Выпуск 9, 2002

УДК 517.54

MULTIVALENT α — CONVEX HARMONIC MAPPINGS

A. GANCZAR

In this paper we give coefficient conditions for complex-valued harmonic functions that are multivalent, sense-preserving and α -convex. We determine the extreme points, distortion and covering theorems for these mappings.

§1. Introduction

A continuous function f=u+iv is said to be a complex-valued harmonic function in a domain $\Omega\subset\mathbb{C}$ if both u and v are real harmonic in Ω . In any simply connected domain D such a mapping f can be written in the form

$$f(z) = h(z) + g(z), \tag{1}$$

where h(z) and g(z) are analytic in D (see [1]). The Jacobian of f is then given by

$$J_f(z) = |h'(z)|^2 - |g'(z)|^2$$
.

A harmonic function f of the form (1) will be called sense-preserving at a point $z_0 \in D$ if $h'(z) \not\equiv 0$ and the second dilatation function $\omega(z) = \frac{g'(z)}{h'(z)}$ is analytic at z_0 (possibly with a removable singularity), and $|\omega(z_0)| \leq 1$. Note that if $J_f(z) > 0$ for each $z \in D$ then f is sense-preserving in D.

Suppose that $f(z_0) = 0$ at some $z_0 \in D$ where f is sense-preserving, then we may express the analytic functions h and g as

$$h(z) = a_0 + \sum_{n=1}^{\infty} a_n (z - z_0)^n, \quad g(z) = b_0 + \sum_{n=1}^{\infty} b_n (z - z_0)^n.$$

We see at once that $b_0 = -\overline{a_0}$, because $f(z_0) = 0$. Since $h'(z) \neq 0$ in D, it follows that some a_n must be nonzero. We denote the first such a coefficient by a_m . Then we have $b_n = 0$ for $1 \leq n < m$ and $|b_m| < |a_m|$, because the second dilatation $\omega(z)$ is analytic at the point z_0 and $|\omega(z_0)| < 1$. In this case we say that f(z) has a zero of order m at $z_0 \in D$.

Let D be the open unit disk $\Delta = \{z : |z| < 1\}$. We can certainly assume that $a_n = b_n = 0$ for $0 \le n < m$ and $a_m = 1$. Denote by $S_H(m)$ the set of all m-valent harmonic functions $f = h + \overline{g}$ of the form

$$f(z) = z^m + \sum_{n=2}^{\infty} a_{n+m-1} z^{n+m-1} + \sum_{n=1}^{\infty} \overline{b_{n+m-1}} z^{n+m-1},$$
 (2)

that are sense-preserving in Δ . Since $|b_m| < |a_m|$, we see that $|b_m| < 1$. By the argument principle for harmonic functions [2] and the above arguments, if $J_f(z) > 0$ in $\Delta \setminus \{0\}$ then f of the form (2) belongs to the class $S_H(m)$. Note that $S_H(1)$ is the familiar class $S_H(m)$ of harmonic univalent and sense-preserving functions (see [1]).

We say that $f \in S_H(m)$ is harmonic convex of order α (e.g. see [4]), $0 \le \alpha < 1$ in Δ if

$$\frac{\partial}{\partial \theta} \left\{ \arg \left(\frac{\partial}{\partial \theta} f(re^{i\theta}) \right) \right\} \ge \alpha,$$
 (3)

for each z, |z| = r < 1.

Let us denote by $K_H(m, \alpha)$ the subclass of $S_H(m)$ consisting of functions f that are convex of order α . In particular, we will denote by $K_H(m)$ the class $K_H(m, 0)$.

We further denote by $TK_H(m, \alpha)$ the subclass of $K_H(m, \alpha)$ consisting of functions $f = h + \overline{g}$ so that h and g are of the form

$$h(z) = z^m - \sum_{n=2}^{\infty} |a_{n+m-1}| z^{n+m-1}, \ g(z) = -\sum_{n=1}^{\infty} |b_{n+m-1}| z^{n+m-1}.$$
 (4)

§ 2. Coefficient conditions

In this section we proved a sufficient coefficient condition for the class $K_H(m,\alpha)$. It is also shown that those condition is necessary when $f \in TK_H(m,\alpha)$. Those results are a generalization of the theorems for the classes $K_H(1,\alpha)$ and $TK_H(1,\alpha)$ of convex univalent harmonic mappings of order α and convex univalent harmonic mappings of order α with negative coefficients, respectively (see [3]).

