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ON A CLASS OF MAPPINGS HARMONIC
IN THE HALF-PLANE

Z. J. Jakubowski, A.  Lazińska

Well known is the class of typically-real functions holomorphic
in the unit disc |z| < 1, introduced by W. Rogosinski in 1932 ([6]).
There were also investigated classes of typically-real functions har-
monic in the unit disc ([1,4]). Whereas in the present paper we
consider some class of typically-real functions harmonic in the right
half-plane. The results are based on the considerations concerning
typically-real functions holomorphic in this half-plane ([3,5]).

§ 1. Definition and basic properties of the class T HR
Let Π+ = {z ∈ C : Re z > 0} and let first H = H(Π+) be the class of

all functions f holomorphic in Π+ and such that

lim
Π+3z→∞

(f(z)− z) = af (1.1)

where af is some complex number.
Let TR be a subclass of functions of H which take real values on the

positive real half-axis only, that is

f(z) = f(z) ⇔ z = z, z ∈ Π+. (1.2)

Evidently, for f ∈ TR, in (1.1) we have af ∈ R.
For the class TR, we have

Proposition 1. ([3]) A function f ∈ H belongs to the class TR if and
only if

Im f(z)

 > 0 when Im z > 0,
= 0 when Im z = 0, z ∈ Π+,
< 0 when Im z < 0.

(1.3)
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Let nowH = H(Π+) denote the class of complex functions F harmonic
in Π+ and satisfying normalization condition (1.1). As we know, each
function F harmonic in Π+ is of the form F = h+ ḡ, where h, g are some
functions holomorphic in Π+, because Π+ is a simply connected domain.

Let next T HR denote the class of functions F ∈ H, F = h + ḡ, such
that ImF satisfies condition (1.3) and

lim
Π+3z→∞

Re g(z) = αg, αg ∈ R. (1.4)

The class T HR will be called a class of harmonic functions typically-real
in Π+.

It follows from normalization condition (1.1) and from (1.3) that
aF ∈ R for F ∈ T HR .

Example 1.1. Let F1 be a function of the form

F1(z) = z − 1
z

+
1
z̄
, z ∈ Π+. (1.5)

Function (1.5) satisfies conditions (1.1), (1.3) and (1.4), thus F1 ∈ T HR .

Directly from the definition of the class T HR we have

Proposition 2. If F = h+ ḡ belongs to the class T HR , then the functions

Fη(z) = F (z) + η, η ∈ R, Fδ(z) = F (z + δ), δ > 0, Fρ(z) = f(ρz)
ρ , ρ > 0,

z ∈ Π+, belong to T HR .

Let us notice that
TR ⊂ T HR . (1.6)

Indeed, if f ∈ TR, then f = h + ḡ, where h ≡ f , g ≡ 0 is a function
harmonic in Π+, with that we also have (1.3), (1.4). In virtue of the
definition of T HR , this proves inclusion (1.6).

We next have

Proposition 3. Let f ∈ TR be a function such that Re f(z) > 0, z ∈ Π+,
and F ∈ T HR . Then the function k = F ◦ f belongs to the class T HR .

Proof. Let f ∈ TR, Re f(z) > 0, z ∈ Π+ and F ∈ T HR . Since F = h+ ḡ
is harmonic in Π+, the function k = F ◦ f = h ◦ f + g ◦ f is harmonic
in Π+. Moreover, the function k satisfies condition (1.3) because we have
(1.3) for f and F .
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Let

af = lim
Π+3z→∞

(f(z)− z), aF = lim
Π+3z→∞

(F (z)− z),

αg = lim
Π+3z→∞

Re g(z). Hence lim
Π+3z→∞

f(z) = ∞, therefore

lim
Π+3z→∞

Re g(f(z)) = αg and lim
Π+3z→∞

(k(z)− z) = aF + af .

Consequently, the function k = F ◦ f satisfies all the conditions of the
definition of the class T HR .

