝜎 is translation (resp. dilation) invariant.

Remark 1. A subspace 𝐸 of 𝒮 1𝑚 has generally infinitely many realiza-
tions in 𝒮 1𝑘 if 𝑘 ă 𝑚, in the case of 𝑘 “ 𝑚 the identity is the unique
realization. Of course, with additional conditions such as translations or
dilations invariance, a realization of 𝐸 in 𝒮 1𝑘 for 𝑘 ă 𝑚 has some chances
to be unique.

We have the phenomenon that if a realization is known, we obtain
other (see e. g. [7]):

Proposition 3. Let 𝜎0 : 𝐸 Ñ 𝒮 1𝑘 be a realization. For any finite family
pℒ𝛼q𝑘6|𝛼|ă𝑚 of continuous linear functionals on 𝐸, the following formula
defines a realization of 𝐸 in 𝒮 1𝑘:

𝜎p𝑓qp𝑥q :“ 𝜎0p𝑓qp𝑥q `
ÿ

𝑘6|𝛼|ă𝑚

ℒ𝛼p𝑓q𝑥
𝛼.

Conversely, any realization of 𝐸 in 𝒮 1𝑘 is given in such a way.

Further information on difficulties arising in the study of translation
or dilation commuting realizations is in, e. g., [7], [13]; see also Remark 4
and Subsection 2.2.3 below, for the 𝐹 and 𝐵 spaces, respectively.
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2.2.2. Realizations of Triebel-Lizorkin spaces. To define the
realized space of 9𝐹 𝑠

𝑝, 𝑞, we first fix the following natural number: to any
3-tuple (𝑛, 𝑠, 𝑝) we associate:

𝜈 :“

#

pr𝑠´ 𝑛{𝑝s ` 1q`, if 𝑠´ 𝑛{𝑝 R N0 or 1 ă 𝑝 6 8,

𝑠´ 𝑛{𝑝, if 𝑠´ 𝑛{𝑝 P N0 and 0 ă 𝑝 6 1.
(2)

The number 𝜈 characterizes the degree of the polynomials that define
the realizations. In other words, if 𝑓 P 9𝐹 𝑠

𝑝, 𝑞, then the series
ř

𝑗PZ
𝑄𝑗𝑓 (the

homogeneous LPd of 𝑓) converges in 𝒮 1𝜈 , and there exist polynomials 𝑟𝑗
in 𝒫𝜈 , such that

𝑓 “
ÿ

𝑗PZ

p𝑄𝑗𝑓 ´ 𝑟𝑗q in 𝒮 1,

see Propositions 4 – 6 below. For example, if 𝜈 “ 0 in the case of either
(𝑠 ă 𝑛{𝑝) or (𝑠 “ 𝑛{𝑝 and 0 ă 𝑝 6 1), we have 𝑟𝑗 “ 0 (recall 𝒫0 “ t0u)
and 𝒮 1 coincides with 𝒮 10; this case has been studied in several places,
e. g., [16, pp. 55-56], [7, Prop. 4.6], [13, Thm. 4.1 and Rem. 4.3]. If 𝜈 > 1
(𝒫𝜈 ‰ t0u), there exists a function 𝑓 P 9𝐹 𝑠

𝑝, 𝑞, such that the series
ř

𝑗60𝑄𝑗𝑓

diverges in 𝒮 1𝜈´1, see [6, Prop. 2.2.1] in which the proof given in 9𝐵𝑠
𝑝, 𝑞 can

be adapted to 9𝐹 𝑠
𝑝, 𝑞.

Finally, as mentioned in the Introduction, the number 𝜈 plays an im-
portant role in this work, and we refer to [1], [6], [7] for more information
on this.

Second, we recall the following notion:

Definition 4. A distribution 𝑓 P 𝒮 1 vanishes at infinity if

lim
𝜆Ó0

ℎ𝜆𝑓 “ 0 in 𝒮 1.

The set of all such distributions is denoted by 𝐶0.

Here are two examples of such distributions:

(i) 𝑓 P 𝐶0 if 𝑓 P 𝐿𝑝 (1 6 𝑝 ă 8);
(ii) Bℓ𝑓 P 𝐶0 (ℓ “ 1, . . . , 𝑛) if 𝑓 P 𝐿8 or 𝑓 P 𝐶0.

Before turning to some properties related to the number 𝜈, due to
technical reasons, we introduce the definition of the realized spaces of
9𝐹 𝑠
𝑝, 𝑞, which can be found in [7, p. 483/Step 2] and [14, Sect. 2.3] if 𝑝 ă 8,

and in [1, Def. 5] if 𝑝 “ 8.
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Definition 5. The realized space 9̃𝐹 𝑠
𝑝, 𝑞 is the set of all 𝑓 P 𝒮 1𝜈 , such that

r𝑓 s8 P 9𝐹 𝑠
𝑝, 𝑞 and B𝛼𝑓 P 𝐶0 for all |𝛼| “ 𝜈, where 𝜈 is defined in (2). This

space is endowed with the quasi-seminorm }𝑓} 9̃𝐹 𝑠
𝑝, 𝑞

:“ }r𝑓 s8} 9𝐹 𝑠
𝑝, 𝑞

.

Remark 2. The connections with the Lebesgue and homogeneous
Sobolev spaces help us to understand the realized spaces. In this con-
text, we recall that:

• 9̃𝐹 0
𝑝,2 “ 𝐿𝑝 for 1 ă 𝑝 ă 8, see [13, Prop. 5.2],

• 9̃𝐹𝑚
𝑝,2“𝐿𝑟X 9𝑊𝑚

𝑝 for 1 ă 𝑝 ă 8,𝑚“1, 2, . . . and 1{𝑟 :“1{𝑝´𝑚{𝑛 ą 0,
and where 9𝑊𝑚

𝑝 is the homogeneous Sobolev space endowed with the
seminorm }𝑓} 9𝑊𝑚

𝑝
:“

ř

|𝛼|“𝑚 }𝑓
p𝛼q}𝑝, see [7, Thm. 5.3].

Remark 3. For convenience, in studying some analysis problems, the
realizations can overcome some difficulties. For example, the pointwise
multipliers in homogeneous Besov and Triebel-Lizorkin spaces, 9𝐵𝑠

𝑝, 𝑞 and
9𝐹 𝑠
𝑝, 𝑞, are not defined; for this reason, it is better to work with realized

spaces, see, e. g., [3, Thms. 1 and 2].

We have the following property (see e. g., [7, Prop. 4.6], [13] if 𝑝 ă 8
and [1] if 𝑝 “ 8):

Proposition 4. If 𝑓 P 9𝐹 𝑠
𝑝, 𝑞, the series

ř

𝑗PZ𝑄𝑗𝑓 converges in 𝒮 1𝜈 to an
element denoted by 𝜎p𝑓q. The mapping 𝜎 : 9𝐹 𝑠

𝑝, 𝑞 Ñ 𝒮 1𝜈 defined in such
a way is a translation and dilation commuting realization of 9𝐹 𝑠

𝑝, 𝑞 in 𝒮 1𝜈 ,
satisfying r𝜎p𝑓qs8 “ 𝑓 and B𝛼𝜎p𝑓q P 𝐶0 for all |𝛼| “ 𝜈.

