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LINEAR PROBLEMS IN THE SPACE OF POLINOMIALS
OF DEGREE AT MOST 3

J. Sok6n, W. SZUMNY

Denote by P,, n € N the linear space of real polynomials p
of degree at most n. There are various ways in which we can in-
troduce norm in P,, here the problem is investigated when |[|p|| =
max {|p(z)|: z € [-1;1]}. Let B, = {p € Pn: |p|| <1} be the
unit ball and let EB,, be the set of the extreme points of B, i.e.
such points p € B,, that B, \ {p} is convex. The sets EBo, EB;
and F B2 are known and it turns out that also EBs has a particu-
larly simple form. In this paper we determine E Bs and give some
conclusions and applications of the main results. Moreover, several
examples are included. The coefficient region for the polynomials
of degree exceeding 3 seems very complicated.

Let p € P, and let N(p) be the number of all zeros of the polynomial
1—p? in the interval [—1; 1], counted according to multiplicity. In the case
of complex polynomials, D.A. Brannan and J.G. Clunie [1] were able to
characterize the extreme points partially. In the case of real polynomials,
A.G. Konheim and T.J. Rivlin [2] proved for p € B, that p € EB,
if and only if N(p) > n. We know that FBy = {—1,1} and EB; =
{-1,1, —z,x}. Moreover W. Szumny [3] determined a precise form of E Bo,
ie.

EBy= {-1,1,(c+2y/2(1—¢)— 3)x2+2 2(1—c¢)— 1)z +c,
(c—|—2\/2(1—c) 3)x? —2(c 21 —¢) =1z +c¢,
(3—c—2y/2(1 —¢))x® +2( 1 —c—2(1=¢)zx —c,
( )z? + 1
c

3—c—22(1—¢))x 2( 2(1—0): )T — ¢
€ [3:1].}.
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For p € EB; we have N(p) € {4,5,6} and

THEOREM 1. The set EBjz consists of the functions p; (z) = a12®+b12%+
c1z +dy, p2(z) = asx® + box? + cox + da, p3(x) = azz® + bsx? + c3x + ds,
pa(xz) =1 and —p;(z), where i € {1,2,3,4} and
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the coefficient region for o, (3 is given on the fig. 1 and v € [—3;1],
§ € [—3;0].
PRrOOF. By simple consideration we see easy that p(z) = 1 and p(z) = —1
are the extreme points of Bz. Because the polynomial ¢(z) = bx? +cx +d
cannot be an extreme point of Bz (apart from ¢(x) = 22% — 1 and ¢(x) =
—22% 4+ 1 where N(q) = 4) then it is also sufficient to consider only the
polynomials p(x) = az® + bx? + cx + d, a # 0. For these polynomials we
will consider three cases of p € E' B3 described on the figures 2, 3 and 4:
The other extreme points of B3 may be obtained as their symmetrical.
Suppose that p(z) = az® + bx? + cz + d belongs to EBs and p(a) = 1,
p(B) = -1, p'(a) = p'(B) =0 (fig. 2). Thus we have

p(z) — 1 =a(z —a)’(z —u),
p(z) +1=a(z—B)*(z 1)
and

P'(z) = al2(z =)z —t) + (z = §)°] = a(z - B)(B3z — 2t — B),
P(2)=a2(z—a)(z—u)+ (z— )] (r — )3z — 2u — «).

Il
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Hence
0=ala—PB)Ba—-2t—p0) and 0=a(8— )30 —2u— ).

Therefore
3a—2t—0=0 and 30—2u—a=0,
thus
t=2(Ba—f8) u=2(38-0)
=3 o u = 5 ).

Because p(a) = 1 then

1=afa - ) |a- 36a-9)] -1

1
ia(a - B)?*2a —3a+p6) =2,

4
(B —a)®

If p(x) = az® + ba®> + cx +d and p(z) = a(z — a)?(z —u) + 1 =
ar?® — a(u + 2a)r? + ac(a + 2u)r + 1 — ac®u, then by comparing the
coefficients of 22 and x we see that

ala — B)*(B — a) =4, a=

b= —a(u+2a), c=aa(a+2u), d=1—ax’u.

Hence we obtain (1).

Because t < —1 and u > 1 then 2(3a — 3) < —1 and 3(38 —a) > 1
so we obtain the region given on the fig. 1. This completes the proof for
the polynomial p;.

Now let p(z) = ax® + bz? + cx + d belongs to EB3 and p(—1) = —1,
p(1)=1,p'(v) =p(e) =0,p(y) =1, -1 < p(e) <1 (fig. 3). Then

pla) —1=a(z—7)*(z—1)
and from p(—1) = —1 we obtain
1
(1+7)*

Because b = —(1 +2v)a, ¢ = y(y + 2)a, d = (1 + 2vy)a we have (2) finally.
In that

p(x)=alr—7)Bz—2—7)and p'(e) =0and e =y iff e=y=1



Linear problems in the space of polynomials 143

SO 1
= - + 2).