THEOREM 1. Let $f(z) = h(z) + \overline{g(z)}$ be of the form (2). If

$$\sum_{n=1}^{\infty} \frac{n+m-1}{m} \left(\frac{n+m-\alpha-1}{m-\alpha} |a_{n+m-1}| + \frac{n+m+\alpha-1}{m-\alpha} |b_{n+m-1}| \right) \le 2,$$
(5)

where $a_m = 1$ and $m \ge 1$, then $f(z) \in K_H(m, \alpha)$.

PROOF. We first prove that the coefficient condition (5) is sufficient for the function

$$f(z) = z^m + \sum_{n=2}^{\infty} a_{n+m-1} z^{n+m-1} + \sum_{n=1}^{\infty} \overline{b_{n+m-1} z^{n+m-1}}$$

to be sense-preserving in Δ .

Let us first observe that for each pair of numbers $m,n\in\mathbb{N}$ and $0\leq \alpha<1$ we have

$$1 \le \frac{n+m-\alpha-1}{m-\alpha} \le \frac{n+m+\alpha-1}{m-\alpha}.\tag{6}$$

Set
$$h(z) = z^m + \sum_{n=2}^{\infty} a_{n+m-1} z^{n+m-1}$$
 and $g(z) = \sum_{n=1}^{\infty} b_{n+m-1} z^{n+m-1}$.

Obviously, the second dilatation function $\omega(z) = \frac{h'(z)}{g'(z)}$ has the removable singularity at $z_0 = 0$.

From (5) and (6) we conclude that for 0 < |z| < 1 we have

$$|h'(z)| \ge m|z|^{m-1} - \sum_{n=2}^{\infty} (n+m-1)|a_{n+m-1}||z|^{n+m-2} =$$

$$= m|z|^{m-1} \left[1 - \sum_{n=2}^{\infty} \frac{n+m-1}{m} |a_{n+m-1}||z|^{n-1} \right] >$$

$$> m|z|^{m-1} \left[1 - \sum_{n=2}^{\infty} \frac{n+m-1}{m} |a_{n+m-1}| \right] \ge$$

$$\ge m|z|^{m-1} \left[1 - \sum_{n=2}^{\infty} \frac{(n+m-1)(n+m-\alpha-1)}{m(m-\alpha)} |a_{n+m-1}| \right] \ge$$

$$\ge m|z|^{m-1} \left[\sum_{n=1}^{\infty} \frac{(m+n-1)(n+m+\alpha-1)}{m(m-\alpha)} |b_{n+m-1}| \right] \ge$$

$$\geq m|z|^{m-1} \left[\sum_{n=1}^{\infty} \frac{n+m-1}{m} |b_{n+m-1}| \right] \geq$$

$$\geq \sum_{n=1}^{\infty} (n+m-1)|b_{n+m-1}||z|^{n+m-2} \geq$$

$$\geq \left| \sum_{n=1}^{\infty} (n+m-1)b_{n+m-1}z^{n+m-2} \right| = |g'(z)|.$$

Therefore the harmonic function $f = h + \overline{g}$ of the form (2) is sensepreserving in Δ .

We next show that $f \in K_H(m,\alpha)$. By the definition of the class $K_H(m,\alpha)$, it remains to prove that

$$\frac{\partial}{\partial \theta} \left\{ \arg \left(\frac{\partial}{\partial \theta} f(re^{i\theta}) \right) \right\} = \operatorname{Re} \left[\frac{zh'(z) + z^2h''(z) + \overline{zg'(z) + z^2g''(z)}}{zh'(z) - \overline{zg'(z)}} \right] \geq \alpha,$$

or equivalently if

$$\operatorname{Re}\left[\frac{zh'(z)+z^2h''(z)+\overline{zg'(z)+z^2g''(z)}}{zh'(z)-\overline{zg'(z)}}-\alpha\right]\geq 0,$$

$$\begin{split} &\text{for each } z = re^{i\theta}, \ |z| < 1. \ \overline{\text{For } z \in \Delta} \text{ we have} \\ &\text{Re} \left[\frac{zh'(z) + z^2h''(z) + \overline{zg'(z)} + z^2g''(z)}{zh'(z) - \overline{zg'(z)}} - \alpha \right] = \\ &= \text{Re} \left[((m-\alpha)z^m + \sum_{n=2}^{\infty} \frac{n+m-1}{m} (n+m-\alpha-1)a_{n+m-1}z^{n+m-1} + \right. \\ &+ \left. \sum_{n=1}^{\infty} \frac{n+m-1}{m} (n+m+\alpha-1)\overline{b_{n+m-1}z^{n+m-1}} \right) \Big/ \\ &\left. \Big/ (z^m + \sum_{n=2}^{\infty} \frac{n+m-1}{m} a_{n+m-1}z^{n+m-1} - \sum_{n=1}^{\infty} \frac{n+m-1}{m} \overline{b_{n+m-1}z^{n+m-1}} \right) \right]. \end{split}$$

