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ON SOME HARMONIC FUNCTIONS RELATED
TO HOLOMORPHIC FUNCTIONS
WITH A POSITIVE REAL PART

7. J. JAKUBOWSKI, A. LAZINSKA

In the paper we examine some holomorphic functions and com-
plex harmonic functions, which satisfy certain conditions of a Mo-
canu kind. We also consider their relations with appropriate coeffi-
cient conditions. The paper is a natural supplement to the results
published in [1] and [2].

A. Let us first consider functions f holomorphic in the unit disc A =
= {z € C: |z| < 1} and such that f(0) = f'(0) —1 =0, i. e. functions of
the form

+oo
f)=2z+) anz", an€C, n=23,. ... (1)
n=2

For a fixed number a € (0,1) by J(a) we denote the class of all functions
f of the form (1) satisfying the condition

Re {a@ +(1- a)f'(z)} >0, z €A. (2)

REMARK 1. Some properties of the class J(«), a € (0, 1), were examined
in 1977 by P. N. Chichra [2]. In 1915 J. W. Alexander [3] proved that
J(0) is a class of univalent functions (see also the Noshiro — Warszawski
lemma, 1935). The class J(0) was examined by T. H. MacGregor [4] and
others as well.
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Observe that the identity function belongs to every class J(a),
a €(0,1).
Directly from the definition of the class J(a), a € (0,1}, we get

PROPOSITION 1. Let o € {0,1). If f € J(«) then functions
2 f(rz), z e f(e'z), zeA, re(0,1), teR,

also belong to J(c).

Let p denote the known class of Carathéodory functions with a positive
real part, i. e. the functions p holomorphic in A such that p(0) = 1 and
Re p(z) >0, z € A.

From the definitions of the classes p, J(a), @ € (0, 1), we immediately
obtain

PROPOSITION 2. Let o € (0,1). If f € J(a), then the function p of the

form
6
z

p(z) = +(1-a)f'(2), z€A, 3)

belongs to the class . Conversely, if p € p, then the function f of the
form (1), which is a solution of the equation (3), belongs to J(c).

EXAMPLE 1. Let k € N, k > 2, « € (0,1). Consider the functions f(z, k)
of the form

1
= k < A.
f(z,k) = z + ap2", 0<ak_a+(1—a)k’ z € (4)

It is easy to check that every function f(z,k) of the form (4) belongs to
J(a).
We shall prove the next theorem.

THEOREM 1. Let a € (0,1). If a holomorphic function f of the form (1)
satisfies the condition

“+oo

Yo (a+ (1 -am)la,| <1, (5)

n=2

then f € J(a).
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PROOF. Assume that for @ € (0,1) a function f of the form (1) satis-
fies (5). It suffices to show that ‘a@ +(1-a)f'(z) - 1‘ <1, zeA
By (1) and (5) we obtain

“+ oo

a@ +(1-a)f'(z) - 1‘ = Z (a4 (1 —a)n)a,z" | <
+oo
< Z (a+(1—a)n)la,||z" "t <1, z€A,

hence f € J(a). O

REMARK 2. Every function of the form (4) satisfies the condition (5), of
course.

Let F denote the class of functions of the form (1) such that
lan| <1, n=23,....

It is clear that the known class S°¢ of convex functions is a subclass of F.
Theorem 1 and the definition of F imply

COROLARY 1. If 9(2) = 2z + 35 ¢.2™, 2z € A, is a function of the
class F and f of the form (1) sat1sﬁes the condition (5) for a € {0,1),
then the Hadamard product

(f *)(z —Z+Zancnz, z € A,

belongs to J(a).
EXAMPLE 2. Fix a € (0,1) and denote (see [2])

22"
Z)—Z+T;2m, z € A. (6)

The function fo of the form (6) is holomorphic in A and it is suitably
normalized. Moreover, for any z € A we have

eafoi) +(1- )fo(z]z (1—!—222): 1+j>0,
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which gives fo € J(a). However, we observe that fo of the form (6) does
not satisfy (5).

It appears that with some additional assumptions the condition (5)
is not only sufficient but also necessary for a function to belong to J(«).

Let J~(a), @ € (0,1), denote the class of functions f € J(a) which
are of the form

+oo
fE=e= Y lal",  zen, 7)
n=2

(see [5], [6]). We have

THEOREM 2. Let a € {0,1). A holomorphic function f of the form (7)
belongs to the class J~(a) if and only if it satisfies (5).

PROOF. If f of the form (7) belongs to J~(a), @ € {0,1), then for any
z € (0,1) we have

+oo
0 <Re a@ +(1- a)f'(m)] =1- Z (a+ (1 —a)n) |a,|z" .

n=2

Therefore we obtain (5).
The converse statement follows from Theorem 1. O

COROLARY 2. Let a € (0,1). If f € J~(a) and
+oo
o(z) =z+2|cn|z", z €A,
n=2

is a function of F, then f x ¢ € J~(a).