Before the next example let us denote by R a subclass of functions
f ∈ H mapping Π+ conformally onto a domain convex in the direction
of the positive real half-axis. The class R is called a class of functions
convex in the direction of the real axis in Π+ (see [7]). We have

Theorem A ([7]). A function f ∈ H belongs to the class R if and only if

Re f ′(z) > 0, z ∈ Π+. (1.7)

Of course, by (1.7), all functions of the class R are univalent ([2], p.
88).

Let next RR denote a subclass of R of functions which take real values
for z = z̄ ∈ Π+. Obviously,

RR ⊂ TR. (1.7′)

Example 1.2. Let f1 be a function defined by the formula

f1(z; a, c) = z + a− 1
z + c

, z ∈ Π+, c ≥ 1, ac ≥ 1. (1.8)

It can easily be proved that: a) f1 ∈ TR, b) f1(Π+) ⊂ Π+, c) f1 ∈ RR.
From Proposition 1.3 and the above example it follows that if F ∈ T HR ,

then f ◦ f1 ∈ T HR .

The following proposition holds.

Proposition 4. Let F = h + ḡ ∈ T HR . Then the function f = h − g
belongs to the class TR.

Proof. If F = h + ḡ ∈ T HR , then, of course, the function f = h − g is
holomorphic in Π+. Moreover, Im f = ImF , so, by (1.3), the function f
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satisfies condition (1.2). Furthermore,

f(z)− z = h(z)− g(z)− z = h(z) + g(z)− z − 2Re g(z)
= F (z)− z − 2Re g(z), z ∈ Π+.

Since F satisfies condition (1.1) and g satisfies condition (1.4), from the
above equalities we get lim

Π+3z→∞
(f(z)− z) = aF − 2αg =: af ∈ R. Hence

the function f belongs to TR.
We also have

Proposition 5. Given a pair of functions h, g holomorphic in Π+ and
such that f = h − g ∈ TR, where g satisfies condition (1.4), the function
F = h+ ḡ belongs to T HR .

Proof. Let the functions h, g satisfy the assumptions. Then the function
F = h + ḡ is harmonic in Π+; besides, we have (1.4). Moreover, ImF =
Im f , so, in virtue of Proposition 1.1, the function F satisfies condition
(1.3), and

F (z)− z = f(z)− z + 2Re g(z), z ∈ Π+.

According to the fact that we have (1.1) for f and (1.4) for g, the function
F satisfies normalization condition (1.1). Consequently, F ∈ T HR .

In particular, we obtain

Proposition 6. If f ∈ TR, then the function F (z) = 2Re z − f(z), z ∈
Π+, belongs to the class T HR .

Proof. Let f ∈ TR. Let us set f = h−g where h(z) = z, g(z) = z−f(z),
z ∈ Π+. Of course, the functions h, g are holomorphic in Π+ and g
satisfies condition (1.4), which follows from the fact that f satisfies (1.1).
Therefore, by Proposition 1.5, the function F = h+ ḡ belongs to the class
T HR , with that F (z) = h(z) + g(z) = 2Re z − f(z), z ∈ Π+, which ends
the proof.

The proposition below is also true.

Proposition 7. If F = h + ḡ ∈ T HR , whereas w is an arbitrary function
holomorphic in Π+ and satisfying condition (1.4), then

Fw = h+ w + g + w (1.9)

is a function of the class T HR .
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Proof. Let F = h + ḡ ∈ T HR and let w be a function holomorphic in
Π+ and satisfying (1.4). Of course, the function Fw of form (1.9) is
harmonic in Π+ and ImFw = ImF , thus we have (1.3) for the function
Fw. Furthermore,

Fw(z)− z = F (z)− z + 2Rew(z), z ∈ Π+.

Since F satisfies condition (1.1) and w - (1.4), it follows that Fw also
satisfies (1.1). Hence Fw ∈ T HR .

. Let F = h+ ḡ ∈ T HR . We shall prove that the function

F 1(z) = F (z) + 2Re (h(z)− z), z ∈ Π+,

also belongs to the class T HR .

