Tpyasr IleTpo3aBogcKOro rocyAapCTBEHHOI'O YHHUBEPCUTETA
Cepus “MaremaTuka’ Bermyck 9, 2002

YK 517.54

MULTIVALENT o — CONVEX HARMONIC MAPPINGS

A. GANCZAR

In this paper we give coefficient conditions for complex-valued
harmonic functions that are multivalent, sense-preserving and « -
convex. We determine the extreme points, distortion and covering
theorems for these mappings.

§ 1. Introduction

A continuous function f = u + iv is said to be a complex-valued
harmonic function in a domain €2 C C if both u and v are real harmonic
in €. In any simply connected domain D such a mapping f can be written
in the form

f(z) = h(z) + 9(2), (1)
where h(z) and g(z) are analytic in D (see [1]). The Jacobian of f is then
given by

2 2
Ji(2) = [ ()" = lg'(2)]" -

A harmonic function f of the form (1) will be called sense-preserving at

apoint zg € D if h'(z) # 0 and the second dilatation function w(z) =
is analytic at zop (possibly with a removable singularity), and |w(z)| < 1.
Note that if J¢(z) > 0 for each z € D then f is sense-preserving in D.

Suppose that f(z0) = 0 at some zp € D where f is sense-preserving,
then we may express the analytic functions h and g as

h(z) = ao + Z an(z —20)", g(z) =bo + Z bn(z — 20)".
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We see at once that by = —ag, because f(z9) = 0. Since h'/(z) # 0 in
D, it follows that some a, must be nonzero. We denote the first such
a coefficient by a,,. Then we have b, = 0 for 1 < n < m and |b,,| <
|am|, because the second dilatation w(z) is analytic at the point zy and
|w(zo)| < 1. In this case we say that f(z) has a zero of order m at zo € D.

Let D be the open unit disk A = {z : |z|] < 1}. We can certainly
assume that a,, = b, =0 for 0 < n < m and a,, = 1. Denote by Sg(m)
the set of all m-valent harmonic functions f = h + g of the form

F2)=2" 4+ tnpma 2T Y b1zt (2)

n=2 n=1

that are sense-preserving in A. Since |by,| < |am|, we see that |b,| <
1. By the argument principle for harmonic functions [2] and the above
arguments, if J¢(z) > 0 in A\ {0} then f of the form (2) belongs to
the class Sg(m).Note that Sg(1) is the familiar class Sy of harmonic
univalent and sense-preserving functions (see [1]).

We say that f € Sg(m) is harmonic convex of order o (e.g. see [4]),

0<a<linAif
7 {arg (%f(re ))} > a, (3)

for each z, |z| =r < 1.

Let us denote by Kg(m, «) the subclass of Sg(m) consisting of func-
tions f that are convex of order . In particular, we will denote by K g (m)
the class Kg(m,0).

We further denote by T'K gr(m, o) the subclass of Kg(m, «) consisting
of functions f = h + g so that h and g are of the form

h(z) = 2™ — Z |@ntm—1] 2L g(z) = — Z |brtm—1] 2l (4)
n=2 n=1

§ 2. Coefficient conditions

In this section we proved a sufficient coefficient condition for the class
Ky (m,a).It is also shown that those condition is necessary when f €
TKpg(m,a).Those results are a generalization of the theorems for the
classes Kg(1,a) and TKg(1,a) of convex univalent harmonic mappings
of order « and convex univalent harmonic mappings of order a with neg-
ative coefficients, respectively (see [3]).
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THEOREM 1. Let f(z) = h(z) + g(z) be of the form (2). If

“n+m-1/n+m—-a-1 n+m+a-—1
Z lantm-1] + ————|baym-1] ) £ 2,
n=1 m m—-a« m —

()
where a,, =1 and m > 1, then f(z) € Kg(m,a).