It is known [7] that if a holomorphic function f of the form (1) satisfies

the condition
“+oo

> nlan| <1, (8)
n=2
then f is univalent and starlike in A.
Denote A, = {z € C:|z| < r} for r > 0, with A; = A. In the paper
[2] we can find the theorem on the disc where all functions of the class
J(a), a € {(0,1), are univalent. The radius of this disc is a solution of an
equation. It appears that in the class of functions satisfying (5) we have
the next theorem.
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THEOREM 3. Let a € (0,1) and r. =1 — 5. If a function f of the form
(1) satisfies the condition (5), then it is univalent and starlike in A,.,. The
constant 1 — 5 is the best possible.

PRrROOF. The proof is based on Proposition 1, Theorem 1, the known
inequality [1]

nr"_lga—i—(l—oz)n, a€(0,1), re(0rs), n=23,...,

and the condition (8).
The result is sharp because the function f. of the form

22

A
2—a’ ZE€5

fez) = 2z -

satisfies the condition (5) and f,(1 - §) =0.0

B. Let us next consider complex functions harmonic in the disc A
of the form

+oo “+oo
f=h+7, hz)=z2+Y anz", g(z)=> buz", z€A. (9
n=2 n=2

If f is a function of the form (9), then F' = h+ g is a function holomorphic
in A and F(0) = F'(0) — 1 = 0.

For an arbitrarily fixed a € (0,1) by Jg(a) we denote the class of
functions f of the form (9) and such that the function F' = h + g belongs
to J(a). It means that the function f of the form (9) belongs to the class
Ju(a), a € (0,1), if and only if

Re [0 2198 (0w 1o >0 zeas o)

Obviously, J(a) C Jg(a), a € (0,1).
According to the definition of the class Jy(a), a € (0,1), and Theo-
rem 1 we obtain the theorem.

THEOREM 4. Let a € {0,1). If a harmonic function f of the form (9)
satisfies the condition

+oo
> (a+ (1= a)n) (jan] + b)) < 1, (11)
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then f € Ju(a).
Let Fy stand for the class of functions x = ¢ + 1, where

+oo +o0
p(z) =2+ 2", P(z) =D dnz",  zEA,
n=2 n=2

and |e,| <1, |dn| <1,n=2,3,...
From the definition of the class Fz and by Theorem 4 we obtain:

COROLARY 3. If x = ¢ +1 € Fy and f of the form (9) satisfies the
condition (11), then the Hadamard product of harmonic functions

(f*x)(2) =h*p+gxy

satisfies (10) and consequently belongs to the class Jg(«).

Denote by Jz (), a € (0,1), the class of functions f € Jg(a) which
are of the form

+o00 +oo
F=h+7, hz)=z2=) lau|2", g(z) == |balz", 2z€A. (12)
n=2 n=2

By the definition of J (), a € (0,1), and in view of Theorems 1, 2, 4
and the condition (11) we get the theorem.

THEOREM 5. Let a € (0,1). A harmonic function f of the form (12)
belongs to the class J; () if and only if it satisfies (11).

REMARK 3. We can consider harmonic functions x = ¢ + v, where

+o0 “+oo
o) =2+ lenlz”, (2) =) ldal",  z€A,
n=2 n=2

len| <1, |dn]| <1, n=2,3,... and their Hadamard products with functions
f of the form (12). Then we obtain a corollary analogous to Corollary 2.

In the paper [8] we can find the sufficient condition for harmonic func-
tions to be starlike. Applying this theorem, which generalizes the man-
tioned result of A. W. Goodman ([7]), we can prove the theorem.
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THEOREM 6. Let a € {0,1). If a harmonic function f of the form (9)
satisfies the condition (11), then f is univalent, sens-preserving and star-
like in every disc A,, where r € (0,7.), 7« =1 — 5. The constant 1 — §
is the best possible.

Theorems 2, 3, 5, 6 imply
COROLARY 4. The univalence and starlikeness radius for the classes
J (@), Jg(a), @« €(0,1), is equal tor, =1 — 5.

We can show
LEMMA 1. Let o« € (0,1), I > 1. Then for any r € (0,%:2) and n =

2,3,... we have
et < a4 (1 - a)n.

The above inequality is a kind of generalization of the inequality (see
[1]) applied in the proof of Theorem 3 and follows from it.

Applying the known from [8] condition concerning convexity of har-
monic functions we get the theorem.

THEOREM 7. Let a € {0,1). If a harmonic function f of the form (9)
satisfies the condition (11), then for any r € (0,r.), r. = 2%, the set
f(A,) is a convex domain. The constant 2TT°‘ is the best possible.

