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ON METRIC SPACE VALUED FUNCTIONS OF BOUNDEDESSENTIAL VARIATION
M. Balcerzak, M. Ma lolepszy

Let ; 6= T � R and let X be a metric space. For an idealJ � P(T ) and a function f :T ! X, we de�ne the essentialvariation V Jess(f; T ) as the in�mum of all variations V (g; T ) whereg:T ! X, g = f on T n E, and E 2 J . We show that if X iscomplete then the essential variation of f is equal to inffV (f; TnE) :E 2 J g. This extends former theorems of that type. We list someconsequences that are analogues to the recent results by Chistyakov.Some examples of di�erent kinds of essential variation are alsoinvestigated.
Introduction

Let T be a nonempty subset of the real line. Let J be an ideal ofsubsets of T ; thus J is a nonempty hereditary and additive subfamily ofP(T ) (the power set of T ) with T =2 J . An ideal is usually interpreted as afamily of small sets that are negligible in the respective sense. Sometimes,one assumes additionally that J contains all singletons ftg, t 2 T , or/andit does not contain nonempty open sets in T . If an ideal is �-additive, it iscalled a �-ideal. The following families form well-known ideals on the realline: �nite sets, nowhere dense sets, countable sets, Lebesgue null sets, setsof the �rst Baire category. The last three examples are �-ideals. (See [1].)These examples may produce ideals on T � R by taking intersections oftheir members with T , provided that T is not too small (to ensure thatT =2 J ).Let N = f1; 2; :::g. Fix a metric space X with a metric d, and let; 6= T � R. If x 2 R is a right (left) limit point of T then by f(x+),f(x�) we denote the one-sided limits of a function f : T ! X at x,
c
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provided that they exist. By Lip(T;X) we denote the set of all Lipschitzfunctions from T into X, and by Ld(f; T ) we denote the smallest Lipschitzconstant for f . A �nite sequence T = ftigni=0 such that t0 < ::: < tn andti 2 T for i = 0; :::; n is called a partition of T . The Jordan variation off : T ! X is de�ned by

V (f; T ) = supT
n nX

i=1 d(f(ti); f(ti�1)):n 2 N
o:

(See [2], [3], [4].) If V (f; T ) < 1, we say that f is of bounded variationand we write f 2 BV (T;X). Consider an ideal J � P(T ). The essentialvariation of f : T ! X with respect to J is de�ned as the followingquantity:
V Jess(f; T ) = inffV (g; T ) : there are E 2 J

and g:T ! X such that g = f on T n Eg:
If V Jess(f; T ) < 1, we say that f is a function of bounded essentialvariation with respect to J , and we write f 2 BV Jess(T;X).Essential variation was considered before in [5], [6], [7], [8], [2] but onlyfor the ideal of Lebesgue null sets on the real line. In the present paperwe generalize a characterization of essential variation given in [7] and [2].Namely, we show that V Jess(f; T ) equals inffV (f; T nE):E 2 J g (Theorem2). We obtain several properties of functions from BV Jess analogous tothose proved in [2] (Theorem 3). We show how one can extend a functionfrom BV (T n E;X) to a function de�ned on the whole T with the samevariation (Theorem 1). A related result was given in [9] with another proof.Our paper contains general facts and examples witnessing a signi�cantdependence of V Jess(f; T ) on J .

Characterization of essential variation
We are going to prove that a metric space valued function of boundedvariation on a subset of a �xed nonempty set T � R can be extended toa function on T with the same variation. A related result was obtainedearlier by Chistyakov and Rychlewicz [9, Theorem 1(a)]. In the proof givenin [9], the authors apply a structural theorem for functions of boundedvariation [4, Theorem 3.1], [2, Lemma 2.1]. Our proof is di�erent andseems more elementary.We start with the following lemma.
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Lemma 1. Let ; 6= D � R,X be a complete metric space, f 2 BV (D;X)and assume that t is a right-sided (left-sided) limit point of a set D. Thenthere exists a right-sided (left-sided) limit of f at t.