Let us first notice that, for a function F = h + ḡ ∈ T HR , the func-
tion h1(z) = h(z) − z, z ∈ Π+, is holomorphic in Π+ and satisfies
condition (1.4). Indeed, lim

Π+3z→∞
Reh1(z) = lim

Π+3z→∞
Re (h(z) − z) =

lim
Π+3z→∞

[Re (F (z)− z)−Re g(z)] = aF − αg ∈ R. From this, by Proposi-

tion 1.7, the function

F 1(z) = h(z) + h1(z) + g(z) + h1(z) = F (z) + 2Re (h(z)− z), z ∈ Π+,

as well as F , belongs to the class T HR .
Similarly, each function

F β(z) = F (z) + 2βRe (h(z)− z), z ∈ Π+, β ∈ R,

belongs to T HR .

Example 1.3. Let F2 be a function of the form

F2(z; a, b, ν) = z + a+
b

z̄ν
, z ∈ Π+, a ∈ R, b ≥ 0, ν ∈ (0, 2], 1ν = 1.

(1.10)
We can prove that function (1.10) belongs to the class T HR . Moreover,

by Proposition 1.7, the function

Fw
2 (z; a, b, ν) = z+a+w(z)+

b

zν
+ w(z), a ∈ R, b ≥ 0, ν ∈ (0, 2], 1ν = 1,

belongs to T HR if the function w satisfies appropriate assumptions.
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In the case b > 0, ν > 2 the function F2 of form (1.10) does not satisfy
condition (1.3) and it is not a function of T HR .

We shall prove

Proposition 8. The class T HR is convex.

Proof. If Fk = hk + ḡk ∈ T HR , k = 0, 1, then the function Fλ = λF1 +
(1 − λ)F0 = λh1 + (1 − λ)h0 + λg1 + (1− λ)g0, λ ∈ (0, 1),is harmonic
in Π+. We also have lim

Π+3z→∞
(Fλ(z) − z) = λa1 + (1 − λ)a0, where

ak = lim
Π+3z→∞

(Fk(z) − z), k = 0, 1. Furthermore, lim
Π+3z→∞

Re [λg1(z) +

(1 − λ)g0(z)] = λα1 + (1 − λ)α0 where αk = lim
Π+3z→∞

Re gk(z), k = 0, 1,

and ImFλ = λF1 + (1 − λ)ImF0. Hence, in virtue of the definition of
the class T HR , we infer that Fλ ∈ T HR for any λ ∈ (0, 1), which gives the
assertion.

§ 2. Properties of the class T HR following from its
relationship with the class TR

In this part of the paper we use the known properties of the class TR
to obtain the respective consequences for functions of the class T HR .

Proposition 9. If F = h+ ḡ ∈ T HR , then

h(n)(z) + g(n)(z) = h(n)(z) + g(n)(z) for z = z̄ > 0, n = 0, 1, 2, . . . (2.1)

Proof. Let F = h + ḡ ∈ T HR . By Proposition 1.4, the function f =
h − g belongs to TR and, in virtue of Theorem 1 from [3], we have
h(n)(z) − g(n)(z) = h(n)(z)− g(n)(z) for z = z̄ > 0, n = 0, 1, 2, . . ., which
is equivalent to (2.1).

Moreover, we have

Proposition 10. Let F = h+ ḡ ∈ T HR . Then

F (z̄) = F (z), z ∈ Π+, (2.2)

if and only if

h(n)(z)− g(n)(z) = h(n)(z)− g(n)(z) for z = z̄ > 0, n = 0, 1, 2, . . . (2.3)

Proof. Let F = h + ḡ ∈ T HR . For any z ∈ Π+, there exists z0 = z̄0 > 0
such that z ∈ U0 = {z ∈ C : |z − z0| < z0}. In virtue of the holomorphy
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of the functions h, g in Π+, we get

F (z) = h(z0)+g(z0)+
∞∑

n=1

h(n)(z0)
n!

(z−z0)n+
∞∑

n=1

g(n)(z0)
n!

(z̄−z0)n, z ∈ U0,

so

F (z̄) = h(z0) + g(z0) +
∞∑

n=1

h(n)(z0)
n!

