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J-SYMMETRICAL FUNCTIONS AND SERIES IN THE
COMPLEX PLANE

P. LICZBERSKI, J. POLUBINSKI

In the recent paper [1, 2, 3] the authors have introduced the
notion of (4, k)-symmetrical functions, proved several properties of
these functions and given their different applications. In the present
paper the authors extend the considerations onto the j-symmetrical
functions. They deduce the general form of j-symmetrical functions
(thm.1) and show some criteria of expandability of a function into
series with j-symmetrical components (thm.3 and thm.4).

§ 1. Introduction

By Z, N, C let us denote the set of all integers, the set of all positive
integers and the set of all complex numbers, respectively. Let k& € N
be arbitrarily fixed and let e, = exp(%%). A nonempty subset U of
the complex plane C will be called k—symmetrical if e,U = U. The
family of all functions f:U — C will be denoted by F(U). For every
Jj € Z a function f € F(U) will be called (j, k)—symmetrical if for each
z€U f(erz) =€ f(2z). The class of all (j, k)-symmetrical functions will
be denoted by FJ (U). Let us notice that F(U) and F3(U) are well known
families of even functions and odd functions, respectively. Of course, the
set F(U), with common operations, is a complex linear space and all
F(U) are its linear subspaces.

Now we define the operators Gi:]—'(U) — F(U), j € Z, such that for
every f € F(U)and z € U

k—1

GLf(2) =k ) e f(el2) 1)

=0
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In the paper [1] has been shown that Gi are linear operators and Gi (FU)) =
Fi(U).
In the next we will use the following result from [1].

LEMMA 1. LetU C C be a k-symmetrical set. Every function f € F(U)
can be written in the form

k—1
=Y Gif 2)
j=0

k—1

and this partition is unique in the following sense : if f = i=0 f,z, where

fle Fl(U) for j=0,1,...,k — 1, then fi = GI f.

From this lemma it follows that the space F(U) is the simple sum of
the subspaces 7} (U) j =0,1,...,k — 1.

§ 2. The J-symmetrical functions

For 7 > 0 let us denote by C, the positively oriented circle {z =
rexp(it):t € (0,2m)}. A set U C C will be called circular if for each
z € U — {0} the circle C);| is included in U. Of course, every circular set
U is a k-symmetrical set for every k& € N. Unless stated otherwise, the
letter U will represent an arbitrarily fixed nonempty circular subset in the
complex plane C.

By P(U) we will denote the class of all functions f:U — C such that
for every circle C, C U the function f|C, is continuous. Of course, the
set P(U) with common operations is a complex linear space.

For every j € Z a function f € P(U) will be called j-symmetrical if
it is (j, k)-symmetrical for each k¥ € N. The family of all j-symmetrical
functions from P(U) will be denoted by P/(U). Let P{(U) = Fi(U) N
P(U). Then PI(U) = ﬂkeNP,z(U) and P/ (U) is a linear subspace of
PU).

The following theorem gives the general form of the elements of the
space P (U).

THEOREM 1. Let j € Z. Every f € P/(U) has the form

f(z) =zja‘j<z)7 O#Z € U7 (3)
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where a; are some functions which are constant on the circles C\,|, z € U.

If0 € U, then
e for j=0,
F(0) = { 0 for j#0,

where ¢ is a complex number.

PROOF. Let us take any function f € P/(U). Then f € PJ(U) for every
k € N and, in view of Lemma 1,

f(2)=Gif(2), 0#z€U.
Therefore

k(ak—l)z Tf(2) = klex = 1)z79G1f(2)

4
= Z fleh2)(eh2) i el (ep — 1)z := o (2). )

Now, let us observe that the points 2; := €} 2 belong to the circle C|.| and
if k£ tends to infinity, then

Zl+1 — 2 = z’:‘lk(&“k — l)z — 0.

From the continuity of the function f|C|;| we have

lim oy (z / flw *j_ldw,

k— o0
Oz

because o (z) are the integral sums of the above integral.
On the other hand limy_, o k(ex — 1) = 274, so from (4) we obtain

f(z):zj(27ri)*1/f(w)wﬁj*ldw.

Cz

Putting
a;(z) = (2mi)~* / fw)w ™~ dw

Clz

we have (3) and the functions a; are constant on the circles C,|. If 0 € U,
then we can put ¢ = f(0).
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The proof is complete. O

For every j € Z let us define the operators G7: P(U) — P(U), such
that for every f € P(U) and z € U — {0}

G f(z) = 27 (2mi) ™1 / fw)w™ I dw.

Clz|

If 0 € U, then
J _ f((]) fO’I' JZO,
Gf(O)—{ 0 for j#0.

From Theorem 1 it follows:

THEOREM 2. For every j € Z the operator G’ is a linear surjection of
the space P(U) onto P (U); that is GI(P(U)) = PI(U)

REMARK. From the proof of Theorem 1 it follows that for every j € Z
and f € P(U) ' »

klim G f(z) =G f(2).