Since

ple) = e (e=7)*e—1)+1and p(e) > -1

then
2(y = 1)* +27(y +1)* > 0.
Hence v € [—%; 1] and this completes the proof for the polynomial ps.
Now let p € EB3 and p(1) = p(—1) = p(r) = —1, p(§) = p(s) = 1,
p(0)=p()=0,6€(-1;1),1 < <r <s (fig. 4). Thus we have

p(x)+1=a(z—1)(z+1)(x —r) and p(d) =1,

hence
2=a(6®* - 1)(5—r)

Because

p(z) =aRr(z—r)+2° -1 =a32> —2rz — 1] =

:a[3m2—2x(5—a(522_1)) —1}

and p’(d) = 0 then

2_ T N
3% =20 (0 - oy ) ~1=0
—45

Thus
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Hence the polynomial p has coefficients the form (3). Because r =

and 7 > 1 then §(30 +1)(6 — 1) > 1, where § < 1. Therefore § € [~3;0]
and this completes the proof for p3 and endes the proof of theorem.

COROLARY. 1. By using Theorem we can construct the extreme points

of Bs, for example:

a) extreme points of By described on fig. 2.:
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1
? then py(z) = 42® — 3z,
27 27 27 11
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g then ;@) 6 a6 16 1e
1 then py(z)=-2°— 2%
3 then (z) = §£x3 — 2z
4 D1 27 )

b) extreme points of Bs described on fig. 3.:

1

if T="3 then
1

if 'y:—g then

if y=0 then

if y= then

if = then

pQ(I) = 4I3 - 3:Ca

9 3 5 3
pa(x) = ng — sz — 2t

pa(x) =23 — 22 + 1, po(—x) = -3 — 22 + 1,
—po(z) = —2® + 2% — 1, —po(—x) = 2% + 2% — 1,

8 ,,5 .8
e Tt

1, 3, 3 3
Pz(m):ng*Z’CQWLZIJrE;

4
pa(x) = 53:

¢) extreme points of By described on fig. 4.:

if 5:7% then ps(x)

if 5:—2 then ps(z)

2T, 2T, 27 1

==z Tt - =+ —,
16 16 16 16
256 , 416 5 256 191

= 5257 T 295" T 9957 T ap

if 6=0 then ps(z) = —222 + 1.

Moreover we have

COROLARY. 2. Let p(x) = ax®+bx?+cx+d belongs to EB3 and p/(x1) =
p'(x2) =1 —|p(z1)| = 0 for some different z1,x2 € [—1;1].
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a) If [p(xz2)| = 1 then |a| € [3;4], |b] < 2L, |c| € [3;3], |d| < 1%. The
estimations of coeflicients are sharp and being attained by po]ynomials
given in Corollary 1.

b) If [p(x2)| < 1 then [p(1)] = [p(~1)| = 1 and |a] € (1;4), bl < 1,
le] < 3, |d|] < 1, moreover a + ¢ = 1, b+ d = 0. The estimations of
coeflicients are sharp, it is easy to see looking at Corollary 1.

COROLARY. 3. Let p(x) = ax3+bx?+cx+d belongs to EB3 and p/(x1) =
D (:EQ) =0, |p(z1)| = |p(— )| = |p(1)| = 1. If |x1] < 1 and |z3| > 1 then
la| < 2%, 1b] € (38:2), || < 2L, |d| € (1§;1), moreover a+c = 0, b+d = —1.
The estimations are sharp, extremal polynomials are given in Corollary 1.

Also we have
REMARK. 1. Let p € EB3 be described as on fig. 2.

a) If t < —1 and n > 1 then N(p) = 4.

b)Ift = —1and n > 1 then N(p) = 5 and 8 = 342, where a € [—1; —1].
¢)Ift < -1, n=1then N(p) =5 and 8 = 3a+3,wherea€[ 1;— %]
d)Ift=-1, n=1then N(p)=6and a = —3, B =1, p(z) = 42° — 3,
i.e. pis the Chebyshev polynomial of order 3.

REMARK. 2. We have some particular cases:

a) vy =1 (fig. 3) implies pa(x) = 32° — 322 + 30+ 3 e py(z) —1 =
1(x —1)% and py(x) > 0 for all x € R;

b)§ = 0 (fig. 4) implies p3 = —2x%+1, i.e. p3 is the Chebyshev polynomial
of order 2;

c) v = —1% implies py = p; for a = —
d) 6 = —3 implies p3 = p; for a = —
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REMARK. 3. If p € EBy then N(p) > n and only these polynomials of
degree 3 belong to EB, which have N(p) = 6 or N(p) = 5, i.e. p(x) =
423 — 3z or p(z) = (x—3a—2)(x+1)—1 where a € [-3; —3] and
their symmetrical.

1
2(a+1)3
REMARK. 4. Only two polynomials of degree 3 belong to EBs, i.e. p(x) =
423 — 3z and p(z) = —42® + 3z.
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