(z̄ − z0)n

+
∑∞

n=1
g(n)(z0)

n! (z − z0)n, z ∈ U0, (2.4)

F (z) = h(z0) + g(z0) +
∑∞

n=1
h(n)(z0)

n! (z̄ − z0)n

+
∑∞

n=1
g(n)(z0)

n! (z − z0)n, z ∈ U0. (2.5)

If z = z0 + reiϕ, ϕ ∈ (−π, π], r ∈ [0, z0), then, by (2.4), (2.5), we
obtain

F (z̄) = h(z0) + g(z0) +
∞∑

n=1

rn

n!

[ (
h(n)(z0) + g(n)(z0)

)
cosnϕ+

i
(
g(n)(z0)− h(n)(z0)

)
sinnϕ

]
, (2.6)

F (z) = h(z0) + g(z0) +
∞∑

n=1

rn

n!

[ (
h(n)(z0) + g(n)(z0)

)
cosnϕ+

i
(
g(n)(z0)− h(n)(z0)

)
sinnϕ

]
. (2.7)

By Proposition 2.1, conditions (2.1) hold.
If (2.2) takes place, then, in virtue of (2.6), (2.7) and of the arbitrari-

ness of z and z0, we obtain (2.3). Whereas if conditions (2.3) take place,
then, in view of (2.1) and (2.6), (2.7), we have (2.2), which completes the
proof.

. If relations (2.1) and (2.3) are satisfied simultaneously, then

h(n)(z) = h(n)(z), g(n)(z) = g(n)(z) for z = z̄ > 0, n = 0, 1, 2, . . . ,
(2.8)

so the functions h, g and also their succesive derivatives take real values
on the half-axis z = z̄ > 0. Of course, if we have (2.8), then equalities
(2.1), (2.3) hold. What is more, conditions (2.8) are analogues of the fact
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that if a function is holomorphic and typically-real in the unit disc, then
it expands in a power series with real coefficients.

Proposition 11. Let F = h+ ḡ ∈ T HR . Then

Imh′(z) = Im g′(z) for z = z̄ > 0, (2.9)

Reh′(z) > Re g′(z) for z = z̄ > 0. (2.10)

Proof. Let F = h + ḡ ∈ T HR . Then, in virtue of Proposition 1.4, the
function f = h−g belongs to the class TR and, according to the respective
property of functions of the class TR ([3, Prop. 4]), we have h′(z)−g′(z) >
0 for z = z̄ > 0. From the above inequality we directly obtain relations
(2.9) and (2.10).

We also have

Proposition 12. If F = h+ ḡ ∈ T HR , then

|h(n)(z)− g(n)(z)|
n!(h′(z)− g′(z))

≤ n

zn−1
for z = z̄ > 0, n = 1, 2, . . . , (2.11)

and

lim
z̄=z→∞

h(n)(z)− g(n)(z)
h′(z)− g′(z)

= 0, n = 2, 3, . . . (2.12)

Proof. If F = h + ḡ ∈ T HR , then the function f = h − g belongs to TR.
Hence, by the respective property of the class TR ([3, Prop. 5]), we get
(2.11). Obviously, (2.12) follows directly from (2.11).

Proposition 13. If F = h+ ḡ ∈ T HR and

lim
z̄=z→0+

(h(z)− g(z)) = 0, (2.13)

then

Re
h(z)− g(z)

z
> 0, z ∈ Π+. (2.14)

Proof. If F = h+ḡ ∈ T HR satisfies condition (2.13), then, for the function
f = h − g ∈ TR, in view of Theorem 6 from [3], we have Re f(z)

z > 0,
z ∈ Π+, which is equivalent to (2.14).

§ 3. Remarks on the compactness
of the classes TR, T HR
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It is known ([3, Th. 5]), that the class TR is not compact. Using the
proof of this fact and inclusion (1.6), we obtain

Proposition 14. The class T HR is not compact.