A proof is quite similar to that in [3, Theorem I.24(c)].
Theorem 1. Let ; 6= T � R, E � T , ; 6= E 6= T . Assume that f :T nE ! X and f 2 BV (T n E;X) where X is a complete metric space.Then there is a function h:T ! X such that V (h; T ) = V (f; T n E) andhjTnE = f .
Proof. De�ne h:T ! X as follows. Let t 2 T . If t =2 E we put h(t) =f(t). Now let t 2 E. In the case t 2 E and (T n E) \ (�1; t) 6= ; wedenote t� = sup((T n E) \ (�1; t)). If this supremum is attained, weput h(t) = f(t�), and otherwise let h(t) = f(t��) (this limit exists byLemma 1). In the case (T nE) \ (�1; t) = ;, from E 6= T it follows that(T n E) \ (t;1) 6= ;. Thus we denote t� = inf((T n E) \ (t;1)). If thisin�mum is attained, we put h(t) = f(t�), and otherwise let h(t) = f(t�+)(this limit exists by Lemma 1).Since hjTnE = f , we have V (f; T n E) � V (h; T ). Now, we will showthe converse. For a partition T = ftigmi=0 of T we denote S(h; T ) =Pmt=1 d(h(ti); h(ti�1)). We will prove that for each partition T of T thereis a partition T � of T such that

S(h; T ) � S(h; T �) � V (f; T n E)
which yields the assertion.So, let T = ftigmi=0 be a given partition of T . We modify T in foursteps:

1) If t0 2 E and (T n E) \ (�1; t0) 6= ;, we insert a point from (T nE) \ (�1; t0) to the partition.
2) If tm 2 E and (T n E) \ (tm;1) 6= ;, we insert a point from (T nE) \ (tm;1) to the partition.
3) For every pair ti; ti+1 2 E, if (ti; ti+1) \ (T n E) 6= ;, we insert apoint from (ti; ti+1) \ (T n E) to the partition.
4) We look for all maximal strings ti; ti+1; :::; ti+k with [ti; ti+k] \ T �E. (Since E 6= T , by our modi�cations 1), 2), 3) it is impossiblethat the whole partition is such a string.) Thus h is constant on[ti; ti+k] \ T . We delete points ti+1; :::; ti+k from the partition. Thisdoes not change S(h; T ).
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Denote the modi�ed partition by T �. The operation described in 1), 2),3) can only enlarge S(h; T ), so we have S(h; T ) � S(h; T �). In partitionT �, at least one of any two consecutive points belongs to T n E. Forsimplicity assume that T � = ftigmi=0. By 1), 2) we have ensured thatt0; tm 2 T n E, if it is possible.Now �x i 2 f0; :::;mg. Consider three cases:Case 1. 2 � i � m and ti�2 2 T n E, ti�1 2 E, ti 2 T n E. If (T nE)\ (�1; ti�1) has a maximal element t�i�1, then ti�2 � t�i�1 < ti�1 andd(h(ti�2); h(ti�1))+d(h(ti�1); h(ti)) = d(f(ti�2); f(t�i�1))+d(f(t�i�1); f(ti)):If (T nE)\ (�1; ti�1) has no maximal element, we set t�i�1 = sup(T nE)\(�1; ti�1). Of course ti�2 < t�i�1 � ti�1. Pick a sequence ft�i�1;ng1n=1of numbers from (T nE)\ (�1; ti�1) such that limn!1 t�i�1;n = t�i�1. Wehave

d(h(ti�2); h(ti�1)) + d(h(ti�1); h(ti)) =
= d(f(ti�2); h(ti�1)) + d(h(ti�1); f(ti)) =

= limn!1[d(f(ti�2); f(t�i�1;n)) + d(f(t�i�1;n); f(ti))] �
� V (f; [ti�2; ti] \ (T n E)):

The last equality results from Lemma 1.Case 2. Let t0 2 E, t1 2 T n E. If (T n E) \ (t0;1) has a minimalelement t0�, then t0 < t0� � t1 and d(h(t0); h(t1)) = d(f(t0�); f(t1)). If(T nE)\ (t0;1) has no minimal element, we set t0� = inf(T nE)\ (t0;1)and of course t0 � t0� < t1. Pick a sequence ft0�;ng1n=1 of numbers from(T n E) \ (t0;1) such that limn!1 t0�;n = t0�. We have
d(h(t0); h(t1)) = d(h(t0); f(t1)) =

= limn!1 d(f(t0�;n); f(t1)) �
� V (f; [t0; t1] \ (T n E)):

The last equality results from Lemma 1.Case 3. Let tm�1 2 T n E, tm 2 E. If (T n E) \ (�1; tm) has amaximal element t�m, then tm�1 � t�m < tm and d(h(tm�1); h(tm)) =d(f(tm�1); f(t�m)). If (T nE)\ (�1; tm) has no maximal element, we sett�m = sup(T nE)\ (�1; tm). Of course tm�1 < t�m � tm. Pick a sequenceft�m;ng1n=1 of numbers from (T n E) \ (�1; tm) with limn!1 t�m;n = t�m.We have
d(h(tm�1); h(tm)) = d(f(tm�1); h(tm)) =
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= limn!1 d(f(tm�1); f(t�m;n)) �� V (f; [tm�1; tm] \ (T n E)):

The last equality results from Lemma 1.Taking into account cases 1), 2), 3), by adding the respective sides ofinequalities we obtain
S(h; T �) � V (f; [t0; tm] \ (T n E)) � V (f; T n E):

The theorem has been proved. 2
Now we are ready to prove our main result, a characterization ofessential variation. In the case when T = [a; b], X = R, and J is thefamily of all Lebesgue null sets in T , this theorem was proved by Bana�sand El-Sayed in [7]. If T is a density-open subset of R and J is a familyof all Lebesgue null sets in T , and X is a complete metric space andf 2 BV Jess(T;X), the result was obtained by Chistyakov in [2]. In ourpaper we consider a more general situation where essential variation isassociated with an arbitrary ideal of subsets of a given nonempty set Ton the real line.

