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ON METRIC SPACE VALUED FUNCTIONS OF BOUNDED
ESSENTIAL VARIATION

M. BALCERZAK, M. MAf.OLEPSZY

Let # # T C R and let X be a metric space. For an ideal
J C P(T) and a function f:7T — X, we define the essential
variation V.2, (f,T) as the infimum of all variations V(g,T) where
9T — X, g=fonT\E, and E € J. We show that if X is
complete then the essential variation of f is equal to inf{V (f, T\ E) :
E € J}. This extends former theorems of that type. We list some
consequences that are analogues to the recent results by Chistyakov.
Some examples of different kinds of essential variation are also
investigated.

Introduction

Let T be a nonempty subset of the real line. Let J be an ideal of
subsets of T'; thus J is a nonempty hereditary and additive subfamily of
P(T) (the power set of T') with T" ¢ J. An ideal is usually interpreted as a
family of small sets that are negligible in the respective sense. Sometimes,
one assumes additionally that [ contains all singletons {t}, ¢t € T', or/and
it does not contain nonempty open sets in T If an ideal is o-additive, it is
called a o-ideal. The following families form well-known ideals on the real
line: finite sets, nowhere dense sets, countable sets, Lebesgue null sets, sets
of the first Baire category. The last three examples are o-ideals. (See [1].)
These examples may produce ideals on 7' C R by taking intersections of
their members with 7', provided that T is not too small (to ensure that
T¢J).

Let N = {1,2,...}. Fix a metric space X with a metric d, and let
) #T C R If z € R is a right (left) limit point of T then by f(z+),
f(z—) we denote the one-sided limits of a function f : T — X at =z,
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provided that they exist. By Lip(T, X) we denote the set of all Lipschitz
functions from T into X, and by L4(f,T) we denote the smallest Lipschitz
constant for f. A finite sequence 7 = {t;}I, such that to < ... < t, and
t; € T for i = 0,...,n is called a partition of T. The Jordan variation of
f:T — X is defined by

VULT) = sup { S d(f(t), fti-1))im € N}.

(See [2], [3], [4].) If V(f,T) < oo, we say that f is of bounded variation
and we write f € BV(T, X). Consider an ideal J C P(T'). The essential
variation of f : T — X with respect to J is defined as the following
quantity:

VI (f,T) = inf{V(g,T) : there are E € J
and ¢g:T — X such that g = f on T\ E}.

If VJ.(f, T) < oo, we say that f is a function of bounded essential
variation with respect to 7, and we write f € BV.Z (T, X).

Essential variation was considered before in [5], [6], [7], [8], [2] but only
for the ideal of Lebesgue null sets on the real line. In the present paper
we generalize a characterization of essential variation given in [7] and [2].
Namely, we show that V.7_(f,T) equals inf{V (f,T\E): E € J} (Theorem
2). We obtain several properties of functions from BV,7, analogous to
those proved in [2] (Theorem 3). We show how one can extend a function
from BV (T \ E, X) to a function defined on the whole T' with the same
variation (Theorem 1). A related result was given in [9] with another proof.
Our paper contains general facts and examples witnessing a significant
dependence of V.7 (f,T) on J.

Characterization of essential variation

We are going to prove that a metric space valued function of bounded
variation on a subset of a fixed nonempty set 7' C R can be extended to
a function on T with the same variation. A related result was obtained
earlier by Chistyakov and Rychlewicz [9, Theorem 1(a)]. In the proof given
in [9], the authors apply a structural theorem for functions of bounded
variation [4, Theorem 3.1], [2, Lemma 2.1]. Our proof is different and
seems more elementary.

We start with the following lemma.
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LemMMA 1. Let( # D C R, X be a complete metric space, f € BV (D, X)
and assume that t is a right-sided (left-sided) limit point of a set D. Then
there exists a right-sided (left-sided) limit of f at t.

A proof is quite similar to that in [3, Theorem 1.24(c)].

THEOREM 1. Let0 #T CR,ECT, 0 # E # T. Assume that f:T\
E — X and f € BV(T \ E,X) where X is a complete metric space.
Then there is a function h:T — X such that V(h,T) = V(f,T \ E) and
hlpwe = f-

PrOOF. Define h:T — X as follows. Let t € T. If t ¢ E we put h(t) =
f(t). Now let ¢t € E. In the case t € E and (T \ E) N (—oo,t) # 0 we
denote t* = sup((T \ E) N (—oo,t)). If this supremum is attained, we
put h(t) = f(t*), and otherwise let h(t) = f(t*—) (this limit exists by
Lemma 1). In the case (T'\ E) N (—oo,t) =0, from E # T it follows that
(T'\ E)N (t,00) # 0. Thus we denote ¢, = inf((T"\ E) N (¢,00)). If this
infimum is attained, we put h(t) = f(t.), and otherwise let h(t) = f(t.+)
(this limit exists by Lemma 1).

