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ON COMPLEX HARMONIC
TYPICALLY-REAL FUNCTIONS

WITH A POLE AT THE POINT ZERO

Z. J. Jakubowski, A. Sibelska

Several mathematicians examined classes of meromorphic
typically-real functions with a simple pole at the point zero. This
article includes results concern class Q′

H of complex harmonic
typically-real functions with a pole at the point zero. There are
determined the relationships between this class and the class Q′

r of
meromorphic typically-real funtions with a pole at the origin, which
was investigated by S. A. Gelfer [4]. We present also coefficient es-
timates for functions of a subclass of the class Q′

H and properties
of the Hadamard product with fuctions of the class Q′

H .

§ 1. Introduction

Meromorphic typically-real functions have been examined for a long
time ( [1], [2]). In several papers authors investigated functions with a
pole at the infinity ( e.g. [3]). Other matematicians (e.g. S. A. Gelfer
[4], J. Zamorski [5], M. P. Remizowa [6], Z. J. Jakubowski, K. Skalska [7])
examined classes of functions, which are holomorphic typically-real in the
ring P := {z ∈ C : 0 < |z| < 1}, with a simple pole at the point z = 0.
Our results extend these investigations to classes of complex harmonic
typically-real functions in P with a simple pole at z = 0. Our study was
inspired, among others, by [8], [9], [7] and [10].
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§ 2. On a class of typically-real functions with a pole
at the zero

S. A. Gelfer in paper [4] considered, among others, the class Q′r of
functions H of the form

H(z) = −1
z

+ a0 + a1z + . . . , z ∈ P, (1)

holomorphic typically-real in P and such that H(z) 6= 0, z ∈ P .
He showed also that the following properties hold:

(a) H ∈ Q′r ⇒ ImzImH(z) > 0, z ∈ P, z 6= z,

(b) H ∈ Q′r ⇒ an = ān, n = 0, 1, 2, . . . ,

(c) H ∈ Q′r ⇔ {Re{ z
1−z2H(z)} < 0 ∧ an = ān, n = 0, 1, 2, . . . }.

Moreover, if Σ′r denotes the class of functions of the form (1), with
real coefficients, univalent in P and H(z) 6= 0, z ∈ P , then Σ′r ⊂ Q′r.

Definition 1. Let Q′H denote the class of complex functions f har-
monic in P and such that

(i) f(z) = F (z) + G(z), F (z) = − 1
z +

∑∞
n=0 anz

n, G(z) =
∑∞

n=0 bnz
n,

z ∈ P ,

(ii) f(z) 6= 0, z ∈ P ,

(iii) ImzImf(z) > 0, z ∈ P, z 6= z.

Directly from the definition we obtain limz→0 f(z) = ∞ and each func-
tion f ∈ Q′H is locally univalent in some neighbourhood of the point z = 0.
Moreover, if f ∈ Q′H and it is locally univalent function in P ∩ R, then
f(x), x ∈ P ∩ R, is an increasing function on the intervals (−1, 0) and
(0, 1). Besides, limx→−1+ f(x) ≥ 0, limx→0− f(x) = +∞,
limx→0+ f(x) = −∞, limx→1− f(x) ≤ 0.

If H ∈ Q′r, then H ∈ Q′H , of course. It is known that if a function
h(z) = z+a2z

2 + . . . is holomorphic typically-real in the unit disc ∆, then
H = − 1

h ∈ Q
′
r ([11]). Consequently, this function H belongs to Q′H .

It is know that h′(x) > 0, x ∈ ∆ ∩R. This property does not have to
hold for harmonic typically-real functions.
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Indeed, for the function f0(z) := z+a(z3+z3), z ∈ ∆, a ∈ 〈− 1
2 ,−

1
6 ) we

have ImzImf(z) > 0, z 6= z ∈ ∆ and f ′0(xa) = 0, where

xa =
√
− 1

6a ∈ 〈−
√

3
3 , 1).

Let Σ′H denote the class of functions of the form (i), with real coeffi-
cients an, bn, n = 0, 1, 2, . . . , univalent and satisfaying the condition (ii).
Then we have Σ′H ⊂ Q′H .

Remark 1. Let f ∈ Q′H . From (iii) we conclude that f(z) = f(z) if
and only if z = z ∈ P . Hence an − bn = an − bn, n = 0, 1, 2, . . . .

Remark 2. Let f be a function of the form (i) and an = an, bn = bn,
n = 0, 1, 2, . . . . If z ∈ P , then f(z) = f(z).