Proor. Fix a € (0,1}, r € (0,r.) and assume that f of the form (9) sat-
isfies the condition (11). By Theorem 4 the function f belongs to Jg(a).
Consider the function f,.(z) = r~1f(rz), 2 € A. We have

400 400
fr(z) =2+ Z anr™ 12" + Z b,rn—1zn,  z € A.
n=2 n=2

Using Lemma 1 (for [ = 2) and (11) we obtain

+o0 too
Y2 (lanr™ H+ [bar™ 1) <Y (@ + (1= a)n) (|an| + ba]) = < 1.
n=2 n=2

Hence f(A,), r € (0,r.), is a convex domain (see [8]).

The constant 2;"‘ cannot be improved because of e. g. the mentioned
function f, € J~ (o) C Jg(a) C Ju(a). It follows from the known fact
that a holomorphic function of tht form z — z+az™ is convex in A if and
0n1yif|a|§#,n€N,n22.D
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Theorems 5 and 7 give:

COROLARY 5. The convexity radius for the classes J~ (c), Jg(a), a €

2—«

€ (0,1), is equal to r. = =3

From Proposition 2, the inequality (10) and the known coefficient es-
timates for functions of the class p we obtain

PROPOSITION 3. Let a € (0,1). If a function f of the form (9) belongs
to the class Jy (), then

2
n bn <
||(1 | | || =

_— =2,3,... 1
+(1_a)n7 n 737 (3)

The estimates (13) are sharp.

The sharpness of the estimates (13) we can observe, among others, for
the function f of the form (6), where a,, = m, b, =0,n=2,3,...

C. For a fixed a € (0,1) denote by K(«a) the class of holomorphic
functions f of the form (1) such that

Re[f'(z) + (1 —a)f"(2)] >0, z € A. (14)

The class K(a), a € (0,1), was partially examined in the paper [2].
The classes J(a), K(a), a € (0,1), are closely related by the following
theorem.

THEOREM A [2]. Let a € {0,1). If f € K(«), then the function ¢ of
the form ¢(z) = zf'(z), z € A, belongs to the class J(«). Conversely,

if ¢ € J(a), then the function f of the form f(z) = [; ﬂCQdC, z € A,
belongs to K (c).

By Theorems 1 and A we get the theorem.

THEOREM 8. If a holomorphic function f of the form (1) satisfies the con-
dition
+oo
Z (an+ (1 —a)n?) |a,| <1 (15)
n=2

for a fixed « € {0,1), then f € K(«).

REMARK 4. (i) We can also consider the Hadamard products of func-
tions f of the form (1) satisfying the condition (15) with functions
of the class F.
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(ii) The condition (15) is not necessary for a function f to belong to
the class K (o), a € (0,1). It follows from Example 2 and Theorem A.

Next denote by K~ (a), a € (0,1), the class of functions f of the
form (7) which belong to K(«). As in the class J ™ (a), a € € (0,1), we
obtain the theorem.

THEOREM 9. A holomorphic function f of the form (7) belongs to the
class K~ (a), a € {0,1), if and only if f satisfies the condition (15).

Let now Kg(a), a € (0,1), stand for the class of harmonic functions
of the form (9) (f = h+7) such that the holomorphic functions F' = h+g
belong to K (a). Moreover, K (a) denotes the subclass of Ky (o), o €
(0,1), of functions f of the form (12).

According to the above definition a function f of the form (9) belongs
to the class Ky (a), a € (0,1), if and only if

Re[h'(2) +4'(2) + (1 —a) (W'(2) + g"(2))] > 0, z € A. (16)

We see at ones that K(a) C Kg(a), a € (0,1).
From the definitions of the considered classes and by Theorem A we
obtain the theorem.

THEOREM 10. Let a € (0,1). If f € Kg(«a), then the function ¢ of
the form ¢p(z) = zh'(z) + 29'(2), z € A, belongs to the class Ju(a).
Conversely, if a function ¢ = H + G is in the class Jy(«), then the
function f of the form f(z) = foz ﬂCQdC + foz G—EQdC, z € A, belongs to
the class Kg(a).

Theorems 8, 9, 10 and the condition (16) give the following two theo-
rems.

THEOREM 11. If a harmonic function f of the form (9) satisfies the con-
dition

400

Z (an + (1 — a)n?) (lan| + |ba]) < 1 (17)

n=2

for a fixed « € (0,1), then f € Kg(a).

THEOREM 12. A harmonic function f of the form (12) belongs to the
class K (a), a € (0,1), if and only if f satisfies the condition (17).

REMARK 5. The class of harmonic functions of the form (9) and satisfy-
ing the condition (17) for a fixed « € (0, 1), was considered in the paper
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[1]. The class Kg(a), a € (0,1), is a certain generalization of this class.
By Remark 4(ii) we observe that these classes are not equal. It seems that
the above presented theorems form a natural supplement to the results
contained in the article [1].
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