Since h|lp\g = f, we have V(f,T'\ E) < V(h,T). Now, we will show
the converse. For a partition 7 = {#;}72, of T" we denote S(h,7T) =
Sty d(h(t;), h(t;—1)). We will prove that for each partition T of T' there
is a partition 7" of T such that

S(h,T) <S50, T*) <V(f,T\E)

which yields the assertion.
So, let T = {t;}", be a given partition of T. We modify 7 in four
steps:

1) If to € E and (T'\ E) N (—o0,t) # 0, we insert a point from (T \
E) N (—oc,tg) to the partition.

2) If t,, € E and (T \ E) N (tyn,00) # B, we insert a point from (7" \
E) N (ty,00) to the partition.

3) For every pair t;,t;41 € E, if (t;,t;41) N (T \ E) # 0, we insert a
point from (t;,t;41) N (T \ E) to the partition.

4) We look for all maximal strings t;,t;41, ..., tits With [¢;,t.46] N T C
E. (Since E # T, by our modifications 1), 2), 3) it is impossible
that the whole partition is such a string.) Thus A is constant on
[ti,titr] NT. We delete points t;y1, ..., t;+t from the partition. This
does not change S(h,T).



6 M. Balcerzak, M. Malolepszy

Denote the modified partition by 7*. The operation described in 1), 2),
3) can only enlarge S(h,T), so we have S(h,T) < S(h,T*). In partition
T*, at least one of any two consecutive points belongs to T'\ E. For
simplicity assume that 7* = {t;}!*,. By 1), 2) we have ensured that
to,tm € T\ E, if it is possible.

Now fix i € {0,...,m}. Consider three cases:
Case 1. 2 <i<mand t;o € T\E, t;_1 € E, t; e T\ E. If (T\
E)N(—o00,t;_1) has a maximal element ¢7_,, then ¢;_5 <t ; <t;_; and
Ah(ti2), h(ti1)+d(h(ti1), h)) = d(F(Ei2), S () +A(F (), £(1).

If (T\ E)N(—o0,t;—1) has no maximal element, we set t;_, = sup(T"\
E)N(—o00,t;—1). Of course t;_» < tj | < t;—1. Pick a sequence {t; ; , }72;
of numbers from (T'\ E) N (—oc,#;—1) such that lim, ot ; ,, =7 ;. We
have

A((ti-2), h(ti-)) + d(h(ti1), h(t:)) =
= d(f(ti2), h{ti1)) + d(h(ti 1), f(t:)) =
= T [d(f(ts2), F(10)) + A1), (1) <
< V(£ it N (T \ B)).

The last equality results from Lemma 1.

Case 2. Let to € E, t; € T\ E. If (T \ E) N (tp,00) has a minimal
element to*, then to < to* S t1 and d(h(to),h(tl)) = d(f(to*),f(tl)) If
(T'\ E)N(ty, o0) has no minimal element, we set tg. = inf(7T"\ E) N (tg, o0)
and of course ty < to. < t1. Pick a sequence {tp4,,}52; of numbers from
(T'\ E) N (to, 00) such that lim,_,o; tos,, = tox. We have

d(h(to), h(t1)) = d(h(to), f(t1)) =
= lim d(f(tox,n), f(t1)) <

<V(f[to, t1] N (T'\ E)).

The last equality results from Lemma 1.

Case 3. Let t,, 1 € T\ E, t,, € E. If (T\ E) N (—00,t,,) has a
maximal element t¥,, then ¢, 1 < t*, < t,, and d(h(t;n—1),h(tn)) =
d(f(tm—-1), f(t5,)). If (T'\ E) N (—00,t,) has no maximal element, we set
t¥ =sup(T\ E) N (—o00,ty). Of course t,, 1 < t¥, < t,. Pick a sequence
{th ntpey of numbers from (T \ E) N (—oo0,t,,) with lim, . £, ,, = t5,.
We have

d(h(tm—1), h(tm)) = d(f(tm-1), h(tm)) =
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= Tt d(F(bnon), f(Eh0) <
<V(f,[tmts ] O (T \ B)).