Theorem 2. Let X be a complete metric space and ; 6= T � R and letJ be a proper ideal of subsets of T . Then for every function f :T ! X wehave V Jess(f; T ) = inffV (f; T n E) : E 2 J g:
Proof. (Compare with [2, Theorem 2.1].). Denote v = inffV (f; T n E) :E 2 J g. If v = 1, then V (f; T n E) = 1 for all E 2 J . Hence for eachfunction g:T ! X such that f jTnE = gjTnE with E 2 J , we have

V (g; T ) � V (g; T n E) = V (f; T n E) =1:
Thus V Jess(f; T ) = 1. Now assume that v < 1. For a �xed " > 0 thereexists a set E0 2 J such that V (f; T nE0) < v+ ". By Theorem 1 we �nda function g0 2 BV (T;X) such that f jTnE0 = g0jTnE0 and V (g0; T ) =V (f; T n E0). Then

V Jess(f; T ) � V (g0; T ) = V (f; T n E0) < v + ":
Consequently, V Jess(f; T ) � v. It su�ces to show the reverse inequality. Byde�nition of V Jess(f; T ), for any number � > V Jess(f; T ) we �nd a function
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g1:T ! X and a set E1 2 J such that V (g1; T ) � � and g1jTnE1 =f jTnE1 . We have

V (f; T n E1) = V (g1; T n E1) � V (g1; T ) � �:
It follows that v � V (f; T nE1) � � and since � > V Jess(f; T ) is arbitrary,we obtain v � V Jess(f; T ). 2

Some examples and properties
Let us start with a simple observation when one considers two idealson T .

Proposition 1. Let ; 6= T � R and let X be a metric space. Assumethat I;J � P(T ) are ideals and f :T ! X. Then we have:
(a) if I � J then V Iess(f; T ) � V Jess(f; T ),(b) V I\Jess (f; T ) � maxfV Iess(f; T ); V Jess(f; T )g.

Proof. Assertion (a) is an immediate corollary from the de�nition ofessential variation. Assertion (b) follows from (a). 2
Now, we will to show that the essential variation in one sense can besmall and in another sense � can be large.

Proposition 2. Let ; 6= T � R and let I;J � P(T ) be two idealssuch that there exist a set A 2 I n J and a strictly monotonic sequence(xn)1n=0 of numbers from T such that An =2 J for all n 2 N where An =A \ [minfxn�1; xng;maxfxn�1; xng), n 2 N. Then for every completemetric space X of cardinality � 2 there exists a function f :T ! X withV Iess(f; T ) = 0 and V Jess(f; T ) =1.
Proof. Let A be as in the assumption. Pick distinct points x; y 2 X.De�ne f :T ! X by putting f(t) = x if t 2 S1n=1A2n and f(t) = y fort 2 T nS1n=1A2n. Since A 2 I and f jTnA is constant, by Theorem 2 weobtain V Iess(T;X) = 0. To show that V Jess(T;X) =1, �x E 2 J . We haveAn n E =2 J for each n 2 N, thus we can pick tn�1 2 An n E, n 2 N. Thesequence (tn)1n=0 is strictly monotonic. Its beginning part (tk)nk=0, n 2 N,can be treated as a partition of T n E (if it is decreasing, we reverse thenumeration). Consequently,

V (f; T n E) � supn2N
nX

k=1
d(f(tk); f(tk�1)) = supn2Nnd(x; y) =1:
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Hence by Theorem 2 we obtain V Jess(f; T ) =1. 2