Indeed, we have
f(z) = F (z) +G(z) = F (z) +G(z) = F (z) +G(z) = f(z), z ∈ P .

The following two theorems determine relationship beetwen the classes
Q′r and Q′H .

Theorem 1. If f = F + G ∈ Q′H , then g = F − G is a typically-real
function in P and exist limx→1− g(x), limx→−1+ g(x). If

lim
x→1−

g(x) ≤ 0, lim
x→−1+

g(x) ≥ 0, (2)

then g ∈ Q′r.

Proof. Let f = F + G ∈ Q′H . Let us consider the function
g = F − G. It is easy to observe that g is holomorphic in P and is
of the form g(z) = − 1

z + (a0 − b0) + (a1 − b1)z + . . . , which is required
in the class Q′r. According to the remark 1, g is a real function in the set
P ∩ R. Moreover, Imf = Im(F + G) = Im(F − G) = Img. Thus, on
account of the condition (iii) from the definition of the class Q′H , we have
ImzImg(z) > 0, z ∈ P, z 6= z. Therefore g is a typically-real function.

Let us observe that g(z) 6= 0, z ∈ P .
If there existed a z0 ∈ P, z0 6= z0, such that g(z0) = 0, we would have

F (z0) = G(z0), thus ImF (z0) = ImG(z0). Hence Imf(z0) = 0, which
contradicts (iii).

Since g is holomorphic typically-real in P , we have
g′(x) 6= 0, x ∈ (−1, 0)∪ (0, 1). Indeed, if there existed a x0 ∈ P ∩R, such
g′(x) = 0, the function g would be the double function in some neighbour-
hood of the point x0. This contradicts the typically-reality of g.
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The continuity of g′ on the intervals (−1, 0), (0, 1) and the fact that
limx→0+ g′(x) = +∞, limx→0− g

′(x) = +∞ give g′(x) > 0, x ∈ P ∩ R.
Furthermore, limx→0+ g(x) = −∞, limx→0− g(x) = +∞. Hence, from (2)
and since g is increasing in (−1, 0) and (0, 1), it follows that does not exist
x0 ∈ P∩R, such that g(x0) = 0. �

The following example shows that the assumption (2) is needed.

Example 1. Let f1 be the function of the form

f1(z) = F1(z) +G1(z),

F1(z) = −1
z

+ z, G1(z) = b1z, b1 < −1, z ∈ P. (3)

Obviously, f1 is of the form (i). For z ∈ P ∩ R, we have f1(z) = f1(z).
Moreover, f1(z) 6= 0, z ∈ P and Imf1(z) = Imz( 1

|z|2 + 1 − b1), thus f1
belongs to Q′H .

It is easy to check that the condition (2) does not hold.
Let us consider the function g1(z) = F1(z) − G1(z), z ∈ P . It is

a holomorphic typically-real function. But g1 takes the value zero at
some points of the ring P , therefore g1 /∈ Q′r.

Furthermore, we have

Theorem 2. If F and G are functions holomorphic in P of the form

F (z) = −1
z

+
∞∑

n=0

anz
n, G(z) =

∞∑
n=0

bnz
z, z ∈ P,

respectively, such that g = F −G ∈ Q′r and

Re{F (x) +G(x)} 6= 0, x ∈ P ∩R, (4)

then f = F +G ∈ Q′H .

Proof. Obviously, the function f(z) = − 1
z +

∑∞
n=0 anz

n +
∑∞

n=0 bnz
z

is of the form (i) from the definition of the class Q′H and it is complex
harmonic in P . Since f(z) = g(z)+2ReG(z), z ∈ P , we have f(x) = f(x)
for x ∈ P ∩R. Moreover, Imf(z) = Img(z), z ∈ P , thus (iii) holds.

Let us observe that f(z) 6= 0, z ∈ P . Since Imf(z) = Img(z) 6= 0
for z ∈ P, z 6= z, it suffices to show that f(z) 6= 0 for z ∈ P ∩R.
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If there existed an x0 ∈ P ∩ R, such that f(x0) = 0, we would have
F (x0)+G(x0) = 0, i.e. Re{F (x0)+G(x0)} = 0, Im{F (x0)−G(x0)} = 0.
Hence and from (4) f(x0) 6= 0, x0 ∈ P ∩R. �

Example 2. Let F2(z) = − 1
z + 4

3 + i, G2(z) = 2
3 + i. Then

g2(z) = F2(z)−G2(z) is a function of the class Q′r.
Let f2(z) = F2(z) +G2(z), z ∈ P . We have f2(z) = − 1

z + 2, z ∈ P and
f2( 1

2 ) = 0, therefore f2 /∈ Q′H . Clearly, the condition (4) does not hold.

