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OPTIMAL CONTROL PROBLEM OF SOME
DIFFERENTIAL INCLUSION AND APPROXIMATIO N

A. DEBINSKA-NAGORSKA, A. JUST, Z. STEMPIEN, K. WozNICA

In this paper we present the optimal control problem governed
by a variational inclusion with the monotone operator and a quadrat-
ic costfunctional. We apply standart Galerkin method to the ap-
proximation of the problem. After giving some results on the exis-
tance of optimal control we shall prove the existance of weak con-
densation points of a set of solution of approximate problems. Each
of these points is a solution of the initial optimization problem. Fi-
nally we shall give a simple example using the obtaned results.

§ 1. Introduction

The problems connected with inclusions were considered by many au-
thors. The recent results were published by [2, 5, 9] and others. The recent
results concerning optimal control for systems governed by the inclusions
were published by [1, 7, 11].

We consider the optimal control problem governed by a second order
differential inclusion with a linear continuous operator and a nonlinear
multivalued maximal monotone operator. We apply standard Galerkin
technique (see [4, 6]) and provide a convergence analysis.

The main result of our paper is the theorem proving the convergence of
optimal values for approximated control problems to those of the original
problem.

IPart of this work has been presented at the International Congress of Mathemati-
cians held at Beijing in August 2002, thanks to a grant awerded from the Faculty of
Technical Physics, Computer Sciences and Applied Mathematics of Technical Univer-
sity of Lédz.
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Let V, H be two real Hilbert spaces such that V' C H and the inclusion
mapping of V into H is continuous and compact. V* denotes the dual
space of V and H is identified with its own dual H* (see [2, 13]).

We shall consider the following nonlinear second order differential in-
clusion

y" (t) + Ay(t) + dp(y'(t)) > Bu(t), forte (0,T) (1)
with the initial conditions
y(0) =yo and y'(0) =y (2)

where y' denotes the generalised derivative on the interval (0,T) of the
function y:[0,7] = V and 0 < T < oo ([8, 13]).
We assume that:

(i) The operator A : V. — V* is a linear continuous symmetric and
coercive operator i.e. there existes a positive constant a such that
(Av,v) > al|v||} ¥ v € V where (-,-) denotes the duality relation
between the adequate spaces (see [2]).

(ii) d¢ is the subdifferential of a lower-semicontinuous proper convex
function ¢ : V.— R U {00} and 0 € 9p(0) (see [2, 13]).

(iii) The operator B : U — V* is a linear continuous operator and U is
a Hilbert space.

(iv) The function f : [0,7] > t — f(t) = Bu(t) is of the class W'2(0,T; H)
(see [2]), yo €V, ¢(y1) < oo and {Ayo + dp(y1)} N H # 0.

The differential inclusion (1) is equivalent to the next variational in-
equality (see [2])

(y"(t) + Ay(t) — Bu(t),z —y'(t)) = ¢(y'(t)) — ¢(2) 3)
ae. t€(0,T)andVz eV

where (-,-) denotes the duality relation between the adequate spaces
[8].
THEOREM 1. Let the assumptions (i) — (iv) be satisfied. Then there ex-
ists a unique solution y of the problem (1) — (2) such that: y € C([0,T]; V),
y' € C([0,T]; HYNL>=(0,T;V), y" € L*>(0,T; H) (see [2]).

Let F' denote the operator F': L2(0,T;U) — L?(0,T;V) x L?(0,T; H)
such that F'(u) = (y,y'), where y is the solution of (1) — (2).
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LEMMA 1. If the assumptions (i) — (iv) are satisfied then the operator
F' is the Lipschitz map. Moreover, the operator F' is weakly continuous
map.

PROOF. In the first part of the proof we shall present Lipschitz continuity
of the operator F. Let F(u) = (y,y') and F(u) = (y,7¥') for u,u € U.
Using the monotonicity of the subdifferential d¢ in (1) we obtain

(Bu(t) —y"(t) — Ay(¢) — Bu(t) + 7" () + Ag(t),y' (1) = 7' ()) > 0
and using linearity of the operators A and B we have

(" (@) —y"(),y'(®) =¥ (1) + (Aly(®) —¥(1),y() =¥ (1)) <
< (Bu(t) —u(®),y'(t) —¥'(1)

Hence

| =

(ly'®) =7 @®I) + (Ay(®) = 7).y (&) = 7' (1)) <
< (B(u(t) —u(t),y'(t) —7'(1))-

By integration (4) over an arbitrary interval [0,¢] C [0,7] with the as-
sumptions (i) — (iv), and with 2ab < 1a® + ¢b® for ¢ > 0 and a,b € R
(applying Schwartz’s inequality) we have