The proof of the non-compactness of the class TR was based on the
construction of a sequence {fn}n∈N of functions of the class TR, divergent
uniformly on compact subsets of Π+ to infinity.

There arises a question: does there exist a sequence of functions of
the class TR, convergent uniformly on compact subsets of Π+ to a finite
function f /∈ TR? An analogous question concerns the class T HR . The
partial answer is given by

1. Let {fn}n∈N be a sequence of functions of the class TR, convergent
uniformly on compact subsets of Π+ and on some set DR = {z ∈ Π+ :
|z| ≥ R}, R > 0, to a finite function f . Then f ∈ TR.

Proof. Let us consider a sequence {fn}n∈N satisfying the assumptions of
Theorem 3.1. In virtue of the theorem of Weierstrass, the limit function
f is holomorphic in Π+.

It appears that the function f satisfies normalization condition (1.1).
Indeed, let an = lim

Π+3z→∞
(fn(z) − z), an ∈ R, n = 1, 2, . . . The point

∞ is an accumulation point of both Π+ and DR, so, in view of the uni-
form convergence of the sequence {fn}n∈N on DR, by the known theo-
rem on sequences of functions, the sequence {an}n∈N is convergent and

lim
DR3z→∞

(f(z)− z) = lim
n→∞

an =: a. In virtue of the definitions of the sets

Π+ and DR, we have

lim
Π+3z→∞

(f(z)− z) = lim
DR3z→∞

(f(z)− z) = a,

which gives condition (1.1) for the function f , so f ∈ H.
Let us next notice that since the functions fn, n = 1, 2, . . ., satisfy

condition (1.3), therefore

Im f(z)

 ≥ 0 if Im z > 0,
= 0 if Im z = 0, z ∈ Π+,
≤ 0 if Im z < 0.

(3.1)

But if there existed a point z0 ∈ Π+, Im z0 > 0, such that Im f(z0) = 0,
we would have Im f(z) = 0 for z ∈ Π+, Im z > 0, by the minimum princi-
ple for harmonic functions. In view of this fact and of the holomorphy of
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the function f , there would be Im f(z) = 0, z ∈ Π+, so f(z) = c, z ∈ Π+

where c ∈ R by (3.1). Hence we would have a contradiction to the fact
that f satisfies (1.1). Therefore Im f(z) > 0 for z ∈ Π+, Im z > 0. In
an analogous way one can prove that Im f(z) < 0 for z ∈ Π+, Im z < 0.
Summing up, we infer that the function f satisfies condition (1.3), so, in
view of Proposition 1.1, it belongs to the class TR.

We shall next prove

. Let Fn = hn + ḡn ∈ T HR , n = 1, 2, . . ., and let the sequences {Fn}n∈N,
{Re gn}n∈N be uniformly convergent on compact subsets of Π+ and on
some set DR = {z ∈ Π+ : |z| ≥ R}, R > 0, to the finite functions F , ϕ,
respectively. Then F ∈ T HR .

Proof. Let functions Fn = hn + ḡn ∈ T HR , n = 1, 2, . . ., satisfy the above
assumptions.

Let us first notice that, analogously as in the proof of Theorem 3.1, we
can state that the complex function F satisfies normalization condition
(1.1).

Since Fn = hn + ḡn ∈ T HR , n = 1, 2, . . ., therefore lim
Π+3z→∞

Re gn(z) =

αn, n = 1, 2, . . . In virtue of the uniform convergence of the sequence
{Re gn}n∈N in DR, proceeding as before, we obtain that the sequence
{αn}n∈N is convergent and

lim
Π+3z→∞

ϕ(z) = lim
DR3z→∞

ϕ(z) = lim
n→∞

αn =: α ∈ R. (3.2)

Of course,
ϕ(z) ∈ R, z ∈ Π+. (3.3)

We shall prove that the function F satisfies condition (1.3). As it is
known from Proposition 1.4, fn = hn − gn ∈ TR, n = 1, 2, . . . Moreover,
fn = Fn−2Re gn, n = 1, 2, . . . From the assumptions about the sequences
{Fn}n∈N, {Re gn}n∈N it follows that the sequence {fn}n∈N satisfies the
assumptions of Theorem 3.1, so the limit function f = F − 2ϕ of this
sequence belongs to the class TR. Hence and from (3.3) we have

ImF (z) = Im f(z)

 > 0 if Im z > 0,
= 0 if Im z = 0, z ∈ Π+,
< 0 if Im z < 0.