—00

§ 3. The series of j-symmetrical functions

Since for every circular set U C C and every k € N and j € Z we
have P(U) C F(U) and P/ (U) C F{(U), so by Lemma 1, every function
f € P(U) can be uniquely presented as the sum (2) of (j, k)-symmetrical
functions. There arises a natural question: is it possble to construct
a partition of every function f € P(U) onto a series of j-symmetrical
functions, corresponding to the partition (2). More precisely, we will
consider the problem of the possibility of the presentation of the functions
f € P(U) in the form

=3 e (5)

ne 7

We will understand the convergence of the series (5) as the convergence

of the sequence
k

hy= > G'f

n=—k

in every point z € U.
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Let f € P(U) and z = rexp(it) € U. By g, let us denote the function,
which is defined on the interval (0, 27) by the formula

gw(t) = f(T' exp(it)), te <0,27T>.

If there exists the differential g/.(¢) of g, at the point ¢, then we will call
it the circular differential of f at the point z = rexp(it) € U and we will
denote it by f'“(z).

THEOREM 3. Let f € P(U). If there exists the finite circular differential
f'“(z) in a point z € U, then
f2) =) G"f(2).
neZ

Moreover, if the function f' is bounded on U, then the expansion (5)
holds on U and the series Y, _, G™f converges uniformly on every circle
C,CcU.

PROOF. Let z = rexp(it) € U. Then

neZ

Z G"f(z) = Z exp(int)(2m) ™! / f(rexp(is)) exp(—ins)ds.
nez neE”Z 0

Of course, the above series is the Fourier series of the function g, at the
point {. For k£ € N let us denote

k 2w
Si(t) = Z exp(int)(?w)_l/gr(s)ezp(—ins)ds.
n=—k 0
Then we obtain
2 k
Sult) = 2n)" [ 9:(5) 3 explin(t - 9)ds

0 n=—k

=(2m)! /gr(s)Dk(t— s)ds, (6)

0

where

Dy(t —s) = (sint;S)*1 sin((k—i— -;)(t— s))
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Since f has the finite circular differential f'°(z) at the point z = r exp(it) €
U, so the function g, fulfils, in the point ¢, the Lipschitz condition

lg-(t + h) — g-(t)| < LA,

with L = 2|f'°(z)| and |h| sufficiently small. It is obvious that the func-
tions Re g, and Im g, fulfil the above condition, too.
From (6) it follows that

Re Sy (t) = (2m)~! /Regr(s)Dk(t — 8)ds, (7)
0

Im Si(t) = (2m)~* /Imgr(s)Dk(t — 8)ds. (8)
0

Of course, the integrals (7) and (8) are the k-th sums of Fourier series of
the functions Re g, and Im g, at the point ¢.
If k& tends to infinity, then the integrals (7) and (8) tend to the values
Re g.(t) and Im g,.(t), respectively, because the functions Re g, and Im g,
fulfil the Lipschitz condition at the point ¢. From this we obtain
lim Re Si(t) = Reg,(t), lim Im Sk(t) = Im g.(¢),
k—o0 k— o0
so
lim Sy (t) = g-(2).
k—o0

This completes the proof of the first part of the theorem.

Now let us assume that f'° is a bounded function on U. Then for
every r, such that z € U for |z| = r, the function g, fulfils the Lipschitz
condition with the constant L = 2sup{|f'“(z)| : z € C.} in every point
t € (0,27m). Therefore for every circle C, C U the Fourier series of the
functions Re g,, Im g, converge uniformly to these functions.

This completes the proof. O

From the considerations in the proof it follows more general result.

THEOREM 4. Let f € P(U). If for every point z € U the function g,
satisfies the Lipschitz condition at every point t € (0,27}, then expansion
(5) holds and the series ), _, G"f converges uniformly on every circle
C.cU.
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Now let us consider some series ) ., gn of n-symmetrical functions
(gn € P™(U)). Let us assume that this series converges to a function g.
From Theorem 1 it follows that

gn(z) = 2"an(z), 0#z€U.
Therefore for every z € U
9(z) = Z z2"an(z), 9)
ne”Z
where a,, are constant functions on the circles C|,|, with z # 0 and

[ g(0) for n=0,
an(O)—{ 0 for n#0.

In general, of course, the sum g of the series (9) not belongs to the
space P(U), but it is true the following result.

THEOREM 5. If series (9) converges on U uniformly on every circle
C, C U, then g € P(U) and g,(z) = G"g(z) for every n € Z.

PROOF. The relation g € P(U) is obvious. Let 0 # z € U. Then for every
JEL

@g(z) = Z G (2 an(2)) = Z 2 (2mi) ™ / w" an (w)w ™ " dw

neEZ neEZ Ciz

neEZ

Z 2an(2)(2m) 71 /ea:p((n — §)it)dt = z7a;(z) = g;(2).
0

This completes the proof. O

THEOREM 6. Let f € P(U). If f can be presented in the form (5) and
the series ) ., G"f converges uniformly on every circle C, C U, then
partition (5) is unique in the following sense: if f = > _, fn, where
fn € P*(U) for every n € Z, then f, = G"f.

From Theorem 3 and Theorem 6 we obtain.

COROLARY . Let f € P(U). If f has the circular differential f'* bounded
on U, then f can be presented in form (5) and this partition is unique.
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