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LINEAR PROBLEMS IN THE SPACE OF POLINOMIALS
OF DEGREE AT MOST 3

J. Sokó l, W. Szumny

Denote by Pn, n ∈ N the linear space of real polynomials p
of degree at most n. There are various ways in which we can in-
troduce norm in Pn, here the problem is investigated when ‖p‖ =
max {|p(x)| : x ∈ [−1; 1]} . Let Bn = {p ∈ Pn : ‖p‖ ≤ 1} be the
unit ball and let EBn be the set of the extreme points of Bn, i.e.
such points p ∈ Bn that Bn \ {p} is convex. The sets EB0, EB1

and EB2 are known and it turns out that also EB3 has a particu-
larly simple form. In this paper we determine EB3 and give some
conclusions and applications of the main results. Moreover, several
examples are included. The coefficient region for the polynomials
of degree exceeding 3 seems very complicated.

Let p ∈ Pn and let N(p) be the number of all zeros of the polynomial
1−p2 in the interval [−1; 1], counted according to multiplicity. In the case
of complex polynomials, D.A. Brannan and J.G. Clunie [1] were able to
characterize the extreme points partially. In the case of real polynomials,
A.G. Konheim and T.J. Rivlin [2] proved for p ∈ Bn that p ∈ EBn

if and only if N(p) > n. We know that EB0 = {−1, 1} and EB1 =
{−1, 1,−x, x}. Moreover W. Szumny [3] determined a precise form of EB2,
i.e.

EB2 = {−1, 1, (c + 2
√

2(1− c)− 3)x2 + 2(c +
√

2(1− c)− 1)x + c,

(c + 2
√

2(1− c)− 3)x2 − 2(c +
√

2(1− c)− 1)x + c,

(3− c− 2
√

2(1− c))x2 + 2(1− c−
√

2(1− c))x− c,

(3− c− 2
√

2(1− c))x2 + 2(c +
√

2(1− c)− 1)x− c;
c ∈ [ 12 ; 1].}.
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For p ∈ EB3 we have N(p) ∈ {4, 5, 6} and

Theorem 1. The set EB3 consists of the functions p1(x) = a1x
3+b1x

2+
c1x + d1, p2(x) = a2x

3 + b2x
2 + c2x + d2, p3(x) = a3x

3 + b3x
2 + c3x + d3,

p4(x) ≡ 1 and −pi(x), where i ∈ {1, 2, 3, 4} and

a1 =
4

(β − α)3
, b1 = −6(α + β)

(β − α)3
,

c1 =
12αβ

(β − α)3
, d1 =

(α + β)(α2 − 4αβ + β2)
(β − α)3

,
(1)

a2 =
1

(1 + γ)2
, b2 = − 1 + 2γ

(1 + γ)2
,

c2 =
γ(γ + 2)
(1 + γ)2

, d2 =
1 + 2γ

(1 + γ)2
,

(2)

a3 =
−4δ

(1− δ2)2
, b3 =

2(3δ2 − 1)
(1− δ2)2

,

c3 =
4δ

(1− δ2)2
, d3 =

1− 4δ2 − δ4

(1− δ2)2
,

(3)

the coefficient region for α, β is given on the fig. 1 and γ ∈ [− 1
2 ; 1],

δ ∈ [− 1
3 ; 0].

Proof. By simple consideration we see easy that p(x) ≡ 1 and p(x) ≡ −1
are the extreme points of B3. Because the polynomial q(x) = bx2 + cx+ d
cannot be an extreme point of B3 (apart from q(x) = 2x2 − 1 and q(x) =
−2x2 + 1 where N(q) = 4) then it is also sufficient to consider only the
polynomials p(x) = ax3 + bx2 + cx + d, a 6= 0. For these polynomials we
will consider three cases of p ∈ EB3 described on the figures 2, 3 and 4:

The other extreme points of B3 may be obtained as their symmetrical.
Suppose that p(x) = ax3 + bx2 + cx+ d belongs to EB3 and p(α) = 1,

p(β) = −1, p′(α) = p′(β) = 0 (fig. 2). Thus we have

p(x)− 1 = a(x− α)2(x− u),
p(x) + 1 = a(x− β)2(x− t)

and

p′(x) = a
[
2(x− β)(x− t) + (x− β)2

]
= a(x− β)(3x− 2t− β),

p′(x) = a
[
2(x− α)(x− u) + (x− α)2

]
= a(x− α)(3x− 2u− α).
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Hence

0 = a(α− β)(3α− 2t− β) and 0 = a(β − α)(3β − 2u− α).

