# HIGHER ORDER SCHWARZIAN DERIVATIVES FOR CONVEX UNIVALENT FUNCTIOS 

M. Dorff, J. Szynal

We observe that in contrast to the class $S$, the extremal functions for the bound of higher order Schwarzian derivatives for the class $S^{c}$ of convex univalent functions are different. We prove the sharp bound for three first consecutive derivatives.

Let $S$ denote the class of holomorphic and univalent functions in the unit disk $\mathbb{D}=z:|z|<1$ of the form

$$
f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\ldots, \quad z \in \mathbb{D}
$$

and $S^{c} \subset S$ the class consisting of convex functions.
Let

$$
S(f)(z)=\left(\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right)^{\prime}-\frac{1}{2}\left(\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right)^{2}, \quad z \in \mathbb{D}
$$

denote the Schwarzian derivative for $f$. Let us denote $\sigma_{3}(f)=S(f)$ and let the higher order Schwarzian derivative be defined inductively (see [5]) as:

$$
\begin{equation*}
\sigma_{n+1}(f)=\left(\sigma_{n}(f)\right)^{\prime}-(n-1) \sigma_{n}(f) \cdot \frac{f^{\prime \prime}}{f^{\prime}}, \quad n \geq 4 \tag{1}
\end{equation*}
$$

In [5] it was proved that the upper bound for $\left|\sigma_{n}(f)\right|, f \in S$ is attained for the Koebe function for each $n=3,4, \ldots$.

In this note we show that situation is different when we deal with the class of convex univalent functions. Because of linear invariance of the class $S^{c}$ one can restrict the considerations to $\sigma_{n}(f)(0):=S_{n}$. We have the following

[^0]Theorem 1. If $f \in S^{c}$, then the following sharp estimates hold:

$$
\begin{gathered}
\left|S_{3}\right|=\left|6\left(a_{3}-a_{2}^{2}\right)\right| \leq 2 \\
\left|S_{4}\right|=24\left|a_{4}-3 a_{3} a_{2}+2 a_{2}^{3}\right| \leq 4, \\
\left|S_{5}\right|=24\left|5 a_{5}-20 a_{4} a_{2}-9 a_{3}^{2}+48 a_{3} a_{2}^{2}-24 a_{2}^{4}\right| \leq 12
\end{gathered}
$$

The extremal functions (up to rotations) have the form

$$
\begin{equation*}
f_{n}(z)=\int_{0}^{z}\left(1-t^{n-1}\right)^{-\frac{2}{n-1}} d t, \quad n=3,4,5 \tag{2}
\end{equation*}
$$

respectively.
Proof. From (1) one can easily find

$$
\begin{gather*}
\sigma_{4}(f)=\frac{f^{\prime \prime \prime \prime}}{f^{\prime}}-6 \frac{f^{\prime \prime \prime} f^{\prime \prime}}{f^{\prime 2}}+6\left(\frac{f^{\prime \prime}}{f^{\prime}}\right)^{3} \\
\sigma_{5}(f)=\frac{f^{\prime \prime \prime \prime \prime}}{f^{\prime}}-10 \frac{f^{\prime \prime \prime \prime} f^{\prime \prime}}{f^{\prime 2}}-6\left(\frac{f^{\prime \prime \prime}}{f^{\prime}}\right)^{2}+48 \frac{f^{\prime \prime \prime} f^{\prime \prime 2}}{f^{\prime 3}}-36\left(\frac{f^{\prime \prime}}{f^{\prime}}\right)^{4} . \tag{3}
\end{gather*}
$$

Note that in [5] there are two misprints in the last formula.
Therefore we have from (3):

$$
\begin{gather*}
S_{3}=6\left(a_{3}-a_{2}^{2}\right) \\
S_{4}=24\left(a_{4}-3 a_{2} a_{3}+2 a_{2}^{3}\right)  \tag{4}\\
S_{5}=24\left(5 a_{5}-20 a_{4} a_{2}-9 a_{3}^{2}+48 a_{3} a_{2}^{2}-24 a_{2}^{2}\right) .
\end{gather*}
$$

We are going to use the connection of the class $S^{c}$ and functions with positive real part in $\mathbb{D}$, as well as the functions satisfying the Schwarz lemma conditions.

Namely we have

$$
\begin{equation*}
f \in S^{c} \Leftrightarrow 1+\frac{z f^{\prime \prime}(z)}{f^{\prime} z}=p(z)=\frac{1+\omega(z)}{1-\omega(z)}, \quad z \in \mathbb{D} \tag{5}
\end{equation*}
$$

where $p(z)=1+p_{1} z+p_{2} z^{2}+\ldots, \operatorname{Re}\{p(z)\}>0, z \in \mathbb{D}$ (i.e., $p \in P$, the class of functions with positive real part) and $\omega(z)=c_{1} z+c_{2} z^{2}+\ldots,|\omega(z)|<$ $1, z \in \mathbb{D}$ (i.e., $\omega \in \Omega$, the class of Schwarz functions).

From (5) we find

$$
S_{3}=2 c_{2}
$$

and because $\left|c_{2}\right| \leq 1-\left|c_{1}\right|^{2}$,

$$
\left|S_{3}\right| \leq 2
$$

which is as well the well-known result of Hummel [1]. The extremal function is

$$
f_{3}(z)=\int_{0}^{z} \frac{d t}{1-t^{2}}=\frac{1}{2} \log \frac{1+z}{1-z} .
$$

The functional $S_{4}$ has a special form of the functional $\mid a_{4}+s a_{2} a_{3}+$ $u a_{2}^{3} \mid, u, s \in \mathbb{R}$ which was estimated sharply for each $s, u \in \mathbb{R}$ in [4] and therefore the result follows by taking $s=-3, u=2$ in Theorem 1 in [4].

