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COEFFICIENT PROBLEM FOR SOME CLASS OF
FUNCTIONS NONVANISHING IN THE UNIT DISK

W. MAJCHRZAK, A. SZWANKOWSKI

In this paper we determine the bounds of the functional b —ab1,
a-real, for holomorphic univalent and bounded functions, symmet-
ric with respect to the real axis, nonvanishing in the unit disk. The
result generalizes the estimates of b1 and by for these functions,
obtained by Sladkowska [4].

1. Introduction. Let B(b), 0 < |b] < 1, denote the class of all
functions f (2) = b+ 3. bn2", b, = by, that are holomorphic univalent in

n=1
the unit disk A and satisfy the conditions

fA)CA, 0¢f(A).

BE(b) is a normal but not compact family in the topology of locally
uniform convergence in A. However, it becomes compact if the function
f(2) =b, z € A, belongs, in addition, to BE(b).

The main aim of the present paper is to obtain the bounds of the
functional

H(f) =by—abi, feB;(®), (1)

where « is real.

To solve this problem, we shall use the variational technique developed
by Sladkowska [4] for the class BE(b).

The problem posed here is connected with a coefficient problem for the
class By(b) D BE(b) of functions holomorphic and univalent in A satisfying
the conditions f (0) = b, f(A) C Aand 0¢ f(A) (cf. [2], [1], [3])-
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2. Estimation of H (f). From Schiffer’s equation [4] we get that each
extremal function with respect to H (f) belonging to Bf(b) satisfies the
following differential-functional equation

Cw'™ P (w) ( 1)
=—2by+abi —b + = 2
20 by (b—w)° (1 — bw)® 2hobi b {CH g @

where
Pw) = Kuw*+ Lw®+ Mw®+ Lw + K,
K = —2b5b1 + 6b5b3 — 4b4b1b2 + 2b3b1 — 6b3b3 — 2[)31):13
—a (4b%by — 4b%b? — 4b°b,) ,
L = 4b5b; — 12053 + 6b°b1 by + 12b%b1 by — 4b%b; + 126%b3

+6b2b3 — 2bby by + 263 — (—8bOby + 665b2 + 1263b2
+8b2by — 2bb2),

M = —2b7by + 6b7bg — 2b5b1by — 6b%by + 18b°b3 — 18b%b1by
—18b3b3 + 663b; — 6b2by by + 2bby — 6bbs — 12bb3 + 2b1 by
—a(4b7by — 26562 + 126%by — 18b%b2 — 1263b, — 6b2b2
—4bby + 2b2).

The studying of solutions of equation (2) will consist of two cases:
1° K=0, 2° K#0.

If b€ (0,1) and K = 0, then L # 0 and equation (2) has the following
form:

L(w+1)° Cuw? (¢+1)?

=-b 3
26y (b — w)® (1 — bw)® G ®)
or
L(w+1)°Cw” -1
2 5= —b—>—. (4)
201 (b — w)° (1 — bw) ¢
From the condition K = 0 we have
1
by = Y] [6°b1 + 2bb1by — by + b3 + a (2bby — 2bbT — 2b5)] . (5)

Comparing the coefficients of the right-hand sides of (3) and (4) with
the analogous coefficients of (2), we obtain, respectively,

b2:(1+%)b1 or bzz(%—l)bl. (6)
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Since, in the case under consideration, M = 2L, by (5) and (6) we get

(1-0*)(2-a) (1= (24w
_— or bl——w- (7)

Y

In consequence,

(1-w)(2-0)
br = @b = "0

_(-®)@+a)
or bz — Oébl = 4 (b + 2) (8)

Equations (3) and (4) can be integrated and their solutions with the
initial condition f (0) = b satisfy the relation

bh(1+b)  (w-17° 1
1—-b (w—b)(l—bw)_<+zq:2' ©)

In the case when b € (0,1) and K # 0, equation (2) can take one of
the following forms:

2 2 _1)2,,,2
421qu;11(]1)+—13[;)gu(]l _1;53 = "t obi=h (C - %) (10)

or
CEw+1)’(w—c)(w-w? _ ( l)
2b1w (b — w)® (1 — bw)® = 2htab—bhi{ch ¢ (D

where ¢ € (0,1).
Comparing the coefficients of equation (10) with those of equation (2),

we get
a 1
by —ab; = (1 - 5) by and b = 5 (—2)b (1 - bz) (12)

or
—1(a+2)b(1—b2). (13)

by —ab; = (l—l—%)ln and b1—2

In consequence, we have

bz —Oébl = —2(2—a)2b(1—b2) (14)
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or
bg—ablz—i(2+a)2b(1—b2). (15)

If an extremal function satisfies (11), it must map A onto A\ [-1,0].
The function that transforms A onto this set is of the form

(- 8) (1 ive) "
(v +v) (1-vova)

From (16) and from the fact that the right-hand side of (11) has two
distinct roots we obtain
—8b(1—0b) (1> +2b—1 4b(1-b
b2 — Oébl = ( ) ( 3 ) — ( ) (17)
(1+b) 1+b

where « satisfies the inequality

[a_6—4b—§b2] _2—12b—26b2] 0 a8
(1+10) (1+0b)
b2_ab1:—8b(1—b)(b2+2b—l) (-b) 19

(1+b)° 1+b
where a satisfies
a_2b2+4b—6 _6b2+12b—2
(14 ) (14 )

Assume now that @ € (—o0,0). Note that, for such an «, the coefficient
b1 of a function maximizing the functional under consideration is positive
and, for a minimizing function, b; is negative.

Hence and by taking account the well-known estimate of the coefficient
by [4], after comparing relations (8), (14), (15), (17) and (19) we obtain
the following results:

THEOREM 1. If f € BE(b), then
—8h(1—0b)(b>+2b—1) 4b(1—b)

—Q
(1+0b)° 1+b
b2 — Oébl S ( ) ) (b7 Ol) € Dl U -D27 (20)
1-)(2—a)

4(b+2) ’

)

(b, Ol) € D3
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where
Dy ={(b,a): 0<b <D, a <0},
Dy, ={(bya): b*<b<1, a<ap(b)},
D3 ={(b,a): b*<b<l, ay(b)<a<0}
and

23

b* 1, ao(b)=(2—-12b—6b%) /(1 +b)*.

w

Estimate (20) is sharp. The equality for (b,a) € Dy U D is realized
by some function described in (16) and, for (b,«) € D3, by some function
defined in (9).

THEOREM 2. If f € BE(b), then, for b € (0,1)
~12-a)’b(1-0?), acla(b);0],

by — by > —8b (1 - b) (b2 + 2b — 1) a4b (1 — b) (21)
(1+0b)° 1+b
a € (—oo,a; ()],

where a; (b) = (26 + 4b — 6) / (1 +b)°.

Estimate (21) is sharp. For a € [a; (b),0], the minimum is realized by
a function satisfying equation (10), while, for o € (—o0, a1 (b)], by some
function described in (16).

Note next that, for a € (0, +00), the coefficient b; of a function maxi-
mizing the functional H (f) is negative and it is positive for a minimizing
function. Moreover, if f (z) € BE(b), then f (—z) € BE(b).

Taking account of these properties and proceeding similarly as in the
case included in Theorems 1 and 2, we get the estimates of H (f) for
a €[0,400) and b € (0,1).

It is also well known that if f € BE(b), b € (0,1) then, (—f) € BE(b),
b € (—1,0). Hence, from Theorems 1 and 2 we can directly derive the
estimates of H (f) for b € (—1,0).

Finally, remark that from (20) and (21) we can immediately get the
well-known estimates of the coefficients b; and by [4] for the class BE(b).
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