Therefore
3α− 2t− β = 0 and 3β − 2u− α = 0,

thus
t =

1
2
(3α− β) u =

1
2
(3β − α).

Because p(α) = 1 then

1 = a(α− β)2
[
α− 1

2
(3α− β)

]
− 1,

1
2
a(α− β)2(2α− 3α + β) = 2,

a(α− β)2(β − α) = 4, a =
4

(β − α)3
.

If p(x) = ax3 + bx2 + cx + d and p(x) = a(x − α)2(x − u) + 1 =
ax3 − a(u + 2α)x2 + aα(α + 2u)x + 1 − aα2u, then by comparing the
coefficients of x2 and x we see that

b = −a(u + 2α), c = aα(α + 2u), d = 1− aα2u.

Hence we obtain (1).
Because t ≤ −1 and u ≥ 1 then 1

2 (3α − β) ≤ −1 and 1
2 (3β − α) ≥ 1

so we obtain the region given on the fig. 1. This completes the proof for
the polynomial p1.

Now let p(x) = ax3 + bx2 + cx + d belongs to EB3 and p(−1) = −1,
p(1) = 1, p′(γ) = p′(ε) = 0, p(γ) = 1, −1 ≤ p(ε) ≤ 1 (fig. 3). Then

p(x)− 1 = a(x− γ)2(x− 1)

and from p(−1) = −1 we obtain

a =
1

(1 + γ)2
.

Because b = −(1 + 2γ)a, c = γ(γ + 2)a, d = (1 + 2γ)a we have (2) finally.
In that

p′(x) = a(x− γ)(3x− 2− γ) and p′(ε) = 0 and ε = γ iff ε = γ = 1
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so
ε =

1
3
(γ + 2).

Since
p(ε) =

1
(1 + γ)2

(ε− γ)2(ε− 1) + 1 and p(ε) ≥ −1

then
2(γ − 1)3 + 27(γ + 1)2 ≥ 0.

Hence γ ∈ [− 1
2 ; 1] and this completes the proof for the polynomial p2.

Now let p ∈ EB3 and p(1) = p(−1) = p(r) = −1, p(δ) = p(s) = 1,
p′(δ) = p′(ζ) = 0, δ ∈ (−1; 1), 1 ≤ ζ ≤ r < s (fig. 4). Thus we have

p(x) + 1 = a(x− 1)(x + 1)(x− r) and p(δ) = 1,

hence
2 = a(δ2 − 1)(δ − r)

r = δ − 2
a(δ2 − 1)

.

Because

p′(x) = a[2x(x− r) + x2 − 1] = a[3x2 − 2rx− 1] =

= a

[
3x2 − 2x

(
δ − 2

a(δ2 − 1)

)
− 1

]
and p′(δ) = 0 then

3δ2 − 2δ

(
δ − 2

a(δ2 − 1)

)
− 1 = 0

a =
−4δ

(δ2 − 1)2
.

Thus

p(x) =
−4δ

(δ2 − 1)2
(x2 − 1)

(
x− 3δ2 − 1

2δ

)
− 1 =

=
−4δ

(δ2 − 1)2
x3 +

2(3δ2 − 1)
(δ2 − 1)2

x2 +
4δ

(δ2 − 1)2
x− 2(3δ2 − 1)

(δ2 − 1)2
− 1.
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Hence the polynomial p has coefficients the form (3). Because r = 3δ2−1
2δ

and r ≥ 1 then δ(3δ + 1)(δ − 1) ≥ 1, where δ < 1. Therefore δ ∈ [− 1
3 ; 0]

and this completes the proof for p3 and endes the proof of theorem.