On the other hand, [7, Sect. 4.3] provides a construction of realizations
of 9𝐹 𝑠

𝑝, 𝑞 in 𝒮 1 in case 𝑝, 𝑞 > 1, which can be easily extended to 𝑝, 𝑞 ą 0, see
[13, Thms. 4.1 and 4.5], see also the proof of Lemma 9 and Remark 5 in
[1] for the case 𝑝 “ 8. Namely:

Proposition 5. For all 𝑓 P 9𝐹 𝑠
𝑝, 𝑞, define 𝜎𝑖, 𝜈p𝑓q (𝑖 “ 1, 2, 3) by the

following formulas:

𝜎1,0p𝑓q :“
ÿ

𝑗PZ

𝑄𝑗𝑓, if either p𝑠ă𝑛{𝑝q or p𝑠“𝑛{𝑝 and 0ă𝑝61q, here 𝜈“0; (3)

𝜎2, 𝜈p𝑓q :“
ÿ

𝑗PZ

´

𝑄𝑗𝑓 ´
ÿ

|𝛼|ă𝜈

p𝑄𝑗𝑓q
p𝛼q
p0q𝑥𝛼{𝛼!

¯

, if either p𝑠´ 𝑛{𝑝 P R`zN0q

or p𝑠´ 𝑛{𝑝 P N and 0 ă 𝑝 6 1q, here 𝜈 “ 1, 2, . . . ; (4)
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𝜎3, 𝜈p𝑓q :“
ÿ

𝑗>1

𝑄𝑗𝑓 `
ÿ

𝑗60

´

𝑄𝑗𝑓 ´
ÿ

|𝛼|ă𝜈

p𝑄𝑗𝑓q
p𝛼q
p0q𝑥𝛼{𝛼!

¯

,

if 𝑠´ 𝑛{𝑝 P N0 and 1 ă 𝑝 6 8, here 𝜈 “ 1, 2, . . . . (5)

Then 𝜎𝑖, 𝜈 is a realization of 9𝐹 𝑠
𝑝, 𝑞 in 𝒮 1, such that all above series

converge in 𝒮 1, B𝛼𝜎𝑖, 𝜈p𝑓q P 𝐶0 p@|𝛼| “ 𝜈q, r𝜎𝑖, 𝜈p𝑓qs8 “ 𝑓 in 𝒮 18 and
}r𝜎𝑖, 𝜈p𝑓qs8} 9𝐹 𝑠

𝑝, 𝑞
“ }𝑓} 9𝐹 𝑠

𝑝, 𝑞
. In (5) we can replace

ř

𝑗>1

and
ř

𝑗60

with
ř

𝑗>𝑚

and
ř

𝑗6𝑚´1

for any 𝑚 P Z, respectively.

Proposition 6. The set 𝜎𝑖, 𝜈p 9𝐹 𝑠
𝑝, 𝑞q (𝜎𝑖, 𝜈 is defined in (3) – (5)) is the

collection of all 𝑓 P 𝒮 1, such that r𝑓 s8 P 9𝐹 𝑠
𝑝, 𝑞, B𝛼𝑓 P 𝐶0 (@|𝛼| “ 𝜈), and

one of the following three conditions holds:

(a) There is no supplementary condition if either (𝑠 ă 𝑛{𝑝) or (𝑠 “ 𝑛{𝑝
and 0 ă 𝑝 6 1).

(b) 𝑓 is of class 𝐶𝜈´1 and 𝑓 p𝛽qp0q “ 0 for |𝛽| 6 𝜈 ´ 1, if either
(𝑠´ 𝑛{𝑝 P R`zN0) or (𝑠´ 𝑛{𝑝 P N and 0 ă 𝑝 6 1).

(c) 𝑓 is of class 𝐶𝜈´1 and 𝑓 p𝛽qp0q “
ř

𝑗>1

p𝑄𝑗𝑓q
p𝛽qp0q for |𝛽| 6 𝜈 ´ 1, if

𝑠´ 𝑛{𝑝 P N0 and 1 ă 𝑝 6 8.

The set 𝜎𝑖, 𝜈p 9𝐹 𝑠
𝑝, 𝑞q, also called the realized space of 9𝐹 𝑠

𝑝, 𝑞, is endowed with
the same quasi-seminorm, i. e., }𝑓}𝜎𝑖, 𝜈p 9𝐹 𝑠

𝑝, 𝑞q
:“ }r𝑓 s8} 9𝐹 𝑠

𝑝, 𝑞
. We also have

𝜎1, 0p 9𝐹 𝑠
𝑝, 𝑞q “

9̃𝐹 𝑠
𝑝, 𝑞 and 𝜎𝑖, 𝜈p 9𝐹 𝑠

𝑝, 𝑞q Ř
9̃𝐹 𝑠
𝑝, 𝑞 (𝑖 “ 2, 3) if 𝜈 > 1.

Proof. Denote by 𝑀 the set of all 𝑓 P 𝒮 1 satisfying r𝑓 s8 P 9𝐹 𝑠
𝑝, 𝑞, B𝛼𝑓 P 𝐶0

(@|𝛼| “ 𝜈) and one of the conditions (a) or (b) or (c). By definition,
we have the embedding 𝜎𝑖, 𝜈p 9𝐹 𝑠

𝑝, 𝑞q Ă 𝑀 . Taking now 𝑓 P 𝑀 , we have
𝑓 ´ 𝜎𝑖, 𝜈pr𝑓 s8q P 𝒫8, and B𝛼p𝑓 ´ 𝜎𝑖, 𝜈pr𝑓 s8qq P 𝐶0 if |𝛼| “ 𝜈. But as
𝐶0 X 𝒫8 “ t0u, 𝑓 ´ 𝜎𝑖, 𝜈pr𝑓 s8q “

ř

|𝛽|ă𝜈

𝑎𝛽𝑥
𝛽 (with 𝑎𝛽 “ 0 if 𝜈 “ 0), which

implies B𝛽p𝑓 ´ 𝜎𝑖, 𝜈pr𝑓 s8qqp0q “ 𝛽!𝑎𝛽. Conditions (a) – (c) and (3) – (5)
yield 𝑎𝛽 “ 0 for all |𝛽| ă 𝜈, and, consequently, 𝑓 P 𝜎𝑖, 𝜈p 9𝐹 𝑠

𝑝, 𝑞q.

We now prove 𝜎𝑖, 𝜈p 9𝐹 𝑠
𝑝, 𝑞q Ř

9̃𝐹 𝑠
𝑝, 𝑞 (𝑖 “ 2, 3) if 𝜈 > 1. The embedding

follows from the Definition 5. To see that it is proper, let 𝑓 P 𝜎𝑖, 𝜈p 9𝐹 𝑠
𝑝, 𝑞q.

Set 𝑓1p𝑥q :“ 𝑓p𝑥q `
ř

|𝛽|ă𝜈

𝑥𝛽{𝛽!, then 𝑓1 P
9̃𝐹 𝑠
𝑝, 𝑞z𝜎𝑖, 𝜈p

9𝐹 𝑠
𝑝, 𝑞q. Indeed, assume

first that the condition (b) is satisfied; we have 𝑓 p𝛼q1 p0q “ 1 (@|𝛼| ă 𝜈).
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Assume now that the condition (c) is satisfied; we have 𝑄𝑗𝑓1 “ 𝑄𝑗𝑓

(@𝑗 P Z), then 𝑓
p𝛼q
1 p0q “ 1 `

ř

𝑗>1

p𝑄𝑗𝑓1q
p𝛼qp0q (@|𝛼| ă 𝜈). The proof is

complete. l

We add the following remark:

Remark 4. In connection with Remark 1, we have the following asser-
tions, where we principally refer to [7, Sect. 4] and [13, Sect. 3]:

• The mapping 𝜎1, 0 defined in (3) commutes with translations, how-
ever, 𝜎𝑖, 𝜈 (𝑖 “ 2, 3) defined in (4)–(5) are not.