Thus F really satisfies condition (1.3).
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It remains to prove that F is a function harmonic in Π+, i.e. F = h+ ḡ
where h, g are some functions holomorphic in Π+, and that the function
g satisfies condition (1.4).

Let us observe that the functions Re gn, n = 1, 2, . . . , as real parts of
the functions holomorphic in Π+, are real functions harmonic in Π+. From
this, in view of the uniform convergence of the sequence {Re gn}n∈N on
compact subsets of Π+ to the function ϕ and of the respective properties
of harmonic functions, ϕ is a real function harmonic in Π+. Π+ is a
simply connected domain, so there exists a real function ψ harmonic in
Π+, conjugate to the function ϕ. Thus we have F = f + 2ϕ = Re f +ϕ+
i(Im f + ψ) + ϕ − iψ, so F = h + ḡ where h = Re f + ϕ + i(Im f + ψ),
g = ϕ + iψ. The functions ϕ, ψ are harmonic 0 and mutually conjugate
in Π+, therefore g is holomorphic in Π+, with that ϕ = Re g and (3.2)
holds. Furthermore, since f is a function holomorphic in Π+, Re f and
Im f are harmonic functions mutually conjugate in Π+. In consequence,
the functions Reh = Re f +ϕ, Imh = Im f +ψ are a pair similar to ϕ, ψ,
so the function h is also holomorphic in Π+. From these considerations
it follows that the function F is a complex function harmonic in Π+ and
(1.4) holds.

In virtue of the facts presented above we infer that the function F
belongs to T HR .

§ 4. The class SHR
Let SHR denote a class of functions F = h + ḡ ∈ H univalent in Π+

and satisfying condition (1.4) and equalities (2.1), (2.3), thus in view of
Remark 2.1, conditions (2.8).

. Let us notice that, by the known lemma ([3, Lemma 1]), in order that,
for a function F = h + ḡ ∈ H, relations (2.8) hold, it is sufficient that
there exists a point z0 = z̄0 > 0 such that h(n)(z0) = h(n)(z0), g(n)(z0) =
g(n)(z0), n = 0, 1, 2, . . . , because the functions h, g are holomorphic in
Π+. This fact can be used in the definition of the class SHR .

We shall prove

1. The inclusion
SHR ⊂ T HR (4.1)

takes place.
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Proof. Let F = h + ḡ ∈ SHR . In order to state that F ∈ T HR , it suffices
to show that condition (1.3) holds.

For the function F ∈ SHR , we have (2.1) and (2.3), so F (z) = F (z) for
z = z̄ > 0 and F (z) = F (z̄) for an arbitrary z ∈ Π+, which follows from
the analogous considerations as in the proof of Proposition 2.2. From the
univalence of the function F we deduce that F (z̄) = F (z) if and only if
z = z̄ > 0. From the above and by normalization condition (1.1) for F we
have lim

Π+3z→∞
(ImF (z)− Im z) = 0. From this, in particular, for any fixed

x0 > 0, lim
y→+∞,x0>0

(ImF (x0 + iy)− y) = 0, so there exists z0 = x0 + iy0,

x0 > 0, such that ImF (z0) > 0. Therefore, in virtue of the continuity of
the function F in Π+, if Im z > 0, z ∈ Π+, then ImF (z) > 0, whereas
if Im z < 0, z ∈ Π+, then ImF (z) < 0. This means that the function F
satisfies condition (1.3) and, in consequence, F belongs to the class T HR ,
which completes the proof.

