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THE SHARP UPPER BOUND FOR R(A; — AA;) IN U/,

I. NARANIECKA

In this note we determine the exact value of max Re(As —
AA2), A € R, within the linearly invariant family U}, introduced
by V. V. Starkov in [4]. For A = 0 the sharp estimate for |As| fol-
lows. If & = 1 the corresponding result is valid for convex univalent
functions in the unit disk.

1. For given a > 1, we consider the class of holomorphic functions in
the unit disk D = {z : |z] < 1} of the form

f(2) =24+ Ag2? + A32® 4 ... (1)

which are defined by the formula

f'(z) = exp {—2 /0% log(1 — Zeitdu(t))} ; (2)

where p(t) is a complex function of bounded variation on [0, 27] satisfying
the conditions
27

27
[ aun =1, / du(t)] < o 3)

The class U/, has been introduced by Starkov in [4]. The idea of studing
such a class is justified by at least two facts:

1) The class U/, appears to be a linearly invariant family in the sense of
Pommerenke of order «, and can be used for studing the universal
invariant family U, [3].

2) The class U/, generalizes essentially the class Vi—o, of functions
with bounded boundary variation (Paatero class ) and in the sequel
convex univalent functions K = Uj.
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In [5] V. V. Starkov has found sharp bound for |A3| within the class U,
which disproved the Campbell-Cima-Pfaltzgraff conjecture about max | As|
in U,.

In this note we determine

}rcrelaU)z Re (A3 - /\Ag), (4)

for real A, which as a corollary (A = 0) gives the above result of Starkov.

Justification of studing such a functional is highly motivated by corre-
sponding result for the class of univalent functions S [2] (Bombieri Con-
jecture). As a method we are going to use is the variational method of
Starkov for U/, [5].

2. Problem of finding (4) is equivalent to

JIvIéaU);i Re (Cy — \Ch), A ER, (5)

where f/(z) =1+ Ciz+ Cy2? + ..., f € UL.
Because J(f) = Re (C2 — AC1) is a linear functional, then according
to a result of Starkov [4] the extremal function fy(z) is of the form

F3(2) = (1= ze) 7201 (1 — zemit2) =20, ©)
where
t1, t2 € [0, 27] (7)
and
a1 +az=1 and |a1]+ |az| = a. (8)

One cand find that the coeflicients of fy are given by
. . 02 . .
c1 = 2(are™™ +aze” ), ¢y = 51 + aje ¥ 4 goe 22, 9)

Therefore the problem is reduced in finding the maximal value of

Y(ay,as;ty,ta) = Re {2 [awiitl + agefm]Q + [alefml + age%“ﬂ

—2A [aleﬂ'tl + ageﬂ“]}
(10)
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where t1, ta, a1, as are satysfying the conditions (7) and (8) Moreover
same extra conditions follow from the extremality of fo [4] (see below).
We will start with simple technical lemma.

LEMMA 1. Ifa; = |ai|e® and as = |as]e’”? and

{al + ag = 1 (11)

|a1|+|a2|:a>1

then 3 w3
sin o —sin G
a =, a - - ].2
| 1| Sln(ﬁg - ﬂl) | 2| SIH(QQ — 61) ( )
Moreover, 31 and (B2 satisfy the condition
- —1
COS@ = acos b 5 A = tan%tan% = —Z+1 =A. (13)

PROOF. The system (11) can be written in the real form:

lax| cos By + [aa] cos B = 1
lay|sin 81 + |ag|sin B2 =0
lai| + |az| = a.

Solution of the first two equations by Cramer’s rule is unique and given

by (12). (If sin(B2 — B1) = 0 then the above system has no solution).

Substitution of (12) into the equation |a;| + |az| = « gives (13) after
slight calculations.
The following lemma plays important rule.

LEMMA 2. The extremal function fq for functional (5) has real coefficient
Cl.