• If 𝑠 ´ 𝑛{𝑝 R N0, the mappings 𝜎1, 0 and 𝜎2, 𝜈 , defined in (3)–(4),
commute with dilations; 𝜎1, 0p𝑓q and 𝜎2, 𝜈p𝑓q are the unique repre-
sentatives of functions from 9𝐹 𝑠

𝑝, 𝑞. If 𝑠 ´ 𝑛{𝑝 P N0 and 1 ă 𝑝 6 8,
the mapping 𝜎3, 𝜈 defined in (5) does not commute with dilations.

• If 𝑠 ´ 𝑛{𝑝 P N0 and 0 ă 𝑝 6 1, 9𝐹 𝑠
𝑝, 𝑞 has infinitely many dilation

commuting realizations 𝜎 :“ �̃� `
ř

|𝛼|“𝜈

ℒ𝛼p¨q𝑥
𝛼, where �̃� :“ 𝜎1, 0

or 𝜎2, 𝜈 (see (3)–(4)), and pℒ𝛼q|𝛼|“𝜈 is a family of continuous linear
functionals on 9𝐹 𝑠

𝑝, 𝑞 satisfying ℒ𝛼 ˝ ℎ𝜆 “ 𝜆´𝜈ℒ𝛼 (@𝜆 ą 0).

2.2.3. Realizations of Besov spaces. In the same way as in Defi-
nition 5, we define 9̃𝐵𝑠

𝑝, 𝑞. Then we can take in Subsection 2.2.2 9𝐵 and 9̃𝐵

instead of 9𝐹 and 9̃𝐹 , respectively, by replacing in (2), Propositions 4 – 6,
and Remark 4, the conditions 0 ă 𝑝 6 1 and 1 ă 𝑝 6 8 with 0 ă 𝑞 6 1
and 1 ă 𝑞 6 8, respectively.

2.2.4. Realized spaces and the integrability. We formulate some
9̃𝐹
𝑛{𝑝
𝑝, 𝑞 ’s properties related to the integrability, which will be useful in what

follows. Here 𝜈 “ 0 if 0 ă 𝑝 6 1 and 𝜈 “ 1 if 1 ă 𝑝 6 8. For brevity,
we set

𝜎0p𝑓q :“ 𝜎1, 0p𝑓q,

and

𝜎1p𝑓q :“ 𝜎3, 1p𝑓q “
ÿ

𝑗>𝑚

𝑄𝑗𝑓 `
ÿ

𝑗6𝑚´1

`

𝑄𝑗𝑓 ´𝑄𝑗𝑓p0q
˘

p𝑚 P Zq;

see (3) and (5), respectively.
We need to apply the following technical lemma (the Bernstein in-

equality) proved, e. g., in [21, Rem. 1.3.2/1].
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Lemma 1. Let 0 ă 𝑝 6 𝑞 6 8 and 𝛼 P N𝑛
0 . There exists a constant

𝑐 ą 0, such that
}𝑓 p𝛼q}𝑞 6 𝑐𝑅|𝛼|`𝑛{𝑝´𝑛{𝑞}𝑓}𝑝

holds, for all 𝑅 ą 0 and all 𝑓 , such that supp p𝑓 Ď t𝜉 : |𝜉| 6 𝑅u.

Note that all following properties are also valid by changing 9̃𝐹 to 9̃𝐵
with the necessary modifications.

Proposition 7. Let either (0 ă 𝑝 ă 8) or (𝑝 “ 8 and 𝑞 “ 2). Then
it holds 9̃𝐹

𝑛{𝑝
𝑝, 𝑞 ãÑ 𝐿loc

1 X 𝐵0
8,8. In the case 0 ă 𝑝 ă 8, the embedding is

proper.

Proof.
Step 1: proof of the inclusion. Let 𝑓 P 9̃𝐹

𝑛{𝑝
𝑝, 𝑞 . We have 𝑓´𝜎𝜈pr𝑓 s8q P 𝒫𝜈 ,

(𝜈 “ 0, 1). As 𝐿8 ãÑ 𝐿loc
1 X 𝐵0

8,8 and 𝒫𝜈 ãÑ 𝐿8, it suffices to show
𝜎𝜈pr𝑓 s8q P 𝐿

loc
1 X𝐵0

8,8.
Substep 1.1: proof of 𝜎𝜈pr𝑓 s8q P 𝐵0

8,8.
The case: 𝑝 6 1. We split 𝜎0pr𝑓 s8q as 𝑔1`𝑔2, where 𝑔1 :“

ř

𝑗>1

𝑄𝑗𝑓 and

𝑔2 :“
ř

𝑗60

𝑄𝑗𝑓 . Since r𝑓 s8 P 9𝐹
𝑛{𝑝
𝑝, 𝑞 , 9𝐹

𝑛{𝑝
𝑝, 𝑞 ãÑ 9𝐵0

8,8 and 𝑆0𝑔1 “ 𝑆0p𝑄1𝑓q, we

have
}𝑆0𝑔1}8 6 }ℱ´1𝜌}1}𝑄1𝑓}8 6 𝑐}r𝑓 s8} 9𝐵0

8,8
.

Also, as 9𝐹
𝑛{𝑝
𝑝, 𝑞 ãÑ 9𝐵0

8, 𝑝 ãÑ 9𝐵0
8, 1, we get

}𝑆0𝑔2}8 6 }ℱ´1𝜌}1
ÿ

𝑗60

}𝑄𝑗𝑓}8 6 𝑐}r𝑓 s8} 9𝐵0
8, 1
.

On the other hand, as 𝑄𝑘

ř

𝑗

𝑄𝑗 “ 𝑄𝑘p𝑄𝑘´1 `𝑄𝑘 `𝑄𝑘`1q since

𝑄𝑘𝑄𝑗 “ 0 if |𝑘 ´ 𝑗| > 2,

we have
}𝑄𝑘p𝜎0pr𝑓 s8qq}8 6 𝑐}r𝑓 s8} 9𝐵0

8,8
p@𝑘 P Nq.

Thus, all these facts yield }𝜎0pr𝑓 s8q}𝐵0
8,8

ă 8, see Definition 1(i).
The case: 1ă𝑝ă8. We have rBℓ𝑓 s8 P 9𝐹

𝑛{𝑝´1
𝑝, 𝑞 ãÑ 9𝐵´18,8 (ℓ “ 1, . . . , 𝑛);

here the integer associated with 9𝐹
𝑛{𝑝´1
𝑝, 𝑞 is 𝜈 “ 0. Then we split 𝜎0prBℓ𝑓 s8q
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as in the preceding decomposition 𝑔1`𝑔2 by taking Bℓ𝑓 instead of 𝑓 . Thus,
using Lemma 1, we obtain

}𝑆0𝑔1}8 6 }ℱ´1𝜌}1}𝑄1pBℓ𝑓q}8 6 𝑐}r𝑓 s8} 9𝐵0
8,8

,

}𝑆0𝑔2}8 6 }ℱ´1𝜌}1
ÿ

𝑗60

}𝑄𝑗pBℓ𝑓q}8 6 𝑐1}r𝑓 s8} 9𝐵0
8,8

ÿ

𝑗60

2𝑗 6 𝑐2}r𝑓 s8} 9𝐵0
8,8

and
2´𝑘}𝑄𝑘p𝜎0prBℓ𝑓 s8qq}8 6 𝑐}r𝑓 s8} 9𝐵0

8,8
p@𝑘 P Nq.