§ 3. Coefficient estimates

Applying the known result of S. A. Gelfer
([4], th.1), related to coefficient estimates for functions of the class Q′r,

in view of remark 1, for functions f ∈ Q′H satisfying the condition (2), we
obtain the following estimates:

−2 ≤ a0 − b0 ≤ 2,
−1 ≤ a1 − b1 ≤ 3,

−4 ≤ 4 min
0≤θ≤π

(sinnθsinθ) ≤ an − bn ≤ 4 max
0≤θ≤π

(sinnθsinθ) ≤ 4, n ≥ 2.

Moreover, we have

Theorem 3. If f = F +G ∈ Q′H , the condition (2) holds and

|G′(z)| < |F ′(z)|, z ∈ P, (5)

then

|b1| ≤ 1, |b2| ≤
1
2
, (6)

|bn| ≤
2(n− 1)(n− 2)

n
, n = 3, 4, . . . , (7)

|a1| ≤ 4, |a2| ≤
9
2
, (8)

|an| ≤
2(n2 − n+ 2)

n
, n = 3, 4, . . . . (9)

The estimates (6) are sharp. In case the first estimate, extremal func-
tions are e.g. f∗1 (z) = − 1

z + z, f∗2 (z) = − 1
z − z. In the second esti-

mate, the equality sign occurs e.g. for the functions f∗3 (z) = − 1
z + 1

2z
2,

f∗4 (z) = − 1
z −

1
2z

2, z ∈ P .
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Proof. Let f = F + G ∈ Q′H satisfy (2) and (5). Let us set
ω(z) := G′(z)

F ′(z) , z ∈ P . Since z = 0 is at least double zero of the func-
tion ω, |ω(z)| < 1, z ∈ ∆ := {z ∈ C : |z| < 1}, by Schwarz lemma
we have |ω(z)| ≤ |z|2 < |z|, z ∈ ∆. From theorem 1, in view of the condi-
tion (2), we obtain g := F − G ∈ Q′r. Moreover, we have
G′(z) = ω(z)F ′(z). Thus G′(z) = ω(z)(g′(z) +G′(z)) and therefore

z2G′(z) =
ω(z)

1− ω(z)
z2g′(z), z ∈ ∆. (10)

It is know that an analytic function h is said to be subordinate to
an analytic function l (written h ≺ l) if h(z) = l(ω(z)), |z| < 1 for some
analytic function ω with |ω(z)| ≤ |z| ([12], p.190). Moreover, if l and
L are given by the power series

∑∞
n=0 dnz

n,
∑∞

n=0Dnz
n, convergent in

some disk |z| < R, R > 0, then we say that l is dominated by L and write
l(z) � L(z), if for each integer n ≥ 0, |dn| ≤ Dn ([13], p.82).

We have thus ω(z)
1−ω(z) ≺

z
1−z , z ∈ ∆ and since ϕ(z) := z

1−z is a convex

function in ∆, writing ω(z)
1−ω(z) =

∑∞
k=2 ckz

k, we have |ck| ≤ 1, k = 2, 3, . . .
([13]), II, p. 182). Thus

ω(z)
1− ω(z)

� z2

1− z
. (11)

Obviously, z2g′(z) = 1 +
∑∞

n=1 n(an − bn)zn+1, z ∈ ∆, and
z2G′(z) =

∑∞
n=1 nbnz

n+1, z ∈ ∆.
We mentioned that g ∈ Q′r, therefore by the Gelfer’s theorem ([4],

th.1), we have |a1 − b1| ≤ 3 and |an − bn| ≤ 4, n = 2, 3, . . . . Let us
consider the function ψ(z) := 1 + 3z2 + 2 · 4z3 + 3 · 4z4 + · · · = 1 + 3z2 +
4

∑∞
n=2 nz

n+1, z ∈ ∆. From the definition of the coefficient domination
� ([13], I, p. 82) we conclude that

z2g′(z) � ψ(z), z ∈ ∆. (12)

From (10), (11) and (12) we obtain
∑∞

n=1 nbnz
n+1 � z2

1−zψ(z). Con-
sequently, the estimates (6) and (7) hold. Hence and from the above
inequalities for coefficients of functions of the class Q′r we have (8) and
(9).