PROOF. We first prove that the coefficient condition (5) is sufficient for
the function

o0 o0
f(z> =2"+ Z an+m—lzn+m_l + Z bn-l-m—lzn-i_m_1

n=2 n=1

to be sense-preserving in A.
Let us first observe that for each pair of numbers m,n € N and 0 <
a < 1 we have

1§n+m—a—1£n+m+a—1‘ (6)
m—a m-—a«

> 00
Set h(z> =2z"+ E an+m—lzn+m_l and g(z) = Z bn+m—1zn+m_1.

n=2 n=1
Obviously, the second dilatation function w(z) = Z%,é)l has the removable
singularity at zg = 0.
From (5) and (6) we conclude that for 0 < |z| < 1 we have

(o]

B (2)] = mlz|™ "t =Y (n+m = Dappmllz["T" 2 =
n=2
m— Zn+m-—1 e
= ml2] 1[1—2T|an+m_1||z| >
m—1 = n+m-—1
-y 0= - ] >
> m|z| {1 T; - |@ntm 1|] >
>m|z|m_1[1_i(n+m—1)(n+m—a—1)|a |]>
— m(m — a) n+m—1 jl
= +n—-1)n+m+a-1)
= lel I:Z m(m_a) | + 1|] =
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— n+m-—1
Zml'Z' 1[2 T|bn+mfll] >

n=1

>3 (4 m = 1) bpgme] ]2 >

n=1
Z(n +m — 1)l’vz4—rrz—lzn+m_2

n=1

>

=19'(2)!

Therefore the harmonic function f = h + g of the form (2) is sense-
preserving in A.

We next show that f € Kg(m,a). By the definition of the class
Kg(m,a) , it remains to prove that

= {arg (2 1) } _ pe [ £ 1) + 27

or equivalently if

20 (2) + 220" (2) + 29' (2) + 229" (2) a]

Re W) — 29

for each z = re®, |z| < 1. For z € A we have

! 2p0 ol ) 2.1
Re[Zh(z)+Z h'(z) + zg'(z) + 229" (2) —a] _
zh!(z) — zg'(2)
~n+m-—1
= Re [((m—a)zm+z %(n+m—a—l)an+m_1z”+m_l+

n=2

—~n+m—1 _
+ Z T(n +m+a-— 1)bn+mflzn+mil)/

n=1

“n+m-—1 . o=n+m—-1—
/(zm + Z Tan+m—12n+m t— Z Tbn+mf12"+m71)]'

n=2 n=1

Let z =7e", 0 < r < 1, then by the above

1+ p(rew)]

% {arg(%f(rew))} —a=(m—-—a)Re [1 ~ p(rei®)



Multivalent o¢ — convex harmonic mappings 7

where

i — n+m-—1 n—1 _i(n—
p(re®) = (3 (1= Danmar e
n=2

oo _ 1 _ .
n n-+m (n +29m — 1)bn+m_1rn—1e—z(n+2m—1)0)/
m
n=1

/(2(m —a)+ Z n++(n +2m — 20 — V) appm_1r" telm 104

n=2
o n+m-—1 7 n—1_—i(n+2m—
+ Z T(TL + 2a — l)bn+m_17“ le (n+2 1)9),
n=1

as it is easy to check. '
The proof will be complete if we can show that |p(re?)| < 1. We have

. o -1
pre)] < (3 I = 1) a7

n=2

—~n+m-—1 e
) (e 2m = 1) a7 1)/

n=1

—~n+m-—1 -
/(4(m—a)_ZlT("+2m—2a—1) Y
>0 -1
-3 "++(n+ 20 — 1) b1 ") <
n=1

> n+m-—1 n+m-—1
< (=D |+ Y = (e 2m=1) [bns i) /

n=2 n=1

> n+m-—1
/(4(m—a)—ZT(n+2m—2a—l) langmot| —
n=1
> n+m-—1 R(m
—ZT(n+2a—1)|bn+m_1|) =# <1
n=1

Q(m,a) =
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which is due to the fact that

Q(m,a) — R(m) =
“n+m-—-1,n+m—-a—1
:2(m—a)[2—z m ( m—a lantm—1]+
n=1
n+m+a—1
T bl )] 2 0.

by (5). ,
1 X3
From this we conclude that Re [M] > 0, which is the desired
1 — p(re®)
conclusion. O

The restrictions in the above Theorem placed on the moduli of the
coeflicients enable us to conclude for arbitrary rotations of the coefficients
of f that the resulting functions would still be in the class Kg(m, a). Now
we show that such coefficient bounds can’t be improved.