Hence, 𝜎0prBℓ𝑓 s8q P 𝐵´18,8. We use the formula:

Bℓ ˝ 𝜎𝜈 “ 𝜎p𝜈´1q` ˝ Bℓ pℓ “ 1, . . . , 𝑛q,

proved in [7, Prop. 4.6]. We get Bℓ ˝ 𝜎1pr𝑓 s8q “ 𝜎0prBℓ𝑓 s8q P 𝐵
´1
8,8, which

implies 𝜎1pr𝑓 s8q P 𝐵0
8,8.

The case: 𝑝 “ 8 and 𝑞 “ 2. We have rBℓ𝑓 s8 P 9𝐹´18, 2 ãÑ 9𝐵´18,8

pℓ “ 1, . . . , 𝑛q, where the integer associated with 9𝐹´18, 2 is 𝜈 “ 0. Then we
continue exactly as in the preceding case.

Substep 1.2: proof of 𝜎𝜈pr𝑓 s8q P 𝐿loc
1 . The case 0 ă 𝑝 ă 8 can be done

as, e. g., in [2, pp. 29–30]. Then, we assume that 𝑝 “ 8 and 𝑞 “ 2. We
write 𝜎1pr𝑓 s8q “ 𝑔3 ` 𝑔4, where 𝑔3 :“

ř

𝑗>𝑚

𝑄𝑗𝑓 and

𝑔4 :“
ř

𝑗6𝑚´1

p𝑄𝑗𝑓 ´ 𝑄𝑗𝑓p0qq, where 𝑚 P Z is at our disposal, cf. Proposi-

tion 5. By Lemma 1, we first have

}∇𝑄𝑗𝑓}8 6 𝑐1

𝑛
ÿ

ℓ“0

}Bℓp𝑄𝑗𝑓q}8 6 𝑐22
𝑗
}𝑄𝑗𝑓}8 6

6 𝑐22
𝑗
}r𝑓 s8} 9𝐵0

8,8
, p@𝑗 P Zq. (6)

We choose 𝑚 6 0, then clearly

|𝑔4p𝑥q| 6 𝑐1|𝑥|
ÿ

𝑗6𝑚´1,𝑚60

}∇𝑄𝑗𝑓}8 6

6 𝑐2|𝑥|}r𝑓 s8} 9𝐵0
8,8

ÿ

𝑗60

2𝑗 6 𝑐3|𝑥|}r𝑓 s8} 9𝐵0
8,8

,

hence 𝑔4 P 𝐿loc
1 . We turn to 𝑔3. Let Ω be a compact set in R𝑛 and let 𝑥0

a fixed point in Ω; there exists an integer 𝑘 :“ 𝑘pΩq ă 0, such that Ω is
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contained in the ball Bp𝑥0, 2´𝑘q Ă R𝑛 centered at 𝑥0 of radius 2´𝑘. Then
we choose 𝑚 :“ 𝑘 ă 0, and obtain

ż

Ω

|𝑔3p𝑥q| 𝑑𝑥 6 𝑐
´

ż

Bp𝑥0, 2´𝑘q

ˇ

ˇ

ˇ

ÿ

𝑗>𝑘

𝑄𝑗𝑓p𝑥q
ˇ

ˇ

ˇ

2

𝑑𝑥
¯1{2

. (7)

Now, since in the definition of 9𝐹 0
8, 𝑞 we can replace the dyadic cubes 𝑃𝑘, 𝜇

with the balls 𝐵𝑘 in R𝑛 of radius 2´𝑘, we continue as in [5, p. 153] (see
also VII.13, p. 147 in this reference) to obtain that the right-hand side of
(7) is bounded by 𝑐}r𝑓 s8} 9𝐹 0

8, 2
, where 𝑐 :“ 𝑐pΩq ą 0.

Step 2. To prove that the embedding is proper, it suffices to test
the locally integrable function 𝑢p𝑥q :“ e𝑖𝑥1 , 𝑥 :“ p𝑥1, . . . , 𝑥𝑛q P R𝑛.
Since 𝐿8 ãÑ 𝐵0

8,8, it holds 𝑢 P 𝐵0
8,8. An easy computation gives

𝑄𝑘𝑢 “ 𝛾p2´𝑘, 0, . . . , 0q𝑢 for all 𝑘 P Z, then 𝑄0𝑢 “ 𝑢; recall that 𝛾p𝜉q “ 1

in the annulus 3{4 6 |𝜉| 6 1. Now it is clear that r𝑢s8 R 9𝐹
𝑛{𝑝
𝑝, 𝑞 for any

0ă𝑝ă8. Indeed, if r𝑢s8P 9𝐹
𝑛{𝑝
𝑝, 𝑞 then }𝑄0𝑢}𝑝 ă 8, which is impossible. l

Remark 5. We have 9̃𝐹 0
8, 2 ãÑ 𝐿loc

2 ; the proof is similar to that given
for Proposition 7. Also, concerning Proposition 7 in the case 𝑝 “ 8 and
𝑞 “ 2, see Corollary 1 below.

Proposition 8. There exists a constant 𝑐 ą 0, such that the following
estimate

1

|𝑄|

ż

𝑄

|𝑆𝑘𝑓p𝑥q| 𝑑𝑥 6 𝑐}r𝑓 s8} 9𝐹
𝑛{𝑝
𝑝, 𝑞

holds for all 𝑓 P 9̃𝐹
𝑛{𝑝
𝑝, 𝑞 , all 𝑘 P Z, and all cubes 𝑄 in R𝑛.

Proof. By Proposition 7, there exists a constant 𝑐 ą 0, such that it holds:
ż

|𝑥|61

|𝑔p𝑥q| 𝑑𝑥 6 𝑐}r𝑔s8} 9𝐹
𝑛{𝑝
𝑝, 𝑞

, @𝑔 P 9̃𝐹 𝑛{𝑝
𝑝, 𝑞 .

Let 𝑥0 P R𝑛 and 𝑟 ą 0. Let 𝑓 P 9̃𝐹
𝑛{𝑝
𝑝, 𝑞 . Apply the last inequality to the

function 𝑔 :“ 𝑓p𝑟p¨q ` 𝑥0q. By homogeneity (see (P5)) and translation
invariance of }¨} 9𝐹

𝑛{𝑝
𝑝, 𝑞

, it holds }r𝑓 s8} 9𝐹
𝑛{𝑝
𝑝, 𝑞
“ }r𝑓p𝑟p¨q ` 𝑥0qs8} 9𝐹

𝑛{𝑝
𝑝, 𝑞

. Thus, we
have the existence of a constant 𝑐 ą 0 independent of 𝑥0, 𝑟, and 𝑓 , such
that

𝑟´𝑛
ż

|𝑥´𝑥0|6𝑟

|𝑓p𝑥q| 𝑑𝑥 6 𝑐}r𝑓 s8} 9𝐹
𝑛{𝑝
𝑝, 𝑞
. (8)
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We also have

𝑟´𝑛
ż

|𝑥´𝑥0|6𝑟

|𝑆𝑘𝑓p𝑥q| 𝑑𝑥 6 2𝑘𝑛

ż

R𝑛

|ℱ´1𝜌p2𝑘𝑦q|
´

𝑟´𝑛
ż

|𝑢`𝑦´𝑥0|6𝑟

|𝑓p𝑢q|𝑑𝑢
¯

𝑑𝑦. (9)