Let $z = re^{i\theta}$, 0 < r < 1, then by the above

$$\frac{\partial}{\partial \theta} \left\{ \arg(\frac{\partial}{\partial \theta} f(re^{i\theta})) \right\} - \alpha = (m - \alpha) \operatorname{Re} \left[\frac{1 + p(re^{i\theta})}{1 - p(re^{i\theta})} \right],$$

where

$$\begin{split} p(re^{i\theta}) &= (\sum_{n=2}^{\infty} \frac{n+m-1}{m} (n-1) a_{n+m-1} r^{n-1} e^{i(n-1)\theta} + \\ &+ \sum_{n=1}^{\infty} \frac{n+m-1}{m} (n+2m-1) \overline{b}_{n+m-1} r^{n-1} e^{-i(n+2m-1)\theta}) \Big/ \\ \Big/ (2(m-\alpha) + \sum_{n=2}^{\infty} \frac{n+m-1}{m} (n+2m-2\alpha-1) a_{n+m-1} r^{n-1} e^{i(n-1)\theta} + \\ &+ \sum_{n=1}^{\infty} \frac{n+m-1}{m} (n+2\alpha-1) \overline{b}_{n+m-1} r^{n-1} e^{-i(n+2m-1)\theta}), \end{split}$$

as it is easy to check.

The proof will be complete if we can show that $|p(re^{i\theta})| < 1$. We have

$$\begin{aligned} \left| p(re^{i\theta}) \right| &\leq (\sum_{n=2}^{\infty} \frac{n+m-1}{m}(n-1) \left| a_{n+m-1} \right| r^{n-1} + \\ &+ \sum_{n=1}^{\infty} \frac{n+m-1}{m}(n+2m-1) \left| b_{n+m-1} \right| r^{n-1}) \Big/ \\ & \Big/ (4(m-\alpha) - \sum_{n=1}^{\infty} \frac{n+m-1}{m}(n+2m-2\alpha-1) \left| a_{n+m-1} \right| r^{n-1} - \\ &- \sum_{n=1}^{\infty} \frac{n+m-1}{m}(n+2\alpha-1) \left| b_{n+m-1} \right| r^{n-1}) < \\ &< (\sum_{n=2}^{\infty} (n-1) \frac{n+m-1}{m} \left| a_{n+m-1} \right| + \sum_{n=1}^{\infty} \frac{n+m-1}{m}(n+2m-1) \left| b_{n+m-1} \right| \Big) \Big/ \\ & \Big/ (4(m-\alpha) - \sum_{n=1}^{\infty} \frac{n+m-1}{m}(n+2m-2\alpha-1) \left| a_{n+m-1} \right| - \\ &- \sum_{n=1}^{\infty} \frac{n+m-1}{m}(n+2\alpha-1) \left| b_{n+m-1} \right| \Big) = \frac{R(m)}{Q(m,\alpha)} \leq 1, \end{aligned}$$

which is due to the fact that

$$Q(m,\alpha) - R(m) = 2(m-\alpha) \left[2 - \sum_{n=1}^{\infty} \frac{n+m-1}{m} \left(\frac{n+m-\alpha-1}{m-\alpha} |a_{n+m-1}| + \frac{n+m+\alpha-1}{m-\alpha} |b_{n+m-1}| \right) \right] \ge 0,$$

by (5).

From this we conclude that $\operatorname{Re}\left[\frac{1+p(re^{i\theta})}{1-p(re^{i\theta})}\right] \geq 0$, which is the desired conclusion. \square

The restrictions in the above Theorem placed on the moduli of the coefficients enable us to conclude for arbitrary rotations of the coefficients of f that the resulting functions would still be in the class $K_H(m,\alpha)$. Now we show that such coefficient bounds can't be improved.