Iy (&) =7 Ol + elly(®) = 7O <

<a (/Ot lu(s) —u(s)l[ids + /Ot lly'(s) — ?’(S)Ilizd«S) ()

N | =
U

t (4)

for certain ¢; > 0 and a.a. t € [0,T]. From (5) by Gronwall’s inequality
(see [8]) we obtain

T
Iy () =7 W17 + lly(®) —T@I < 62/0 llu(s) —a(s)llgds — (6)

for certain ¢y > 0. Inequality (6) implies that the operator F' is Lipschitz
map. Thus we have proved the first part of the Lemma. Let a sequence
(un) satisfy the following condition

un, =T weaklyin L2(0,T;U) (7)
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and y,, satisfy differential inclusion (1) with u = u,, i.e

Yn(t) + Ayn(t) + 0p(y,, (1)) > Bun(t) (8)

and initial conditions (2) i.e.

Yn(0) = vo, y,(0) =yi. 9)

From the Theorem 1 we know that the problem (8) — (9) has exactly one
solution y, for n € N. From the assumption of Lemma and from the first
part of the proof we obtain

lyn Ol + Iy O < cllunllZaoro) (10)

for certain ¢ > 0 and a.a. t € (0,7). Further from (8) we infer that
the subsequence (y) is bounded in L?(0,T; H) too. From the assump-
tion (7) and (10) follows that there exists a subsequence, which we also
denote (y,,), converging weakly to an element 7 in L?(0,7; V') and respec-
tively its subsequence (y!,) converges weakly to i’ in L2(0,7; H) and also
subsequence (y!!) converges weakly to "' in

L2(0,T; H). This implies that the operator F is weakly continuous map
by the demiclosedness of dp and by the unique solution of the problem

(1) -(2).0
§ 2. Optimal Control Problem

Let there be given a space of controls L2?(0,T;U) and elements
ydvy:l € L2(07T7H)

The optimal control problem (P) can be stated as follows [3, 10]: find
a control u® € L2(0,T;U) which minimizes the integral functional

Iy w) = My 1y () = yallfydi+
T T
X2 fo ly'(®) —wallfdt + [y llu@)lpde,
where y = y(u) is a solution of (1) - (2) for w € L?(0,T;U) and A1, A2 > 0
and A} + 23 > 0.

We put ®(u) = J(y(u),u). Using the definition of an optimal control
u® we obtain that ®(u®) = inf,er2(0,7,0) ®(u).

(11)

THEOREM 2. Let the assumptions (i) — (iv) be satisfied. Then the opti-
mal control problem (P) has at least one optimal solution u® € L?(0,T;U).
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The proof of this Theorem is standard by applying a minimizing se-
quence for the functional J because the functional (11) is weakly lower-
semicontinuous in L2(0,7; H) x L*(0,T;U).

§ 3. Approximation of the Control Problem

Let denote the approximate family of all finite-dimensional subspaces
of the original space V i.e. W € implies W C V, dimW < oo and
Uwe W = V. The family approximates the space H too. The approx-
imation of space L?(0,7;V) is here understood as the family of spaces
{L2(0, T3 W)} (see [13]).

As an approximation of the control space U we assume a family of all
finite-dimensional subspaces of the original space U i.e. Y CU, dimY < oo
and Jy Y =U.

We shall study the following approximated optimal problem (Pyw):
find a control u$y, € L?(0,T;Y) which minimizes the cost functional

T
Bluy) = Twur) = [ low(®) ~ vawlFyds + (12)
0
T T
o [ i) =i e+ [ e 0
where yw = yw (uy) is the solution of the inclusion
yw (t) + Ayw (t) + 0p(yy (1)) > Buy(t), forte (0,7)  (13)
with the initial conditions
yw(0) =yow and yu (0) = 1w (14)

where yow and y;w are the orthogonal projections of yo and y; onto W,
yaw and ylyy, are the orthogonal projections of yq and y/; onto L?(0,T; W)
with the norm from the space L?(0,7; H).

THEOREM 3. Under the assumption from Theorem 2 the optimal control
problem (Pyw) has at least one optimal solution u$y; .

The proof of this theorem can be made in the same way as the proof
of Theorem 2 because the inclusion (13) with the initial conditions (14)
has the unique solution yw = yw (uy).