Using (8), we see that the right-hand side of (9) is bounded by 𝑐1}r𝑓 s8} 9𝐹
𝑛{𝑝
𝑝, 𝑞

,
where 𝑐1 :“ 𝑐}ℱ´1𝜌}1. Let now 𝑄 be a cube in R𝑛, and let 𝐵 be the small-
est ball in R𝑛 containing 𝑄; then |𝐵| “ 𝑐|𝑄|, where 𝑐 :“ 𝑐p𝑛q ą 0. By the
arbitrariness of 𝑥0 and 𝑟, applying (9) with 𝐵, and using |𝑄|´1

ş

𝑄
. . . 6

6 𝑐|𝐵|´1
ş

𝐵
. . ., the result follows. l

Proposition 9. Let either (0 ă 𝑝 ă 8) or (𝑝 “ 8 and 𝑞 “ 2). If

𝑓 P 9̃𝐹
𝑛{𝑝
𝑝, 𝑞 , then it holds

ż

R𝑛

`

1` |𝑥|𝑛`1
˘´1

|𝑓p𝑥q| 𝑑𝑥 ă 8.

Proof. Let 𝑓 P 9̃𝐹
𝑛{𝑝
𝑝, 𝑞 . As observed before, 𝑓 ´ 𝜎𝜈pr𝑓 s8q is equal to 0

if 0 ă 𝑝 6 1 and to a constant 𝑐 if 1 ă 𝑝 6 8 (recall 𝜈 “ 0, 1), and
since

ş

R𝑛

p1` |𝑥|𝑛`1q´1 𝑑𝑥 ă 8, then it suffices to give a proof for functions

𝑓 P 𝜎𝜈p 9𝐹 𝑠
𝑝, 𝑞q.

Step 1: the case 𝑝 ą 1. As in the proof of Proposition 7 (Substep 1.2), 𝑓
can be written as 𝑔3`𝑔4, where 𝑔3 :“

ř

𝑗>𝑚

𝑄𝑗𝑓 and 𝑔4 :“
ř

𝑗6𝑚´1

p𝑄𝑗𝑓´𝑄𝑗𝑓p0qq,

with 𝑚 P Z that will be chosen later. We set

𝑈𝑖 :“

ż

R𝑛

`

1` |𝑥|𝑛`1
˘´1

|𝑔𝑖p𝑥q| 𝑑𝑥 p𝑖 “ 3, 4q.

Estimate of 𝑈3. Assume that 𝑝 ă 8 and choose 𝑚 :“ 1. We introduce
𝑝1, such that maxp1, 𝑝q ă 𝑝1 ă 8, and set 𝑝11 :“ 𝑝1{p𝑝1 ´ 1q. By Hölder’s
inequality, it holds

𝑈3 6
ÿ

𝑗>1

}𝑄𝑗𝑓}𝑝1

´

ż

R𝑛

p1` |𝑥|𝑛`1q´𝑝
1
1 𝑑𝑥

¯1{𝑝11
6

6 𝑐1}r𝑓 s8} 9𝐵
𝑛{𝑝1
𝑝1,8

ÿ

𝑗>1

2´𝑗𝑛{𝑝1 6 𝑐2}r𝑓 s8} 9𝐵
𝑛{𝑝1
𝑝1,8

;

we finish by using the embedding 9𝐹
𝑛{𝑝
𝑝, 𝑞 ãÑ 9𝐵

𝑛{𝑝1
𝑝1,8. Assume now 𝑝 “ 8. We

have

𝑈3 6
ÿ

𝜇PZ𝑛

´

ż

𝑃1, 𝜇

`

1` |𝑥|𝑛`1
˘´2

𝑑𝑥
¯1{2´

ż

𝑃1, 𝜇

ˇ

ˇ

ˇ

ÿ

𝑗>𝑚

𝑄𝑗𝑓p𝑥q
ˇ

ˇ

ˇ

2

𝑑𝑥
¯1{2

. (10)
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We also have

sup
𝜇PZ𝑛

´

ż

𝑃1, 𝜇

ˇ

ˇ

ˇ

ÿ

𝑗>𝑚

𝑄𝑗𝑓p𝑥q
ˇ

ˇ

ˇ

2

𝑑𝑥
¯1{2

6 𝑐}r𝑓 s8} 9𝐹 0
8, 2
, (11)

which is proved in [5, p. 153]. Indeed, in this reference the author used the
balls instead of dyadic cubes, but if 𝑥 P 𝑃1, 𝜇, then |𝑥´2´1𝜇|62´1

?
𝑛ă2𝑛,

hence 𝑃1, 𝜇 is embedded in Bp2´1𝜇, 2𝑛q: the ball in R𝑛 centered at 2´1𝜇
with radius 2𝑛. Then we choose 𝑚 :“ ´𝑛 and obtain

ż

𝑃1, 𝜇

ˇ

ˇ

ˇ

ÿ

𝑗>𝑚

𝑄𝑗𝑓p𝑥q
ˇ

ˇ

ˇ

2

𝑑𝑥 6
ż

Bp2´1𝜇, 2´p´𝑛qq

ˇ

ˇ

ˇ

ÿ

𝑗>´𝑛

𝑄𝑗𝑓p𝑥q
ˇ

ˇ

ˇ

2

𝑑𝑥;

cf. the formula (7) and the sentence just after. By inserting (11) into (10),
and taking into account, first, that for 𝑥 P 𝑃1, 𝜇, 1` |𝜇|𝑛`1 6 𝑐p1` |𝑥|𝑛`1q

with a constant 𝑐 :“ 𝑐p𝑛q ą 0 and, second,
ř

𝜇PZ𝑛

p1` |𝜇|𝑛`1q
´1
ă 8, we

then get 𝑈3 6 𝑐}r𝑓 s8} 9𝐹 0
8, 2

.
Estimate of 𝑈4. Let 0 ă 𝑏 ă 1. Using the estimate (6), then we have

|𝑔4p𝑥q| 6 21´𝑏
ÿ

𝑗6𝑚´1

}𝑄𝑗𝑓}
1´𝑏
8 |𝑄𝑗𝑓p𝑥q ´𝑄𝑗𝑓p0q|

𝑏 6 p𝑚 :“ 1 or 𝑚 :“ ´𝑛q

6 𝑐1|𝑥|
𝑏
ÿ

𝑗60

}𝑄𝑗𝑓}
1´𝑏
8 }∇𝑄𝑗𝑓}

𝑏
8 6

6 𝑐2|𝑥|
𝑏
}r𝑓 s8} 9𝐵0

8,8

ÿ

𝑗60

2𝑗𝑏 6 𝑐3|𝑥|
𝑏
}r𝑓 s8} 9𝐵0

8,8
.

Using the embedding 9𝐹
𝑛{𝑝
𝑝, 𝑞 ãÑ 9𝐵0

8,8 and
ż

R𝑛

|𝑥|𝑏p1 ` |𝑥|𝑛`1q´1𝑑𝑥 ă 8, we

finish.
Step 2: the case 0 ă 𝑝 6 1. Let 𝑝2 be a number such that 1 ă 𝑝2 ă 8.