It is easy to check that the functions f∗1 , f
∗
2 , f

∗
3 , f

∗
4 satisfy the assump-

tions of theorem 3. Thus estimates (6) are sharp. �
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Remark 3. The class Q′H includes functions, for which the above esti-
mates do not hold, e.g. functions of the form (3). They have the coefficient
b1, which does not satisfy the first estimate (6). It is known that in this
case the condition (2) does not hold.

Remark 4. Let us observe that substituting (5) for the stronger condi-
tion

|G′(z)| < |zF ′(z)|, z ∈ P (13)

and applying the same method (the subordination ≺ and the coefficient
domination �), we do not obtain estimates better then (7)-(9).

Let us note that the functions of the form (3) from example 1 do not
satisfy the condition (5), and consequently, (13) does not hold for them.
For the functions f∗1 , f

∗
2 from theorem 3 the inequality (5) holds, but the

conditon |G′(z)| < |z2F ′(z)|, z ∈ ∆, is false. However, the last inequality
holds for the functions f∗3 , f

∗
4 ∈ Q′H and, in consequence, (5) and (13) are

satisfied. The question, how much the mentioned inequalities restrict the
class Q′H is open.

The condition (5) is equivalent to locall univalence of the mapping f ,
of course ([14]; [15], p. 20).

Remark 5. The inequalities (6) we can obtain immediately from the
definition of the function ω, considering functions F , G of the form (i),
such that the condition (5) holds in P , not necessarily typically-real, and
comparing coefficients of the appopriate series.

Indeed, taking ω(z) =
∑∞

n=2 qnz
n we get(

1 +
∞∑

n=1

nanz
n+1

)( ∞∑
n=2

qnz
n

)
=

∞∑
n=1

nbnz
n+1, z ∈ ∆.

Therefore, comparing the corresponding coefficients, we have

q2 = 1 · b1, q3 = 2 · b2, (14)

nbn = qn+1 + qn−1 · 1 · a1 + . . .+ q2 · (n− 2) · an−2, n = 3, 4, . . . . (15)

The function ω is a Schwarz function, thus |qn| ≤ 1, n = 2, 3, . . ., ([13], I,
p.87), and finally, in view of (14), we obtain the estimates (6).

It appears that if the assumptions of theorem 3 hold, then applaying
the formulas (15) and the mentioned coefficient estimates for functions of
the class Q′r, we get results worse, then (7)-(9).
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§ 4. The Hadamard product

Let α denote a fixed real number, α 6= −1,− 1
2 ,−

1
3 , . . . . Let us

consider the functions

kα(z) := z +
1

1 + α
z2 + . . .+

1
1 + (n− 1)α

zn + . . . , z ∈ ∆, (16)

and

hα(z) :=
1
z

+
1

1 + α
+

1
1 + 2α

z+ . . .+
1

1 + (n+ 1)α
zn + . . . , z ∈ P. (17)

It is known ([16]) that the function (16) is the solution of the equation

αzk′α(z) + (1− α)kα(z) =
z

1− z
, z ∈ ∆, (18)

satisfying the conditions kα(0) = k′α(0) − 1 = 0 and for α > 0 it can be
expressed in the form

kα(z) =
1
α

∫ 1

0

t
1
α−2 zt

1− zt
dt, z ∈ ∆ (19)

Moreover, for α ≥ 0 it is a typically-real function in ∆.
The mapping (17) (see [7]) is a solution of the equation

αzh′α(z) + (1 + α)hα(z) =
1

z(1− z)
, z ∈ P, (20)

and for α > 0 it is given by the formula

hα(z) =
1
α

∫ 1

0

t
1
α

(
1
zt

+
1

1− zt

)
dt, z ∈ P. (21)

Definition 2. The Hadamard product (f1 ∗f2), of two harmonic func-
tions of the form

f1(z) =
a
(1)
−1

z
+

∞∑
n=0

a(1)
n zn+

∞∑
n=0

b
(1)
n zn, f2(z) =

a
(2)
−1

z
+

∞∑
n=0

a(2)
n zn+

∞∑
n=0

b
(2)
n zn

is called the function

(f1 ∗ f2)(z) =
a
(1)
−1a

(2)
−1

z
+

∞∑
n=0

a(1)
n a(2)

n zn +
∞∑

n=0

b
(1)
n b

(2)
n zn, z ∈ P
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Is worth mentioning that the above definition came into being on the
basis of a classical idea of Jacques Salomon Hadamard (1865-1963), con-
cerning the convolution of power series ([17]). Unfortunely, so few articles
include a citation of the original Hadamard’s paper on the convolutions.