The last equality results from Lemma 1.
Taking into account cases 1), 2), 3), by adding the respective sides of
inequalities we obtain

S(h, T7) S V(S [to; tm] OV (T'\ E)) < V(f, T\ E).

The theorem has been proved. O

Now we are ready to prove our main result, a characterization of
essential variation. In the case when T' = [a,b], X = R, and J is the
family of all Lebesgue null sets in T', this theorem was proved by Bana$
and El-Sayed in [7]. If T is a density-open subset of R and J is a family
of all Lebesgue null sets in 7T, and X is a complete metric space and
f € BV (T, X), the result was obtained by Chistyakov in [2]. In our
paper we consider a more general situation where essential variation is
associated with an arbitrary ideal of subsets of a given nonempty set T

on the real line.

THEOREM 2. Let X be a complete metric space and ) # T C R and let
J be a proper ideal of subsets of T'. Then for every function f:T — X we
have

VIL(f, 1) =if{V(f, T\ E): E € J}.

Proor. (Compare with [2, Theorem 2.1].). Denote v = inf{V(f,T \ E) :
EecJ} If v=o0,then V(f,T\ E) = oo for all E € J. Hence for each
function g: T — X such that f|r\ g = gl g with E € J, we have

Vig,T) 2V(g, T\ E)=V(f, T\ E) =

Thus V.7 (f,T) = co. Now assume that v < oc. For a fixed € > 0 there
exists a set Ey € J such that V(f,T\ Ey) < v+¢. By Theorem 1 we find
a function go € BV(T, X) such that f|lmg, = golmg, and V(go, T) =
V(f,T\ Ep). Then

ess(fﬂ )< V(.gOaT) :V(f,T\Eo) <v+e.

Consequently, V.7 (f,T) < v. It suffices to show the reverse inequality. By
definition of V.7 (f,T), for any number o > V.7 (f,T) we find a function
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g1:T — X and a set By € J such that V(g,7) < a and gi1|p\g, =
flr\g, - We have

V(f,T\E)=V(g, T\ Er) <V(g1,T) <.

It follows that v < V(f, T\ E1) < a and since a > V.7,

[
we obtain v < V.7 (f,T). O

Some examples and properties

(f,T) is arbitrary,

Let us start with a simple observation when one considers two ideals
onT.

PROPOSITION 1. Let ) # T C R and let X be a metric space. Assume
that Z,J C P(T) are ideals and f:T — X. Then we have:

(a) if T C J then VL, (f,T)> Ve‘Zs(f,T),

ess

(b) VELT (£,T) 2 max{VZ,(f,T), VL, (f. T)}.

PROOF. Assertion (a) is an immediate corollary from the definition of
essential variation. Assertion (b) follows from (a). O

Now, we will to show that the essential variation in one sense can be
small and in another sense — can be large.

PROPOSITION 2. Let ) # T C R and let Z,J C P(T) be two ideals
such that there exist a set A € 7\ J and a strictly monotonic sequence
()52 of numbers from T such that A,, ¢ J for all n € N where A,, =
AN [min{z,_1,z,},max{x,_1,z,}), n € N. Then for every complete
metric space X of cardinality > 2 there exists a function f:T — X with
VeIss(fa T) =0 and ‘/e\sys(f; T) = 0.

PRrROOF. Let A be as in the assumption. Pick distinct points z,y € X.
Define f:T — X by putting f(t) = z if t € |J,_, A2, and f(t) =y for
t €T\ Uy_, Azp. Since A € T and f|p\ 4 is constant, by Theorem 2 we
obtain VZ (T, X) = 0. To show that V.7 (T, X) = oo, fix E € J. We have
A, \ E ¢ J for each n € N, thus we can pick ¢,_1 € A, \ E, n € N. The
sequence (t,)5%, is strictly monotonic. Its beginning part (tz)7_, n € N,
can be treated as a partition of 7'\ E (if it is decreasing, we reverse the
numeration). Consequently,

V(f, T\ E)>sup > d(f(t), f(te 1)) = supnd(z,y) = oc.
neN k=1 neN
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Hence by Theorem 2 we obtain V.7 (f,T) = co. O

We say that two ideals Z, J C P(T') are orthogonal if there are disjoint
sets A,B C T such that A € Z, Be€ J and AU B = T. The o-ideals of
Lebesgue null sets and of sets of the first category in R make a well-known
example of a pair of orthogonal ideals for T' = R (See [1]). For other pairs
of orthogonal ideals, see for instance [10].