By the embedding 9𝐹
𝑛{𝑝
𝑝, 𝑞 ãÑ 9𝐹

𝑛{𝑝2
𝑝2, 𝑞 , and the fact that 𝑓 P 𝐶0 implies Bℓ𝑓 P 𝐶0

(ℓ “ 1, . . . , 𝑛), we have 𝑓 P 9̃𝐹
𝑛{𝑝2
𝑝2, 𝑞 ; recall that the integers associated with

the spaces 9𝐹
𝑛{𝑝
𝑝, 𝑞 and 9𝐹

𝑛{𝑝2
𝑝2, 𝑞 are 𝜈 “ 0 and 𝜈 “ 1, respectively. Thus, an

application of Step 1 with 𝑝2 instead of 𝑝 gives the result. l

2.3. Definition of the space BMO. The space 𝐵𝑀𝑂 is the set of
all 𝑓 P 𝐿loc

1 such that

}𝑓}𝐵𝑀𝑂 :“ sup
𝑄
|𝑄|´1

ż

𝑄

|𝑓p𝑥q ´𝑚𝑄𝑓 | 𝑑𝑥 ă 8,
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where the supremum is taken over all finite cubes 𝑄 in R𝑛; example of such
a function: 𝑥 ÞÑ log |𝑥|. We note that in connection with the definition
of the Triebel-Lizorkin space, we cannot identify 𝐵𝑀𝑂 with the set of
functions 𝑓 such that p

ř

𝑗PZ
|𝑄𝑗𝑓 |

2q1{2 is bounded, see again [10, p. 70] or

[5, p. 154]. We also note that 𝐵𝑀𝑂 has several properties, in particular:

Proposition 10. Let 1 6 𝑝 ă 8. Every element 𝑓 of 𝐵𝑀𝑂 belongs to
𝐿loc
𝑝 and satisfies (i) of Proposition 1.

Proof. See [18, IV. 1.3, p. 144]. l

3. Proof of Theorem 1. Step 1: proof of (i). Let 𝑓 P
9̃𝐹 0
8, 2.

Remark 5 and Proposition 9 allow application of Proposition 1; then
𝑓 P 𝐵𝑀𝑂. Hence, the embedding in one direction is obtained. Con-
versely, let 𝑓 P 𝐵𝑀𝑂. By Propositions 1 and 10 we have r𝑓 s8 P 9𝐹 0

8, 2.
We also have 𝑓 ´ 𝜎1pr𝑓 s8q P 𝒫8, where 𝜎1 :“ 𝜎3, 1 (see (5)). By condi-

tion
ż

R𝑛

p1` |𝑥|𝑛`1q´1|𝑓p𝑥q| 𝑑𝑥 ă 8 and Proposition 9 applied to 𝜎1pr𝑓 s8q

(since 𝜎1pr𝑓 s8q P
9̃𝐹 0
8, 2), we obtain 𝑓 ´ 𝜎1pr𝑓 s8q ” 𝑐 P C; indeed, any

non-constant polynomial 𝐺 satisfies
ż

R𝑛

p1 ` |𝑥|𝑛`1q´1|𝐺p𝑥q| 𝑑𝑥 “ 8 (an

easy exercise). The desired result follows.
Step 2: proof of (ii). Let us begin with some preparations. By

the embedding 𝐹
𝑛{𝑝
𝑝, 𝑞 ãÑ 𝐹

𝑛{𝑝1
𝑝1,2

with maxp𝑝, 1q ă 𝑝1 ă 8, the estimate
}𝑓}𝐵𝑀𝑂 6 𝑐}𝑓}

𝐹
𝑛{𝑝1
𝑝1,2

(see (1) and the comment that follows just after) and

the fact that }𝑓}𝑝 ` }r𝑓 s8} 9𝐹
𝑛{𝑝
𝑝, 𝑞

is an equivalent quasi-norm in 𝐹
𝑛{𝑝
𝑝, 𝑞 , see,

e. g., [15, Prop. 2.5], for all 0 ă 𝑝 ă 8 it holds

}𝑓}𝐵𝑀𝑂 6 𝑐p}𝑓}𝑝 ` }r𝑓 s8} 9𝐹
𝑛{𝑝
𝑝, 𝑞
q , @𝑓 P 𝐹 𝑛{𝑝

𝑝, 𝑞 .

In this inequality, replace 𝑓 by ℎ𝜆𝑓 for any 𝜆 ą 0. Using the property
(P5), the fact that }ℎ𝜆𝑓}𝐵𝑀𝑂 “ }𝑓}𝐵𝑀𝑂, and by letting 𝜆Ñ 0, we get

}𝑓}𝐵𝑀𝑂 6 𝑐}r𝑓 s8} 9𝐹
𝑛{𝑝
𝑝, 𝑞

, @𝑓 P 𝐹 𝑛{𝑝
𝑝, 𝑞 . (12)

Now we turn to the embedding, and limit ourselves to 1 ă 𝑝 ă 8. The
case of 0 ă 𝑝 6 1 can be obtained as in Step 2 of the proof of Proposition 9.
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Take 𝑓 P 9̃𝐹
𝑛{𝑝
𝑝, 𝑞 (recall that 𝒫𝑚 Ę

9̃𝐹
𝑛{𝑝
𝑝, 𝑞 if 𝑚 > 2) and set

𝑓𝑘 :“
ÿ

𝑗>´𝑘

𝑄𝑗𝑓 for 𝑘 “ 0, 1, . . . .

The sequence p𝑓𝑘q has the following properties:

• by [8, Prop. 4] it holds that }r𝑓𝑘s8} 9𝐹
𝑛{𝑝
𝑝, 𝑞

6 𝑐}r𝑓 s8} 9𝐹
𝑛{𝑝
𝑝, 𝑞

for all 𝑘 P N0,

• 𝑓𝑘 P 𝐿𝑝; indeed

}𝑓𝑘}𝑝 6 }r𝑓 s8} 9𝐹
𝑛{𝑝
𝑝,8

´

ÿ

𝑗>´𝑘

2´𝑗𝑛{𝑝
¯

6 𝑐 2𝑘𝑛{𝑝
}r𝑓 s8} 9𝐹

𝑛{𝑝
𝑝,8

.

By applying (12) to 𝑓𝑘, we get

}𝑓𝑘}𝐵𝑀𝑂 6 𝑐}r𝑓 s8} 9𝐹
𝑛{𝑝
𝑝, 𝑞

, @𝑘 P N0 . (13)

As 𝑓 “
ř

𝑗PZ
𝑄𝑗𝑓 in 𝒮 18, it holds that 𝑓 ´ 𝑓𝑘 “

ř

𝑗ă´𝑘

𝑄𝑗𝑓 is in 𝒮 18. Then, by

[8, Prop. 4] again, we obtain

}r𝑓´𝑓𝑘s8} 9𝐹
𝑛{𝑝
𝑝, 𝑞
“

›

›

›

ÿ

𝑗ă´𝑘

𝑄𝑗𝑓
›

›

›

9𝐹
𝑛{𝑝
𝑝, 𝑞

6 𝑐
›

›

›

´

ÿ

𝑗ă´𝑘

p2𝑗𝑛{𝑝
|𝑄𝑗𝑓 |q

𝑞
¯1{𝑞›

›

›

𝑝
, @𝑘 P N0 ,

with the change sup
𝑗ă´𝑘

2𝑗𝑛{𝑝|𝑄𝑗𝑓 | in the inner norm }¨}𝑝 when 𝑞 “ 8.