From Lemma 1 we have the following corollary



Optimal control problem of some differential inclusion 19

LEMMA 2. Let (uy) be a sequence of elements in L?(0,T;Y) and (yw)
be a sequence of solutions of (13) — (14). If the assumptions of Lemma 1
are satisfied then the following conditions hold:

(a) Ifuy —u weakly in L?>(0,T;U) for dim W — oo then yw — y weakly
in L*(0,T;V) and yw — ¥ strongly in L*(0,T; H) and ypy =7
weakly in L?(0,T; H) for dimY — oo and dim W — oc.

(b) If uy — u strongly in L*(0,T;U) for dimY — oo then yw —
y strongly in L?(0,T;V) and yj;, — y strongly in L?(0,T; H) for
dimY — oo and dim W — oo.

The proof of parts (a) and (b) follows immediately from Lemma 1.
Let us now consider the problem of convergence of the approximation.

THEOREM 4. Let the assumptions of (i) — (iv) be satisfied. Then there
exist weak condensation points of a set of solutions of the optimal problems
(Pyw) in L?(0,T; H) x L*(0,T; U) and each of these points is the solution
of the optimal problem (P).

PROOF. The sequence (u} ) is a minimizing sequence for functional (12).
According to the approximation of the space U for u° (solution of prob-
lem (P)) there exists a sequence (uy) such that wy — u° strongly in
L?(0,T;U) for dimY — oo and (from Lemma 2) 3y, = yw (Uy) — y° =
y(u®), Ty — y° strongly in L2(0,T; H) for dimY — oo and dim W — oo
where Ty is a solution of the problem (13) — (14) for uy = Uy . Since

: _ 0,0 0 0 — —
ueL;{})f’T;U) (u) =J(y",u’) < J(yw,uyw) < JGw,Uy)

where y9, = yw(u%y,) is the solution of the problem (13) — (14)
for uy = U%W. Then because the functional J is continuous on
L2(0,T; H) x L*(0,T;U) we have

lim J (g, uyw) = J(y°, )

for dimY — oo and dim W — oo. The functional .J is coercive, therefore
the sequence (u% ;) is bounded in L?(0,T;U). It follows that there exists
a subsequence which we also denote (u$y;,) such that u$;, — @ weakly in
L?(0,T;U) for dimY — oo and dim W — oco. Then Lemma 2 implies that
v = yw (W) =7, Yy (uy — §' weakly in L2(0,T; H) for dimY —
oo and dim W — oo where § is a solution of the problem (1) — (2) for
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u = 4. The functional J is weakly lower-semicontinuous on L?(0,T'; H) x
L?(0,T;U). Then we have

AN @) = lim () = liminf T (4fy, uy) 2 (5.

for dimY — oo and dim W — oo. This implies that @ is one of the

solutions of the optimal control problem (P). O

Example. We denote V = H}(Q2) and H = L?(Q) where Q C" is
an open bounded set with a sufficiently regular boundary I" (see [8]) and
Q=Qx(0,7).

We shall consider the following control problem:

T T
minimize J(y, u) =/ ||3/(t)||%2(9)dt+/ H“(t)“%z(ﬂ)dt
0 0
subject to

0%y(t, ) B Z 0%y(t, ) + Oy (%) Su(t,z) ae. Q,

ot? — z?
o ay(o, (15)
y(0,7) = yo(z), % =yi(z) ae. Q,

X(By(t,a:)) o for 22 e,
ot +oo for %eﬂo( )\ C.

The set C is any nonempty convex closed subset of H3(£2), yo € H}(Q)N
H?(Q) and y; € C. We assume that u € L?(Q). From Theorem 1 there
exists a unique solution of the equation (15) y € C([0,T]; H} () and
g—"t’ € L>=(0,T; H}(2))NC(]0,T]; L*(R2)). Using the notations from Section
3 we transform the problem (15) to the system of differential inclusions
[7]:

Pyw(t,x " 92 wlt,z Oyw (t, x

with the initial conditions

yw(0) =yow and yy(0) = y1w
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where yow and yiw are the orthogonal projections of yo(z) and y;(z)
onto W.

The above system of differential inclusions is equivalent to the next
systems described by functional differential inequalities

2 2
2 yév,vtgt,w) _ Z?:1 9 yau;(zt,w) —uy (t, ), 2w (z) — ayvg(tt,w)>

> (2582 — x(ew (7)) Vew €W
with the initial conditions
yw(0) =yow and yy(0) =y1w.

Now, we can study the following optimal approximated problem: find a
control u%y;; € Y which minimizes a cost functional

Jyw.uy) = lywll2eq) + luyli3eq)-

The above example may be compared with the study of the vibrating
string with an obstacle (see [12]).
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