THEOREM 2. Let f(z) = h(z) + g(z) be of the form (4). Then f €
TKg(m,«) if and only if

“n+m-1/n+m—-a-—1 n+m+a—1
Z m |an+m71| +f|bn+m—1| S 23

(7)

m—«

n=1

where a,, =1 and m > 1.

PROOF. In view of Theorem 1, we need only show that f ¢ TKg(m,a)
if the coefficient condition (7) does not hold.We examine the required
condition (3) for f = h+7g € TKg(m,a). By the above this is equivalent
to

R [P + O TATE )
2h'(2) = 29'(2)
= Re [((m —a)z™ — Z (ntm-1n+m-a-1) |G|zt -

m
n=2

“(n+m-Dn+m+a-1
_Z( )( )

b bt m—1[z77T) / (27

n=1
o0 o0
n+m-—1 _ n+m-—1———
- Z 7|an+mfl Zhtm 1+Z |bn+m71|—zn+m71)] > 0.
o m m

n=1
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The above condition must hold for all z € A.Upon choosing the values of
z on positive real axis and such that 0 < z = r < 1 we must have

= -1
(m—a)—1e$ n++(n+m—a— 1) @] =

n=2

—~n+m—1 ne1
—§T(n+m+a—1)|bn+m_1|r )/

n—
~n+m-—1 4 ,~=nt+m-—1 -

/(1— < Z T |an+m—1|7'n 1+Z T |bn+m—1|rn 1) > 0.
n=2

n=1

If the condition (7) does not hold then the numerator in (2) is negative
for r sufficiently close to 1.Thus there exists ro € (0,1) for which the
quotient in (2) is negative, and we arrive at a contradiction. O

Next theorem shows that class TKg(m,«a) is closed under forming
convex combinations.

THEOREM 3. If fi(z) € TKy(m,a) for i = 1,2,..., and if Y X\ =
i=1
1, 0 < \; <1, theng(z) = > A;fi(z) is a member of the class T K g (m, o).
=1

PROOF. Since

o0 oo
filz) =2 — Z |afm+m—1|zn+m_1 - Z |b;+m—1 zrtm=t e TKy(m, ).
n=2 n=1

Theorem 2 shows that for each ¢ € N we have

2n+:—1 [n+:z:z— 1|a;+m_1| n n+m—_i—oc— 1|bfz+m—1|] <2
. ®)
For io: Ai =1, 0 <\ <1, the convex combination g(z) = io: Xifi(z) is
of t}?e:%orm =

oo oo oo

9(2) = 2" = 3 Al m 1 D2 = DS Ailbr a2

n=2 i=1 n=1 i=1
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We check at once that

Zn—l—rrz—l[n—l-m a— Z)\lan-‘,—m D+

m —
n=2

L Zub cmal)] <1

which is clear from (8).Theorem 2 implies that g(z) € TKg(m,«). O

§ 3. Distortion bounds and extreme points

We now give the distortion bounds for functions in T'K g (m, ), which
yield a covering result for this class.

THEOREM 4. If f € TKy(m,«), then

(i = ) = mim + ) lbul i1
(m+1)(m—-—a+1)

(@) 1F) < T+ [bm)r™ +

)

and

m(m —a) —m(m + a) lbmlr"‘“

(@) |f(2)] = 1 = [bml)r™ (m+1)(m—a+1)

9

where |z| =r < 1.

Equalities are rendered by the function

m(m — a) —m(m + @) |by|

prEs)
(m+1)(m—-—a+1)

f(z)=2™ = |bm| 2™ +

and its rotations.