Set
𝑣𝑘 :“

´

ÿ

𝑗ă´𝑘

p2𝑗𝑛{𝑝
|𝑄𝑗𝑓 |q

𝑞
¯𝑝{𝑞

, 𝑘 “ 0, 1, . . . ,

(resp. taking sup
𝑗ă´𝑘

. . . if 𝑞 “ 8). The positive sequence p𝑣𝑘q satisfies

lim
𝑘Ñ8

𝑣𝑘 “ 0 a. e. on R𝑛, since

´

ÿ

𝑗ă´𝑘

`

2𝑗𝑛{𝑝
|𝑄𝑗𝑓p𝑥q|

˘𝑞
¯𝑝{𝑞

6 }r𝑓 s8}
𝑝
9𝐵0
8,8

´

ÿ

𝑗ă´𝑘

2𝑗𝑞𝑛{𝑝
¯𝑝{𝑞

6

6 𝑐2´𝑘𝑛}r𝑓 s8}
𝑝

9𝐹
𝑛{𝑝
𝑝, 𝑞

,

(resp. we have the bound 𝑐 2´𝑘𝑛}r𝑓 s8}
𝑝

9𝐹
𝑛{𝑝
𝑝,8

if 𝑞 “ 8). Also, as the as-

sumption on 𝑓 yields 𝑣𝑘 6
`
ř

𝑗PZ
p2𝑗𝑛{𝑝|𝑄𝑗𝑓 |q

𝑞
˘𝑝{𝑞

P 𝐿1 (resp. also if 𝑞 “ 8).
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Thus, by dominated convergence theorem applied to the inequality

}r𝑓 ´ 𝑓𝑘s8}
𝑝

9𝐹
𝑛{𝑝
𝑝, 𝑞

6 𝑐

ż

R𝑛

𝑣𝑘p𝑥q 𝑑𝑥,

we deduce that lim
𝑘Ñ8

}r𝑓 ´ 𝑓𝑘s8} 9𝐹
𝑛{𝑝
𝑝, 𝑞
“ 0, which yields

𝑓𝑘 Ñ 𝑓 in 9̃𝐹 𝑛{𝑝
𝑝, 𝑞 ,

(see Definition 5). On the other hand, by Proposition 7, we get 𝑓𝑘 Ñ 𝑓 in
𝐿loc
1 . Then, classically, there exists a subsequence p𝑓𝑘𝑗q of p𝑓𝑘q, such that

𝑓𝑘𝑗 Ñ 𝑓 a. e. on R𝑛 as 𝑗 Ñ 8.

Thus, for all finite cubes 𝑄 in R𝑛, we have 𝑓𝑘𝑗 ´𝑚𝑄𝑓 Ñ 𝑓 ´𝑚𝑄𝑓 a. e.,
which implies
ż

𝑄

|𝑓p𝑥q ´𝑚𝑄𝑓 | 𝑑𝑥 “

ż

𝑄

lim
𝑗Ñ8

|𝑓𝑘𝑗p𝑥q ´𝑚𝑄𝑓 | 𝑑𝑥 6

6
ż

𝑄

lim
𝑗Ñ8

|𝑓𝑘𝑗p𝑥q ´𝑚𝑄𝑓𝑘𝑗 | 𝑑𝑥` |𝑄| lim
𝑗Ñ8

|𝑚𝑄𝑓 ´𝑚𝑄𝑓𝑘𝑗 |. (14)

By the Fatou lemma and using (13) with p𝑓𝑘𝑗q, we get

ż

𝑄

lim inf
𝑗Ñ8

|𝑓𝑘𝑗p𝑥q ´𝑚𝑄𝑓𝑘𝑗 | 𝑑𝑥 6 |𝑄| lim inf
𝑗Ñ8

}𝑓𝑘𝑗}𝐵𝑀𝑂 6

6 𝑐|𝑄| }r𝑓 s8} 9𝐹
𝑛{𝑝
𝑝, 𝑞
. (15)

For the last term in (14), it is clear that

|𝑚𝑄𝑓 ´𝑚𝑄𝑓𝑘𝑗 | 6 |𝑄|
´1

ż

𝑄

|𝑆´𝑘𝑗´1𝑓p𝑥q| 𝑑𝑥,

which gives, in view of Proposition 8, |𝑚𝑄𝑓 ´𝑚𝑄𝑓𝑘𝑗 | 6 𝑐}r𝑓 s8} 9𝐹
𝑛{𝑝
𝑝, 𝑞

for all
𝑗 P N0 and all finite cubes 𝑄 in R𝑛. Inserting both the last estimate and
(15) into (14), dividing by |𝑄| and taking the supremum over all 𝑄, we
get }𝑓}𝐵𝑀𝑂 6 𝑐}r𝑓 s8} 9𝐹

𝑛{𝑝
𝑝, 𝑞

; which is the desired result.
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We prove that the embedding is proper. Let 𝑓p𝑥q :“ log |𝑥|, 𝑥 P R𝑛,
and let 𝑝1 ą 𝑝. The function p𝑓 coincides with 𝑐|𝜉|´𝑛 on R𝑛zt0u. Set
p𝜓p𝜉q :“ |𝜉|´𝑛𝛾p𝜉q, which satisfies 𝜓 P 𝒮8 and }𝑄𝑗𝑓}𝑝1 “ 2´𝑗𝑛{𝑝1}𝜓}𝑝1 .
This implies }r𝑓 s8} 9𝐵

𝑛{𝑝1
𝑝1, 𝑝
“8 since 𝑝 ă 8. But as 9𝐹

𝑛{𝑝
𝑝, 𝑞 ãÑ 9𝐵

𝑛{𝑝1
𝑝1, 𝑝 , 0ă𝑞68,

we have r𝑓 s8 R 9𝐹
𝑛{𝑝
𝑝, 𝑞 . l

4. Some remarks.
4.1. BMO functions and the Besov spaces. An application of the

main result yields the following assertions for the inhomogeneous Besov
spaces and their homogeneous and realized counterparts.

Corollary 1. The embedding 𝐵𝑀𝑂 ãÑ 𝐵0
8,8 is proper.

Proof. The inclusion follows by Proposition 7 and Theorem 1(i). To prove
the embedding is proper, it suffices to observe that 𝐵0

8,8 Ę 𝐿loc
1 . Recall

that 𝐵0
8, 𝑞 Ă 𝐿loc

1 if and only if 0 ă 𝑞 6 2, cf. [17, Thm. 3.3.2]. l

In [19, Thm. 2(b)], it was proved that if 𝑠 ą 0 then

}𝒥𝑠𝑓}𝐵𝑠
8,8

6 𝑐}𝑓}𝐵𝑀𝑂 for all 𝑓 P 𝐵𝑀𝑂 X p𝐿1 ` 𝐿8q,

𝒥𝑠 is defined in the Introduction; this implies 𝐵𝑀𝑂Xp𝐿1 ` 𝐿8q Ă𝐵
0
8,8

since 𝒥𝑠 maps 𝐵0
8,8 isomorphically onto 𝐵𝑠

8,8 and the expression
}𝒥𝑠𝑓}𝐵𝑠

8,8
is an equivalent to }𝑓}𝐵0

8,8
, see e. g., [16, p. 67] or

[21, Thm. 2.3.8]. Hence, the improvement given now by Corollary 1 re-
moves the assumption 𝐿1 ` 𝐿8 in this embedding.

Corollary 2. It holds that 9̃𝐵0
8, 2 ãÑ 𝐵𝑀𝑂 ãÑ

9̃𝐵0
8,8.