THEOREM 2. Let $f(z) = h(z) + \overline{g(z)}$ be of the form (4). Then $f \in TK_H(m,\alpha)$ if and only if

$$\sum_{n=1}^{\infty} \frac{n+m-1}{m} \left(\frac{n+m-\alpha-1}{m-\alpha} |a_{n+m-1}| + \frac{n+m+\alpha-1}{m-\alpha} |b_{n+m-1}| \right) \le 2,$$
(7)

where $a_m = 1$ and $m \ge 1$.

PROOF. In view of Theorem 1, we need only show that $f \notin TK_H(m, \alpha)$ if the coefficient condition (7) does not hold. We examine the required condition (3) for $f = h + \overline{g} \in TK_H(m, \alpha)$. By the above this is equivalent to

$$\operatorname{Re}\left[\frac{zh'(z) + z^{2}h''(z) + \overline{zg'(z) + z^{2}g''(z)}}{zh'(z) - \overline{zg'(z)}} - \alpha\right] =$$

$$= \operatorname{Re}\left[\left((m - \alpha)z^{m} - \sum_{n=2}^{\infty} \frac{(n + m - 1)(n + m - \alpha - 1)}{m} |a_{n+m-1}|z^{n+m-1} - \sum_{n=1}^{\infty} \frac{(n + m - 1)(n + m + \alpha - 1)}{m} |b_{n+m-1}|\overline{z^{n+m-1}}\right) / (z^{m} - \sum_{n=2}^{\infty} \frac{n + m - 1}{m} |a_{n+m-1}|z^{n+m-1} + \sum_{n=1}^{\infty} |b_{n+m-1}| \frac{n + m - 1}{m} \overline{z^{n+m-1}}\right] \ge 0.$$

The above condition must hold for all $z \in \Delta$. Upon choosing the values of z on positive real axis and such that $0 \le z = r < 1$ we must have

$$((m-\alpha) - le \sum_{n=2}^{\infty} \frac{n+m-1}{m} (n+m-\alpha-1) |a_{n+m-1}| r^{n-1} - \sum_{n=1}^{\infty} \frac{n+m-1}{m} (n+m+\alpha-1) |b_{n+m-1}| r^{n-1}) /$$

$$/(1- \leq \sum_{n=2}^{\infty} \frac{n+m-1}{m} |a_{n+m-1}| r^{n-1} + \sum_{n=1}^{\infty} \frac{n+m-1}{m} |b_{n+m-1}| r^{n-1}) \geq 0.$$

If the condition (7) does not hold then the numerator in (2) is negative for r sufficiently close to 1. Thus there exists $r_0 \in (0,1)$ for which the quotient in (2) is negative, and we arrive at a contradiction. \square

Next theorem shows that class $TK_H(m,\alpha)$ is closed under forming convex combinations.

THEOREM 3. If
$$f_i(z) \in TK_H(m,\alpha)$$
 for $i = 1, 2, ...,$ and if $\sum_{i=1}^{\infty} \lambda_i = 1$, $0 \le \lambda_i \le 1$, then $g(z) = \sum_{i=1}^{\infty} \lambda_i f_i(z)$ is a member of the class $TK_H(m,\alpha)$.

Proof. Since

$$f_i(z) = z^m - \sum_{n=2}^{\infty} |a_{n+m-1}^i| z^{n+m-1} - \sum_{n=1}^{\infty} |b_{n+m-1}^i| \overline{z^{n+m-1}} \in TK_H(m, \alpha).$$

Theorem 2 shows that for each $i \in \mathbb{N}$ we have

$$\sum_{n=2}^{\infty} \frac{n+m-1}{m} \left[\frac{n+m-\alpha-1}{m-\alpha} |a_{n+m-1}^i| + \frac{n+m+\alpha-1}{m-\alpha} |b_{n+m-1}^i| \right] \le 2.$$
 (8)

For $\sum_{n=1}^{\infty} \lambda_i = 1$, $0 \le \lambda_i \le 1$, the convex combination $g(z) = \sum_{i=1}^{\infty} \lambda_i f_i(z)$ is of the form

$$g(z) = z^m - \sum_{n=2}^{\infty} (\sum_{i=1}^{\infty} \lambda_i |a_{n+m-1}^i|) z^{n+m-1} - \sum_{n=1}^{\infty} (\sum_{i=1}^{\infty} \lambda_i |b_{n+m-1}^i|) \overline{z^{n+m-1}}.$$

We check at once that

$$\sum_{n=2}^{\infty} \frac{n+m-1}{m} \left[\frac{n+m-\alpha-1}{m-\alpha} \left(\sum_{i=1}^{\infty} \lambda_i |a_{n+m-1}^i| \right) + \frac{n+m+\alpha-1}{m-\alpha} \left(\sum_{i=1}^{\infty} \lambda_i |b_{n+m-1}^i| \right) \right] \le 1,$$

which is clear from (8). Theorem 2 implies that $g(z) \in TK_H(m, \alpha)$. \square

§ 3. Distortion bounds and extreme points

We now give the distortion bounds for functions in $TK_H(m,\alpha)$, which yield a covering result for this class.