Example 4.1. Let us come back to the function F2 of form (1.10). For
b = 0, we have F2(z; a, 0, ν) = z + a, z ∈ Π+, so it is a function of the
class SHR . We can prove that, for b > 0, ν = 1, the function F2 does not
belong to the class SHR . Consequently, we obtain that

T HR \ SHR 6= ∅.

From the detailed considerations it follows that, for b > 0, ν = 1 the
image of the half-plane Π+ in the mapping F2 is the set F2(Π+) = {w ∈
C : Rew > a, |w− a| ≥ 2

√
b}. In consequence, the function F2 maps the

domain Π+ onto the set F2(Π+) which is not a domain.

We shall prove

Proposition 15. The class SHR is not compact.

Proof. Let us consider the sequence {Fn}n∈N of functions Fn(z) = z+n,
z ∈ Π+, n = 1, 2, . . . Of course, Fn ∈ SHR , n = 1, 2, . . . We shall prove that
the sequence {Fn}n∈N is uniformly divergent on compact subsets of Π+

to F̃ (z) ≡ ∞, with that F̃ /∈ SHR obviously.
Let us take an arbitrary compact set ∆ ⊂ Π+. Then there exists

R > 0 such that ∆ ⊂ {z ∈ Π+ : |z| < R}. Next, take any M > 0 and let
N = [M +R]. Then, for n > N , we have |Fn(z)| ≥ |n− |z|| > n−R > M
for z ∈ ∆. From this we obtain the announced assertion.
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From the definitions of the classes SHR and RR and (1.6), (1.7’), (4.1)
we get

RR ⊂ SHR .

Let next F = h+ ḡ ∈ T HR . Denote

F •(z) = h′(z)− g′(z), z ∈ Π+.

Then the following proposition is true.

Proposition 16. If F = h+ ḡ ∈ T HR and

ReF •(z) > 0, z ∈ Π+, (4.2)

then f = h− g is a function of the class RR.

Proof. Let F = h + ḡ ∈ T HR satisfy condition (4.2). Then the function
f = h − g belongs (by Proposition 1.4) to the class TR and satisfies
condition (1.7). In view of Theorem A and the definition of the class RR,
we infer that, indeed, f ∈ RR.

Let us assume again that F = h + ḡ ∈ T HR satisfies condition (4.2).
Let s > 0. Consider the image of a line z = s+ iy, y ∈ R, in the mapping
F . This is ”a curve” of the equation

w(y) = F (s+ iy), y ∈ R. (4.3)

Let next ω(y) = Imw(y), y ∈ R. Then we have

ω(y) = Im [h(s+ iy)− g(s+ iy)], y ∈ R,

and

ω′(y) =
∂

∂y
Im [h(s+ iy)− g(s+ iy)] = Re [h′(s+ iy)− g′(s+ iy)], y ∈ R.

Since F satisfies (4.2), ω′(y) > 0 for y ∈ R. Moreover, by normalization
condition (1.1) for the function F , we get

lim
y→±∞

(ω(y)− y) = 0.

From the above facts it follows that the function ω is a function in-
creasing continuously from −∞ to +∞. Hence we obtain
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Proposition 17. Let F = h + ḡ ∈ T HR satisfy condition (4.2). Then,
for any s > 0, the line of the equation (4.3) has the property that an
arbitrary straight line parallel to the real axis in the (w)-plane has exactly
one common point with it. Furthermore, the image of a half-plane Ds =
{z ∈ C : Re z > s} in the mapping F is a connected set lying on the right
of line (4.3) in the (w)-plane.

The last statement follows from the continuity of the function F and
from normalization condition (1.1).

Proposition 18. Let {cn}n∈N be an arbitrary fixed sequence of real num-
bers satisfying the condition

∞∑
n=1

n|cn| ≤ 1. (4.4)

Then the function: i) f of the form

f(z) = z + 1 +
∞∑

n=1

cn
(z + 1)n

, z ∈ Π+, (4.5)

belongs to the class TR and is univalent in Π+; ii) F of the form

F (z) = z + 1−
∞∑

n=1

cn
(z̄ + 1)n

, z ∈ Π+, (4.6)

belongs to T HR . Moreover, F is locally univalent and orientation-preserving
in Π+.