The extremal function is determined by taking $\omega(z)=z^{3}$ in (5) which gives (2). Finally in order to get the bound for $\left|S_{5}\right|$ which is complicated we transform it to the class $\Omega$ of Schwarz functions $\omega(z)$.

By equating the coefficients in (5) one can find the relations:

$$
\begin{gathered}
a_{2}=c_{1} \\
a_{3}=\frac{1}{3}\left(c_{2}+3 c_{1}^{2}\right) \\
a_{4}=\frac{1}{6}\left(c_{3}+5 c_{1} c_{2}+6 c+1^{3}\right) \\
a_{5}=\frac{1}{10}\left(c_{4}+\frac{14}{3} c_{3} c_{1}+\frac{43}{3} c_{2} c_{1}^{2}+2 c_{2}^{2}+10 c_{1}^{4}\right),
\end{gathered}
$$

witch transform $S_{5}$ as given by (4) to a nicer form

$$
\begin{equation*}
S_{5}=12\left(c_{4}-2 c_{3} c_{1}+c_{2} c_{1}^{2}\right) \tag{6}
\end{equation*}
$$

Now we can try to estimate (6) by the use of the Carathéodory inequalities applied to the class $\Omega$ as it was done in [4]. However, this leads to very complicated calculations. But one can observe that within the class $\Omega$ the functional $\left|c_{4}-2 c_{3} c_{1}+c_{2} c_{1}^{2}\right|$ and $\left|c_{4}+2 c_{3} c_{1}+c_{2} c_{1}^{2}\right|$ have the same upper bound, because if $\omega(z) \in \Omega$, then $\omega_{1}(z)=-\omega(-z) \in \Omega$.

On the other hand, comparing the coefficients $p_{k}$ and $c_{k}$ in (5) one gets

$$
\begin{gathered}
p_{1}=2 c_{1}, \\
p_{2}=2\left(c_{2}+c_{1}^{2}\right) \\
p_{3}=2\left(c_{3}+2 c_{1} c_{2}+c_{1}^{3}\right), \\
p_{4}=2\left(c_{4}+2 c_{1} c_{3}+c_{2}^{2}+3 c_{1}^{2} c_{2}+c_{1}^{4}\right),
\end{gathered}
$$

from which we obtain that

$$
2\left(c_{4}+2 c_{3} c_{1}+c_{2} c_{1}^{2}\right)=p_{4}-\frac{1}{2} p_{2}^{2} .
$$

Leutwiller and Schober [3] gave the precise bound for $\left|p_{4}-\frac{1}{2} p_{2}^{2}\right| \leq 2$, which implies that $\left|c_{4}+2 c_{3} c_{1}+c_{1}^{3}\right|=\left|c_{4}-2 c_{3} c_{1}+c_{1}^{3}\right| \leq 1$. This completes the proof. The extremal function is obtained by taking $\omega(z)=z^{4}$ in (5).

Note that writing $S_{5}$ with the coefficients of $p_{k}$ leads to another "bad" expression

Remark 1. We conjecture that for every $n=6, \ldots$ the maximal value of $\left|S_{n}\right|$ is attained by the function given by (2).

Remark 2. The application of the general approach to the bound $S_{4}$ and $S_{5}$ would lead within the class $P$ to consideration of functions of the form

$$
p(z)=\sum_{k=1}^{n} \lambda_{k} \frac{1+z e^{-i \theta_{k}}}{1-z e^{-i \theta_{k}}}, n \leq 4
$$

or 5, which is very difficult to handle because it involves long and tedious calculations.

Remark 3. One can observe that the bound for $\left|\sigma_{n}(f)\right|$ given in [5] follows directly from the formula (1) in [5] and the result of R.Klouth and K.-J.Wirths[2].

## Bibliography

[1] Hummel J. A. A variational method for starlike functions / J. A. Hummel // Proc. Amer. Math. Soc. 9(1952). 82-87.
[2] Klouth R. Two new extremal properties of the Koebe-function / R. Klouth, K.-J. Wirths // Proc. Amer. Math. Soc. 80(1980). No. 4. 594-596.
[3] Leutwiller H. Toeplitz forms and the Grunsky-Nehari inequalities / H. Leutwiller, G. Schober // Michigan Math. J. 20(1973). 129-135.
[4] Prokhorov D. V. Inverse coefficients for ( $\alpha, \beta$ )-convex functions / D. V. Prokhorov, J. Szynal // Ann. Univ. Mariae Curie Sklodowska. Sect. A. 35(1981). 125-143.
[5] Schippers E. Distortion theorems for higher order Schwarzian derivatives of univalent functions / E. Schippers // Proc. Amer. Math. Soc. 128(2000). 3241-3249.

Department of Mathematics.
Brigham Young University, Provo, UT 84602, USA
E-mail: mdorffmath@byu.edu
Department of Applied Mathematics
Faculty of Economics, Maria Curie Skłodowska University, 20-031 Lublin, Poland
E-mail: jszynal@hektor.umcs.lublin.pl


[^0]:    (C) M. Dorff, J. Szynal, 1998