THEOREM 4. If $f \in TK_H(m, \alpha)$, then

(i)
$$|f(z)| \le (1 + |b_m|)r^m + \frac{m(m-\alpha) - m(m+\alpha)|b_m|}{(m+1)(m-\alpha+1)}r^{m+1}$$

and

(ii)
$$|f(z)| \ge (1 - |b_m|)r^m - \frac{m(m-\alpha) - m(m+\alpha)|b_m|}{(m+1)(m-\alpha+1)}r^{m+1}$$
,

where |z| = r < 1.

Equalities are rendered by the function

$$f(z) = z^m - |b_m| \, \overline{z^m} + \frac{m(m-\alpha) - m(m+\alpha) \, |b_m|}{(m+1)(m-\alpha+1)} z^{m+1}$$

and its rotations.

Proof.

We shall justify the (i) right hand inequality only. For |z| = r, we have

$$|f(z)| = \left| z^m - \sum_{n=2}^{\infty} |a_{n+m-1}| \, z^{n+m-1} + \sum_{n=1}^{\infty} |b_{n+m-1}| \, \overline{z^{n+m-1}} \right| \le$$

$$\le r^m + \sum_{n=2}^{\infty} |a_{n+m-1}| \, r^{n+m-1} + \sum_{n=1}^{\infty} |b_{n+m-1}| \, r^{n+m-1} =$$

$$= (1 + |b_{n+m-1}|)r^m + \sum_{n=2}^{\infty} (|a_{n+m-1}| + |b_{n+m-1}|)r^{n+m-1} \le$$

$$\le (1 + |b_{n+m-1}|)r^m + \sum_{n=2}^{\infty} (|a_{n+m-1}| + |b_{n+m-1}|)r^{m+1}.$$

Theorem 1 now shows that

$$\begin{split} & m(m-\alpha) + m(m+\alpha) \, |b_m| + (m+1)(m-\alpha+1) \sum_{n=2}^{\infty} (|a_{n+m-1}| + |b_{n+m-1}|) \leq \\ & \leq \sum_{n=1}^{\infty} (n+m-1) \left[\, |a_{n+m-1}| \, (n+m-\alpha-1) + |b_{n+m-1}| \, (n+m+\alpha-1) \right] \leq \\ & \leq 2m(m-\alpha), \end{split}$$

and hence

$$\sum_{n=2}^{\infty} (|a_{n+m-1}| + |b_{n+m-1}|) \le \frac{m(m-\alpha) - m(m+\alpha)|b_m|}{(m+1)(m-\alpha+1)},$$

which establishes the formula. \square

REMARK. Bounds given in Theorem 4 also are valid for $f \in K_H(m, \alpha)$ if the coefficient condition (5) is satisfied.

Letting $r \to 1^-$ in the left hand inequality in Theorem 4 we obtain a covering result for the class $TK_H(m, \alpha)$.

COROLARY. If $f \in TK_H(m, \alpha)$, then

$$\left\{ w : |w| < \frac{2m - \alpha + 1 - |b_m| (2m + 1)(1 - \alpha)}{(m + 1)(m - \alpha + 1)} \right\} \subset f(\Delta).$$

In particular, if $f \in TK_H(m,0) = TK_H$ then $\left\{w: |w| < \frac{2m+1}{(m+1)^2}(1-|b_m|)\right\} \subset f(\Delta)$.

For any compact family, the maximum or minimum of the real part of any continuous linear functional occurs at one of the extreme points of the closed convex hull. Since $TK_H(m,\alpha)$ is a convex family, we will use the necessary and sufficient condition of Theorem 2 to determine the extreme points.