Proof. This is immediate by 9̃𝐵0
8, 2 ãÑ

9̃𝐹 0
8, 2 ãÑ

9̃𝐵0
8,8, which can be easily

obtained by 9𝐵0
8, 2 ãÑ 9𝐹 0

8, 2, the property (P6) and the definition of 𝜈, see
(2). We note that the second embedding in this corollary is given in [12,
Thm. 10.1]. l

In the same way, in [16, p. 169, Lines 2–3 p. 252] with a small modifi-
cation, and in [5, p. 154], it was proved: if 𝑓 P 𝐵𝑀𝑂, then r𝑓 s8 P 9𝐵0

8,8.
This can now be obtained easily by applying Theorem 1(i) and the prop-
erty (P6).

4.2. Applications related to the Riesz operator. In order to in-
vestigate actions of the Riesz operator ℐ𝛽 (defined as ℐ𝛽𝑓 :“ ℱ´1p|𝜉|´𝛽 p𝑓 q,
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𝛽 P R) on 𝐵𝑀𝑂, we recall that ℐ𝛽 takes 𝒮8 to itself (an easy proof). It
is therefore consistent to define ℐ𝛽 : 𝒮 18 Ñ 𝒮 18 as: if 𝑓 P 𝒮 18 then

xℐ𝛽𝑓, 𝜙y :“ x𝑓1, ℐ𝛽𝜙y

for all 𝜙 P 𝒮8 and all 𝑓1 P 𝒮 1, such that r𝑓1s8 “ 𝑓 .
4.2.1. The 𝐹 -spaces. We have ℐ𝛽 maps 9𝐹 𝑠

𝑝, 𝑞 isomorphically onto
9𝐹 𝑠`𝛽
𝑝, 𝑞 and }ℐ𝛽𝑓} 9𝐹 𝑠`𝛽

𝑝, 𝑞
„ }𝑓} 9𝐹 𝑠

𝑝, 𝑞
, see, e. g., [21, Thm. 5.2.3/1]. Then we get:

Proposition 11. If 𝑓 P 9̃𝐹 𝑠
𝑝, 𝑞 then ℐ𝛽pr𝑓 s8q P 9𝐹 𝑠`𝛽

𝑝, 𝑞 , and there exists

a function 𝑔 P 9̃𝐹 𝑠`𝛽
𝑝, 𝑞 , such that ℐ𝛽pr𝑓 s8q “ r𝑔s8 in 𝒮 18. In particular, if

𝑓 P 𝐵𝑀𝑂 then ℐ𝛽pr𝑓 s8q P 9𝐹 𝛽
8, 2.

Proof. It suffices to take 𝑔 :“ 𝜎𝑖,𝜈pℐ𝛽pr𝑓 s8qq, where 𝜎𝑖,𝜈 is defined in
Proposition 5. l

On the other hand, using the embedding 9𝐹 𝛽
𝑝, 2 ãÑ 9𝐹 0

𝑞, 2 we obtain:

Proposition 12. Let 0 ă 𝑝 ă 𝑞 ă 8. Put 𝛽 :“ 𝑛{𝑝´ 𝑛{𝑞. If 𝑓 P 9̃𝐹 0
𝑝, 2,

then there exists a function 𝑔 P 9̃𝐹 0
𝑞, 2, such that ℐ𝛽pr𝑓 s8q “ r𝑔s8 in 𝒮 18

and }𝑔} 9̃𝐹 0
𝑞, 2

6 𝑐}𝑓} 9̃𝐹 0
𝑝, 2

. The positive constant 𝑐 depends only on 𝑛, 𝑝, and
𝑞.

Proof. The existence of 𝑔 is obtained as in Proposition 11. For the esti-
mate we apply the above embedding. l

Remark 6. Clearly, the problem now arises: to see if ℐ𝛽 takes 9̃𝐹 𝑠
𝑝, 𝑞 to

9̃𝐹 𝑠`𝛽
𝑝, 𝑞 ; it seems to be open.

4.2.2. The 𝐵-spaces. An analogue of Proposition 11 holds in the
case of Besov spaces. We have

9𝐵𝛽
8, 2 Ď ℐ𝛽p𝐵𝑀𝑂q Ď 9𝐵𝛽

8,8 p𝛽 P Rq. (16)

These inclusions are proved in [20, Thm. 3.4], at least for 𝛽 ą 0, with
spaces 9𝐵𝑠

8, 𝑞 endowed with the functional

ℳ𝑠,𝑚
𝑞 p𝑓q :“

´

ż

R𝑛

`

|ℎ|´𝑠}∆𝑚
ℎ 𝑓}8

˘𝑞 𝑑ℎ

|ℎ|𝑛

¯1{𝑞

,

for 𝑚 P N and 0 ă 𝑠 ă 𝑚, where ∆𝑚
ℎ is the 𝑚-th difference operator

(∆1
ℎ𝑓 :“ 𝜏´ℎ𝑓 ´ 𝑓 and ∆𝑚

ℎ :“ ∆1
ℎ ˝∆𝑚´1

ℎ , 𝑚 “ 2, 3, . . .). Here the spaces
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9𝐵𝑠
8, 𝑞 are defined modulo polynomials of degree 6 𝑠, cf. the last line in [20,

p. 552]. Note that in 9𝐵𝑠
8, 𝑞 as defined by the LPd (cf. Definition 2), }¨} 9𝐵𝑠

8, 𝑞

and ℳ𝑠,𝑚
𝑞 p¨q are not equivalent, since for any polynomial 𝑓 of degree > 𝑚,

}r𝑓 s8} 9𝐵𝑠
8, 𝑞
“ 0 while ℳ𝑠,𝑚

𝑞 p𝑓q “ 8 (e. g., 𝑓p𝑥q :“ 𝑥1 then ∆1
ℎ𝑓p𝑥q “ ℎ1).

However, with 𝑞 “ 2 or 8 and 𝑠 ą 0 we have:
(i) 𝜈 “ r𝑠s ` 1 for 9𝐵𝑠

8, 𝑞,

(ii) }.} 9𝐵𝑠
8, 𝑞

and ℳ𝑠,𝑚
𝑞 p¨q, with 𝑚 > 𝜈, are equivalent in 9̃𝐵𝑠

8, 𝑞, see
[14, Thm. 1.1].
In this sense, we can view (16) as follows:

• if 𝑓 P𝐵𝑀𝑂, there exists a function 𝑔 P 9̃𝐵𝛽
8,8 such that ℐ𝛽pr𝑓 s8q “

“ r𝑔s8 in 𝒮 18,

• if 𝑓 P 9̃𝐵𝛽
8, 2, then ℐ´𝛽pr𝑓 s8q P 9𝐵0

8, 2; as 9𝐵0
8, 2 ãÑ 9𝐹 0

8, 2, by Proposi-
tion 11 we obtain the existence of a function ℎ P 𝐵𝑀𝑂, such that
ℐ´𝛽pr𝑓 s8q “ rℎs8 in 𝒮 18, this implies r𝑓 s8 “ ℐ𝛽prℎs8q.

Remark 7. As in Remark 6, we also have ℐ𝛽 : 9̃𝐵𝑠
𝑝, 𝑞 Ñ

9̃𝐵𝑠`𝛽
𝑝, 𝑞 as an open

question, cf. [15, Rem. 2.11].
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1988, vol. 26, no. 1, pp. 41 – 54.
DOI: https://doi.org/10.1007/BF02386107

[5] Bourdaud G. Analyse Fonctionnelle dans l’Espace Euclidien. 2ième édition,
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