We say that two ideals I;J � P(T ) are orthogonal if there are disjointsets A;B � T such that A 2 I, B 2 J and A [ B = T . The �-ideals ofLebesgue null sets and of sets of the �rst category in R make a well-knownexample of a pair of orthogonal ideals for T = R (See [1]). For other pairsof orthogonal ideals, see for instance [10].
Corollary. Let T be an in�nite subset of R and let I;J � P(T ) betwo orthogonal ideals consisting of sets with empty interior in T . Then forevery complete metric space X with cardinality � 2 there exists a functionf :T ! X with V Iess(f; T ) = 0 and V Jess = 1.
Proof. Since T is in�nite, we can �nd a strictly monotonic sequence(yn)1n=0 of numbers from T . Put xn = y2n for n 2 N [ f0g. Let A;B � Tbe such that A 2 I, B 2 J , A\B = ;, A[B = T . It su�ces to show thatthe sets An, n 2 N, de�ned as in Proposition 2, are not in J . Assume forinstance that (yn)1n=0 is increasing. Suppose that Ak 2 J for some k 2 N.Observe that U = (xk�1; xk)\T is open in T and U 6= ; since y2k�1 2 U .Because Ak 2 J , we have A \ U = Ak \ U 2 J . From B 2 J it followsthat B \ U 2 J . Consequently U = (U \ A) [ (U \ B) 2 J which yieldsa contradiction. 2

Example. Let I be the ideal of all subsets of [0; 1] of Lebesgue measurezero and let J be the ideal of all subsets of [0; 1] of the �rst category. It iswell known that I and J are two orthogonal �-ideals, so pick two disjointsets A and B such that A 2 I and B 2 J and [0; 1] = A [ B. Since A isresidual, its intersection with every nondegenerate interval is of the secondcategory. Let An = [1 � 1n ; 1 � 1n+1 ) \ A for n 2 N. De�ne f : [0; 1] ! R
by putting f(t) = 0 if t 2 B [ f1g and f(t) = 12n if t 2 An. Since A 2 Iand f j[0;1]nA is constant, by Theorem 2 we obtain V Iess(f; [0; 1]) = 0. SinceAn is of the second category, for each E 2 J and for every n 2 N wehave An n E 6= ;. Hence V Jess(f; [0; 1]) =P1n=1( 12n � 12n+1 ) = 12 . For eachE 2 I \ J and for every interval [a; b] � [0; 1] there exist t; s 2 [a; b]such that t 2 B n E and s 2 A n E. Hence V I\Jess (f; [0; 1]) = 1. Thisshows that V I\Jess (f; [0; 1]) > maxfV Iess(f; [0; 1]); V Jess(f; [0; 1])g. Hence inthe assertion (b) of Proposition 1, we cannot use equality.Let X be a metric space. We say that A � X is precompact in X if theclosure A is compact. The following theorem collects some consequencesof Theorem 2 analogous to those presented in [2].
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Theorem 3. Let ; 6= T � R, X be a complete metric space and f :T ! X. Let J be a �-ideal of subsets of T . Then
(a) f 2 BV Jess(T;X) if and only if there exists a set E 2 J such thatf jTnE 2 BV (T nE;X); moreover, E can be chosen such that V (f; T nE) = V Jess(f; T ).
(b) If ffng1n=1 � BV Jess(T;X) and d(fn(t); f(t)) ! 0 as n ! 1 fort 2 T n E, where E 2 J , then V Jess(f; T ) � lim infn!1 V Jess(fn; T ).
(c) (Structural Theorem) f 2 BV Jess(T;X) if and only if there existsa nondecreasing bounded function ' : T ! R and a function g 2Lip(D;X), where D = '(T ) and Ld(g;D) � 1, such that f = g � 'on T n E, where E 2 J .
(d) (Helly's type Theorem) If F = ffng1n=1 � BV Jess(T;X),

supn2NV Jess(fn; T )
is �nite and the set ffn(t)g1n=1 is precompact in X for t 2 T n E,where E 2 J , then F contains a subsequence which converges inmetric d on T n E to a function from BV Jess(T;X).

With application of Theorem 2, the proof of Theorem 3 goes similarlyas for [2, Theorem 2.2]. Thus we omit it.
Remark. The assumption that J is a �-ideal (closed under countable
unions) is essential in Theorem 3(a). Indeed, put E = f 1

2n :n 2 Ng and
de�ne f : [0; 1] ! R by putting f(t) = t if t 2 E and f(t) = 0 ift 2 [0; 1] n E. We have V (f; [0; 1]) = 2. Consider as J the ideal of all
�nite subsets of [0; 1]. We put En = f 1

2m :m 2 N; m � ng, n 2 N. Thus
En 2 J . For all n 2 N we de�ne gn: [0; 1] ! R by putting gn(t) = t ift 2 E n En and gn(t) = 0 for the remaining t in [0; 1]. Hence gn(t) = f(t)
for all n 2 N and t 2 [0; 1] n En, and V (gn; [0; 1]) = 2 � 1

2n = 1
2n�1 for

all n 2 N. Consequently, limn!1V (gn; [0; 1]) = 0 and V Jess(f; [0; 1]) = 0.
However, for all D 2 J we have V (f; [0; 1] nD) > 0.
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