Theorem 5. Let

$$h_m(z) = z^m, \ h(z)_{n+m-1}(z) = z^m - \frac{m(m-\alpha)}{(n+m-1)(n+m-\alpha-1)} z^{n+m-1},$$

n = 2, 3, ... and

$$g_{n+m-1}(z) = z^m - \frac{m(m-\alpha)}{(n+m-1)(n+m+\alpha-1)} \overline{z^{n+m-1}}, \ n=1,2,\dots$$

Then $f = h + \overline{g} \in TK_H(m, \alpha)$ if and only if it can be expressed in the form

$$f(z) = \sum_{n=1}^{\infty} \left[\lambda_{n+m-1} h_{n+m-1}(z) + \mu_{n+m-1} g_{n+m-1}(z) \right],$$

where
$$\lambda_{n+m-1} \ge 0$$
, $\mu_{n+m-1} \ge 0$ and $\sum_{n=1}^{\infty} (\lambda_{n+m-1} + \mu_{n+m-1}) = 1$.

In particular, the extreme points of $TK_H(m, \alpha)$ are $\{h_{n+m-1}(z)\}$ and $\{g_{n+m-1}(z)\}$.

PROOF. Suppose that

$$f(z) = \sum_{n=1}^{\infty} \left[\lambda_{n+m-1} h_{n+m-1}(z) + \mu_{n+m-1} g_{n+m-1}(z) \right] =$$

$$= z^m - \sum_{n=2}^{\infty} \frac{m(m-\alpha)}{(n+m-1)(n+m-\alpha-1)} \lambda_{n+m-1} z^{n+m-1} -$$

$$- \sum_{n=1}^{\infty} \frac{m(m-\alpha)}{(n+m-1)(m+n+\alpha-1)} \mu_{n+m-1} \overline{z^{n+m-1}}.$$

Then

$$\sum_{n=1}^{\infty} \frac{n+m-1}{m} \left[\frac{n+m-\alpha-1}{m-\alpha} \left(\frac{m(m-\alpha)}{n+m-\alpha-1} \lambda_{n+m-1} \right) + \frac{n+m+\alpha-1}{m-\alpha} \left(\frac{m(m-\alpha)}{(n+m-1)(n+m+\alpha-1)} \mu_{n+m-1} \right) \right] \le 2,$$

and by Theorem 2 $f \in TK_H(m, \alpha)$. Conversely, if

$$f = z^m - \sum_{n=2}^{\infty} |a_{n+m-1}| z^{n+m-1} - \sum_{n=1}^{\infty} |b_{n+m-1}| z^{n+m-1} \in TK_H(m, \alpha),$$

then by Theorem 2 we have

$$|a_{n+m-1}| \le \frac{m(m-\alpha)}{(n+m-1)(n+m-\alpha-1)}$$
 and $|b_{n+m-1}| \le \frac{m(m-\alpha)}{(n+m-1)(n+m+\alpha-1)}$.

Consider

$$\begin{split} \lambda_{n+m-1} &= \frac{(n+m-1)(n+m-\alpha-1)}{m(m-\alpha)} \left| a_{n+m-1} \right|, \; n=2,3,..., \\ \mu_{n+m-1} &= \frac{(n+m-1)(n+m+\alpha-1)}{m(m-\alpha)} \left| b_{n+m-1} \right|, \; n=1,2,..., \\ \lambda_m &= 1 - \sum_{n=0}^{\infty} (\lambda_{n+m-1} + \mu_{n+m-1}). \end{split}$$

Then we obtain
$$f(z) = \sum_{n=1}^{\infty} \left[\lambda_{n+m-1} h_{n+m-1}(z) + \mu_{n+m-1} g_{n+m-1}(z) \right]$$
, as required. \square

REMARK. If the co-analytic part of $f = h + \overline{g} \in S_H^*(m, \alpha)$ is is zero, i.e. the function g(z) is identically zero, then we have analogous properties of m-valent analytic convex functions of order α in the unit disk.

References

- [1] Clunie J. and Sheil-Small T. *Harmonic univalent functions*// Ann. Acad. Sci. Fenn Ser. A.I Math. 1984. V. 9. P. 3–25.
- [2] Duren P.L., Hengartner W., Laugesen R.S. The Argument principle for harmonic functions // Amer. Math. Monthly. 1996. V. 103. № 5. P. 411–415.
- [3] Jahangiri J. Coefficient bounds and univalence criteria for harmonic functions with negative coefficients// Ann. Univ. Mariae Curie-Skłodowska. Sect. A. 1998. V. 52. P. 57–66.
- [4] Sheil-Small T. Constants for planar harmonic mappings// J. London Math. Soc. 1990. V. 42. № 2. P. 237–248.

Instytut Matematyki UMCS, 20-031 Lublin, Poland

E-mail: aganczar@golem.umcs.lublin.pl