Proof. Let {cn}n∈N be a sequence of real numbers satisfying condition
(4.4). Then the series

g(z) = −
∞∑

n=1

cn
(z + 1)n

is convergent in the set |z + 1| > 1, thus in Π+. Consequently, f is
a function holomorphic in Π+, whereas F -harmonic in Π+. From (4.4)

and (4.5) it follows that Re f ′(z) ≥ 1 −
∞∑

n=1

n|cn|
|z+1|n+1 > 0 if |z + 1| > 1.

Hence ([2], p. 88) f is univalent in Π+. We also have f(z) = f(z) for
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z = z̄ > 0. Therefore Im f(z) has a fixed sign if Im z > 0 or if Im z < 0.
Evidently, lim

Π+3z→∞
(f(z)− z) = 1, so normalization condition (1.1) holds,

and Im f(z) > 0 if Im z > 0 and Im f(z) < 0 if Im z < 0. In this way, i)
has been proved.

ii) follows from Proposition 1.5, (4.6) and the fact that lim
Π+3z→∞

Re g(z)

= 0. Furthermore, JF (z) = |h′(z)|2 − |g′(z)|2 > 0 for z ∈ Π+, where
h(z) = z + 1, z ∈ Π+. This ends the proof.

. 1). The form of function (4.5) comes from the function ϕ(ζ) = ζ+
∞∑

n=1

cn

ζn

holomorphic and univalent in the set |ζ| > 1, thus from the function from
the area theorem ([2, p. 29–30]). 2) For functions from the class TR, thus
from T HR , we have no possibility of expanding them in a Laurent series,
but we only dispose of normalization condition (1.1) or conditions (1.1),
(1.4). 3) Moreover, from (4.5) and a consequence of the area theorem we
obtain |f(z)| ≤ 2|z+1|, z ∈ Π+. 4) A special case is the case when cn ≥ 0,
n = 1, 2, . . . Several classes of functions with coefficients of a fixed sign
have been investigated in many papers.

Proposition 19. Let α ∈ (0, π
2 ), n ∈ N, ck ∈ R, λk > 0 for k = 1, 2, . . . , n

and
n∑

k=1

λk|ck| ≤ 1. (4.7)

Then the function: i) fn of the form

fn(z) = z +
n∑

k=1

cke
−λkz, z ∈ Π+

α = {z ∈ C : −α < Argz < α}, (4.8)

is typically-real in Π+
α ; ii) Fn of the form

Fn(z) = z −
n∑

k=1

cke
−λk z̄, z ∈ Π+

α , (4.9)

is typically-real harmonic in the domain Π+
α (in the sense of definitions of

TR, T HR , modified to Π+
α , respectively); Fn is also locally univalent and

orientation-preserving.

Proof. Let the assumptions of Proposition 4.5 be satisfied. Then, of
course, fn of form (4.8) takes real values for z = z̄ > 0. Since |e−λkz| =
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e−λkRe z, therefore if Π+
α 3 z →∞, then Re z →∞ and lim

Π+
α3z→∞

|e−λkz| =

0. Consequently, by (4.8), lim
Π+

α3z→∞
(fn(z)− z) = 0. From (4.7) and (4.8)

we also have Re f ′n(z) ≥ 1 −
n∑

k=1

λk|ck|e−λkRe z > 0 if z ∈ Π+
α , so ([2], p.

88) fn is a function univalent in Π+
α and therefore it is typically-real in

this domain. ii) follows from Proposition 1.5 applied to the case of the set
Π+

α . Of course, JFn(z) > 0 for z ∈ Π+.

. 1) The functions fn−z, n ∈ N, are the nth partial sums of the respective
Dirichlet series.

2) In view of the normalization condition, we cannot consider a full
Dirichlet series although Π+ is a half-plane, i.e. a set of a type of sets of
convergence for such series. 3) Also by this condition, we cannot consider
fn in Π+ but only in an arbitrary fixed ”angle-domain” contained in Π+.
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