Corolary. 1. By using Theorem we can construct the extreme points
of B3, for example:
a) extreme points of B3 described on fig. 2.:

if α = −1
2
, β =

1
2

then p1(x) = 4x3 − 3x,

if α = −1, β =
1
3

then p1(x) =
27
16

x3 − 27
16

x2 − 27
16

x +
11
16

,

if α = −1, β = 1 then p1(x) =
1
2
x3 − 3

2
x,

if α = −3
4
, β =

3
4

then p1(x) =
32
27

x3 − 2x;

b) extreme points of B3 described on fig. 3.:

if γ = −1
2

then p2(x) = 4x3 − 3x,

if γ = −1
3

then p2(x) =
9
4
x3 − 3

4
x2 − 5

4
x +

3
4
,

if γ = 0 then p2(x) = x3 − x2 + 1, p2(−x) = −x3 − x2 + 1,

−p2(x) = −x3 + x2 − 1, −p2(−x) = x3 + x2 − 1,

if γ =
1
2

then p2(x) =
4
9
x3 − 8

9
x2 +

5
8
x +

8
9
,

if γ = 1 then p2(x) =
1
4
x3 − 3

4
x2 +

3
4
x +

3
4
;

c) extreme points of B3 described on fig. 4.:

if δ = −1
3

then p3(x) =
27
16

x3 − 27
16

x2 − 27
16

x +
11
16

,

if δ = −1
4

then p3(x) =
256
225

x3 − 416
225

x2 − 256
225

x +
191
225

,

if δ = 0 then p3(x) = −2x2 + 1.

Moreover we have

Corolary. 2. Let p(x) = ax3+bx2+cx+d belongs to EB3 and p′(x1) =
p′(x2) = 1− |p(x1)| = 0 for some different x1, x2 ∈ [−1; 1].
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a) If |p(x2)| = 1 then |a| ∈ [ 12 ; 4], |b| ≤ 27
16 , |c| ∈ [ 32 ; 3], |d| ≤ 11

16 . The
estimations of coefficients are sharp and being attained by polynomials
given in Corollary 1.

b) If |p(x2)| < 1 then |p(1)| = |p(−1)| = 1 and |a| ∈ ( 1
4 ; 4), |b| ≤ 1,

|c| < 3, |d| ≤ 1, moreover a + c = 1, b + d = 0. The estimations of
coefficients are sharp, it is easy to see looking at Corollary 1.

Corolary. 3. Let p(x) = ax3+bx2+cx+d belongs to EB3 and p′(x1) =
p′(x2) = 0, |p(x1)| = |p(−1)| = |p(1)| = 1. If |x1| < 1 and |x2| > 1 then
|a| < 27

16 , |b| ∈ ( 27
16 ; 2), |c| < 27

16 , |d| ∈ ( 11
16 ; 1), moreover a+c = 0, b+d = −1.

The estimations are sharp, extremal polynomials are given in Corollary 1.

Also we have

Remark. 1. Let p ∈ EB3 be described as on fig. 2.

a) If t < −1 and n > 1 then N(p) = 4.
b) If t = −1 and n > 1 then N(p) = 5 and β = 3α+2, where α ∈ [− 1

2 ;− 1
3 ].

c) If t < −1, n = 1 then N(p) = 5 and β = 1
3α + 2

3 , where α ∈ [−1;− 1
2 ].

d) If t = −1, n = 1 then N(p) = 6 and α = − 1
2 , β = 1

2 , p(x) = 4x3 − 3x,
i.e. p is the Chebyshev polynomial of order 3.

Remark. 2. We have some particular cases:
a) γ = 1 (fig. 3) implies p2(x) = 1

4x3 − 3
4x2 + 3

4x + 3
4 , i.e. p2(x) − 1 =

1
4 (x− 1)3 and p′2(x) ≥ 0 for all x ∈ R;
b) δ = 0 (fig. 4) implies p3 = −2x2+1, i.e. p3 is the Chebyshev polynomial
of order 2;
c) γ = − 1

2 implies p2 = p1 for α = − 1
2 , β = 1

2 ;
d) δ = − 1

3 implies p3 = p1 for α = − 1
3 , β = 1.

Remark. 3. If p ∈ EB4 then N(p) > n and only these polynomials of
degree 3 belong to EB4 which have N(p) = 6 or N(p) = 5, i.e. p(x) =
4x3−3x or p(x) = 1

2(α+1)3 (x−3α−2)(x+1)−1 where α ∈ [− 1
2 ;− 1

3 ] and

their symmetrical.

Remark. 4. Only two polynomials of degree 3 belong to EB5, i.e. p(x) =
4x3 − 3x and p(x) = −4x3 + 3x.
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