PROOF.
We shall justify the (7) right hand inequality only. For |z| = r, we have

> o
@1 =27 = 3 lantmo] 57 4 3 b | 27577 <

n=2 n=1

oo oo
<r™4 Z lantm—1|r" Tt + Z |brpm—1|r" T =
n=2 n=1
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[ee]

= (1 + [bagm—1])r™ + Z(lan+m—1| + |bn+m—1|)rn+m_l <

n=2

< (1 + |bn+m—1|)rm + Z(|an+m—1| + |bn+m—1|)7'm+1-

n=2
Theorem 1 now shows that
m(m—a)+m(m+a) |by|+(m+1)(m—a+1) Z(|an+m_1|+|bn+m_1|) <
n=2
< Z(n+m—1)[|an+m_1| (n+m—a—1)+|bppm-1|(n+m+a—-1)] <
n=1
< 2m(m - a):

and hence

> m(m — a) —m(m + @) |by,]|

n—+m-— bn m— < b
7;2(|a+ 1|+ [bngm-1]) < m+Dm—atl)

which establishes the formula. O

REMARK. Bounds given in Theorem 4 also are valid for f € Ky (m,a) if
the coefficient condition (5) is satisfied.

Letting r — 17 in the left hand inequality in Theorem 4 we obtain a
covering result for the class TKy(m, ).

COROLARY. If f € TKg(m,«), then

{w:|w|< 2m—a+1—|bn|(2m+1)(1 — )

m+1)(m—-—atl) ferw).

In particular, if f € TKg(m,0) = TKy then {w | < 2EL(1 -
bl } € F(A).

For any compact family, the maximum or minimum of the real part
of any continuous linear functional occurs at one of the extreme points of
the closed convex hull.Since T Ky (m, «) is a convex family, we will use the
necessary and sufficient condition of Theorem 2 to determine the extreme
points.
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THEOREM 5. Let

m(m_a) n+m—1
(n+m—1)(n+m—a—1)z

hi(2) = 2, h(2)n+m-1(2) = 2™ —

)

n=2,3,... and

m(m — «)
C(n+m-Dn+m+a—1)

zntm=l p =12 ...

In+m—1 (Z) =

Then f = h+7g € TKy(m,«) if and only if it can be expressed in the
form

oo

f(z) = Z |:)\n+m—1hn+m—1(z) + Mn+m—lgn+m—l(z):|7

n=1
where )\nerfl > 0, Mntm—1 >0 and Z (An—i-m—l + ,Ufnerfl) =1
n=1
In particular, the extreme points of T K g (m,a) are {hp4m—1(2)} and

{gn+m—1 (Z)}

PROOF. Suppose that

@)= 3 [Matmornsmo1 () + fnpmorgaem-(2)] =

n=1
=)

-3 P s
oy n+m—1(n+m—a 1)

n+m—1__

m— a)
— n+m—1
Z n+m—1(m+n+a I)Mnﬂn*lz '

Then

in-{—m—l{n—i—m—a—l( m(m — )

An m_)+
n+m-—a—1 =l

m—a

n+m+a—1( m(m — ) >]<2
(n+m—1)(n+m+a—1)un+m71 =7

and by Theorem 2 f € TKgy(m,a). Conversely, if

m—«

[o @) [o @)
=D anim-1] 2" = by 2T € TK(m, ),

n=1
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then by Theorem 2 we have

|a"+m_1| S (n+m—W1L§ErWL.:-(:rz—a—l) and |b"+m_1| S (n+m—"1L§‘(”:;-?rz+a—l)'

Consider
m+m—-1)n+m-a-1)

)
(m —a)
)
(

)\n+m—l = |an+m—1| y =23, ..,

m

m+m-1n+m+a-1)
m(m — )

Hnd4m—1 = |bn+m—1| ,yn=1,2,..,

oo

Am =1- Z()\n—i-m—l + /Ln—l—m—l)-

n=2

Then we obtain f(Z) = Z |:/\n+m—1 hn-i-m—l(z) + ,u'n-i-m—lgn—i-m—l(z):l , a8
=1

required. O

REMARK. If the co-analytic part of f = h+g € S§(m, ) is is zero, i.e.

the function g(z) is identically zero, then we have analogous properties of
m-valent analytic convex functions of order « in the unit disk.
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