In [18] (p. 248) it is given that J. S. Hadamard was in contact
with Polish mathematicians (among others with Wac law Sierpiński) and
was a member of the Polish Academy of Sciences. Professor Zygmunt
Charzyński many times expressed hopes that we would wait with Hada-
mard to celebrate the centenary of his birthday.

We hope that this historical note compensates a bit for ”our faults”.

Definition 3. Let Q0
H := {f ∈ Q′H : b0 = 0}.

Definition 4. Q0
H(α) := {u : u = f ∗ (hα + kα) : f ∈ Q0

H}, α ∈ R,
α 6= −1,− 1

2 ,−
1
3 , . . . , where hα, kα, are expressed by (16) and (17), re-

spectively.

According to the forms of the functions kα and hα we assume in the
definition 3 that b0 = 0 and we leave a coefficient a0, as in the form (i) of
the function f .

Remark 6. We have k0(z) = z
1−z , z ∈ ∆, h0(z) = 1

z + 1
1−z , z ∈ P ,

thus f ∗ (h0 + k0) = f , hence Q0
H(0) = Q0

H . The function k0 is univalent
in ∆. However, h0 is neither typically-real nor univalent in P .

Let us observe that for any admissible α, the functions f∗1 , f
∗
2 (from

th.3) belong to the class Q0
H(α). Hence Q0

H 6= ∅ and Q0
H ∩ Q0

H(α) 6= ∅.
Moreover, in view of (16) and (17), assuming that k+∞(z) = k−∞(z) = z
h+∞(z) = h−∞(z) = 1

z we have Q0
H(+∞) = Q0

H(−∞) = {− 1
z + b1z},

where the coresponding function f ∈ Q0
H is of the form

f(z) = F (z) + G(z), F (z) = − 1
z +

∑∞
n=0 anz

n, G(z) =
∑∞

n=1 bnz
n,

z ∈ P . If b1 6= b1, then u = f ∗ (hα + kα), α = −∞, +∞ belong to
Q0

H(+∞) = Q0
H(−∞) and there are not typically-real.

Directly from definition 4 and theorem 3 we obtain

Corolary 1. Let u ∈ Q0
H(α), α > 0, and let the corresponding func-

tion f ∈ Q0
H satisfy the assumption of theorem 3. If u is of the form

u(z) = − 1
z +

∑∞
n=0 ânz

n +
∑∞

n=1 b̂nz
n, then the estimates

|b̂1| ≤ 1, |b̂2| ≤
1

2(1 + α)
,
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|b̂n| ≤
2(n− 1)(n− 2)
n(1 + (n− 1)α)

, n ≥ 3,

|â1| ≤
4

1 + 2α
, |â2| ≤

9
2(1 + 3α)

,

|ân| ≤
2(n2 − n+ 2)
n(1 + (n− 1)α)

, n ≥ 3

hold. Extremal functions for |b̂1| are e.g. f∗1 , f
∗
2 . The equality sign for

|b̂2| occurs e.g. for f∗3 ∗ (hα + kα) = − 1
z + 1

2(1+α)z
2,

f∗4 ∗ (hα + kα) = − 1
z −

1
2(1+α)z

2, α > 0.

Moreover, we have

Theorem 1. If u ∈ Q0
H(α), α ∈ R, α 6= −1,− 1

2 ,−
1
3 , . . . , u = s + r,

then there exists f = F +G ∈ Q0
H , such that the system{

αzs′(z) + (1 + α)s(z) = F (z);
αzr′(z) + (1− α)r(z) = G(z); z ∈ P.

(22)

holds. Conversely, for any f = F + G ∈ Q0
H , the solution u = s + r,

where s(z) = F (z)∗hα(z), r(z) = G(z)∗kα(z), z ∈ P , of the system (22)
belongs to the class Q0

H(α).

The proof follows by definitions 2, 4, the formulas (18),(20) and
remark 4.

From theorem 1 and in view of (19), (21) it follows

Corolary 2. If u ∈ Q0
H(α), α > 0, then there exists f = F +G ∈ Q0

H ,
such that

u(z) =
1
α

1∫
0

t
1
α

(
F (zt) + t−2G(zt)

)
dt, z ∈ P. (23)

Conversely, if f ∈ Q0
H , f = F +G, then u of the form (23) belongs to the

class Q0
H(α).



122 Z. J. Jakubowski, A. Sibelska

We do not know, if or when for finite α the functions of the form (23)
are typically-real in P .

The main results of this paper were presented during the XI-th Envi-
ronmental Mathematically-Informatical Conference in Che lm (30.06.2005-
03.07.2005)([19]).
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