COROLLARY. Let T be an infinite subset of R and let Z,J C P(T) be
two orthogonal ideals consisting of sets with empty interior in T'. Then for
every complete metric space X with cardinality > 2 there exists a function
f:T — X with VL (f,T) =0 and VJ, = .

ess

PROOF. Since T is infinite, we can find a strictly monotonic sequence
(yn)22, of numbers from T'. Put x,, = ys, for n € NU {0}. Let A, BC T
besuchthat A€ Z, Be J,ANB =0, AUB = T. It suffices to show that
the sets A,, n € N, defined as in Proposition 2, are not in 7. Assume for
instance that (y,)52, is increasing. Suppose that Ay, € J for some k € N.
Observe that U = (zg_1,2%) NT is open in T and U # 0 since ya 1 € U.
Because A, € J, we have ANU = A, NU € J. From B € 7J it follows
that BNU € J. Consequently U = (U N A) U (U N B) € J which yields
a contradiction. O

Example. Let Z be the ideal of all subsets of [0, 1] of Lebesgue measure
zero and let 7 be the ideal of all subsets of [0, 1] of the first category. It is
well known that Z and J are two orthogonal o-ideals, so pick two disjoint
sets A and B such that A € 7 and B € J and [0,1] = AU B. Since A is
residual, its intersection with every nondegenerate interval is of the second
category. Let 4, =[1—1,1— %H) N A for n € N. Define f:[0,1] - R
by putting f(t) =0if t € BU{1} and f(t) = 5~ ift € A,,. Since A € T
and f|o,1\ 4 is constant, by Theorem 2 we obtain VZ,(f,[0,1]) = 0. Since
A, is of the second category, for each £ € J and for every n € N we
have 4, \ E # 0. Hence V.Z,(f,[0,1]) = 307 (5% — 5747) = 3. For each
E € TN J and for every interval [a,b] C [0,1] there exist t,s € [a,b]
such that t € B\ E and s € A\ E. Hence VL) (f,[0,1]) = oo. This
shows that V207 (£,[0,1)) > max{VZ,(f, 0, 1), V.Z,(£,[0, 1])}. Hence in
the assertion (b) of Proposition 1, we cannot use equality.

Let X be a metric space. We say that A C X is precompact in X if the
closure A is compact. The following theorem collects some consequences

of Theorem 2 analogous to those presented in [2].

L
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THEOREM 3. Let § # T C R, X be a complete metric space and f :
T — X. Let J be a o-ideal of subsets of T'. Then

(a) f € BVJ,(T,X) if and only if there exists a set E € J such that
flme € BV(T'\E, X); moreover, E can be chosen such that V (f, T\
E) = VI (f,T).

€SS

(b) If {fu}>2, C BVI (T, X) and d(fn(t),f(t)) = 0 asn — oo for
t€ T\ E, where E € J, then V. (f,T) < liminf, oo VI (fn,T).

(¢) (Structural Theorem) f € BV (T,X) if and only if there exists

€8s
a nondecreasing bounded function ¢ : T — R and a function g €

Lip(D,X), where D = ¢(T) and L4(g,D) <1, such that f =go¢
onT\ E, where E € J.

(d) (Helly’s type Theorem) If F = {f,}>>, C BV,

€8S

(T, X),

sup VEZS (f7l7 T)
neN

is finite and the set {f,(t)}32, is precompact in X fort € T \ E,
where E € J, then F contains a subsequence which converges in
metric d on T \ E to a function from BV, (T, X).
With application of Theorem 2, the proof of Theorem 3 goes similarly
as for [2, Theorem 2.2]. Thus we omit it.
REMARK. The assumption that J is a o-ideal (closed under countable

1
unions) is essential in Theorem 3(a). Indeed, put E = {Q—nn € N} and
define f : [0,1] — R by putting f(t) = t if t € E and f(t) = 0 if
t € [0,1] \ E. We have V(f,]0,1]) = 2. Consider as J the ideal of all
1
finite subsets of [0, 1]. We put E,, = {Q—m meN, m<n},néeN. Thus
E, € J. For all n € N we define g,:[0,1] — R by putting g,(t) = t if
t € E\ E, and g,(t) = 0 for the remaining t in [0,1]. Hence g, (t) = f(t)
1 1
for alln € N and ¢t € [0,1] \ E,, and V(g,,[0,1]) = 2 - on = oot for
all n € N. Consequently, 1i_>m V(gn,[0,1]) = 0 and V. (f,[0,1]) = 0.
n—oo
However, for all D € J we have V (f,[0,1]\ D) > 0.
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