PROOF. If fy € U], is an extremal function, then for any ¢ € (0,1), the
following variation f. of f belongs to U :

1) = [ (ol s "
=14ci(e)z+ca(e)® +... €U,
But
ca(e) — Acr(e) = o — 2ielm co + (1 — 5)(|cl|2 — Re cf) — AMep — 2ielm &)

= (cg — Aey) — 2ieIm cg + 2idelm ¢ +<(|e1]? — Re ¢1) + o(e)
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which implies
J(fe) = T (fo) + e(le1’ = Re cf) + Re o(e).
The extermality of fo: J(f:) < J(fo), when £ — 0, gives the condition
le1]? — Re ¢ < 0 which implies Im ¢; = 0,

due to the form of our functional (5).

. If Im [aye™ " + aze™"2] = 0 then either: both ™' and e~*2 are real,

or e—’l,tz — elf,l — e—it1.

Denote:
1 21
cosB=—, sinf= L,
« «
3*0[2 . 3\/0[2 -1 (15)
cosp = ———, sinpg=——
ova?+3 ova?+3
T=p0+ g, r=t+0
We have:

THEOREM 1. If f € Ul and f'(2) =1+ c12 + co2? + ... then

;Ié&lt]){i Re(ea — Aep) = @(tp)

where
d(t) = a® + (3 —a?)cos2t +3v/a2 — 1sin 2t — 2) (cost —Va?— lsint)
(16)
and
to = to(a, A) € (0,2m) (17)
is the root of the equation: Asinx —+v/a? 4+ 3-sin (2z — 27) = 0, for which
© (to) < 0.
PROOF. Let f € U/ and
2 )
7 =ep{ =2 [0 (1- s dutt) | = explo(2) o)
0

=14C1z+Co2%+....
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The functional J(f) = Re(Cy — AC) is a linear and continuous on
the compact family U/, and therefore it attains its sharp bounds on it.
V. V. Starkov [3] has proved, that if F(f) = F(¢)is Fréchet differen-
tiable and its differential functional on U}, with differential L, (k), and
max Re F(p) is attained for a jump function u(¢) with n jumps at points
tj, j=1,...,n and jumps ; = arg du,(t;) (we assume that at least two
jumps 6; are different), then the following system of equations holds

{Re {eiejL(pn {%(Z,tj)]} =0 (19)
Im [(e" =€) (Ly, [9(2, )] = L, [9(z, tm)])] = 0.

In our case J(f) = Re (Cy — AC1) s Fréchet differentiable and its differ-
ential is given by the formula:

Ly(h) = {hexpp}, — AMhexpp},

where h = —2log(1 — ze~%) = g(z,t) and {F(2)}, denotes the p-th
coefficient of F'.
In our problem the extremal function has the form :

fo2) =14 crz+ez? +... = (1 — ze” 1) 7201 (] — e~ itz) 7202

where t1,ts € [0,27], a1 + az = 1, |a1| + |az| = a.
Because the Fréchet differential is equal to

Log 1) [—2log(1 — ze_it)] =e 2 427 (¢ — N),
the conditions (19) take the form

Im [e1 (e721 4 e~ (c; — )] =0
Im [ei[b (672“2 +e 2 (cy — )\))} =0
Im [(ePr — e?2) (e7211 — 7202 4 2(¢; — A) (e — e~ 2))] = 0.
(20)
The information that for the extremal function fy the coefficient ¢; is real
ie.

Im ¢; = 0 <= sin o sin(f — t1) — sin Fy sin(By — t2) =0 (21)

implies e™2 = e~ which gives to = —t1, or that e~** and e~*2 are real.
In the case when e~% and e~*2 are real we obtain either contradiction or
the result for U; = K which is in the Corollary at the end of the papers.
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In the case €2 = e~ ie. ty = —t; the first two equations of (20)
are
sin(fB1 — 2t1) + (c1 — A sin(B1 —t1) =0 (22)
Sil’l(ﬁg — 2t2) + (Cl — /\) Sil’l(ﬁ2 — tz) =0
which together with (21) for to = —t; implies that 82 = —f;.
Substitution 8y = —f; into (12) and (13) give
« 1 1
|a1|=|a2|:§; cos 31 = —; cos By = —;
Q
(23)
. a?—1 . —VaZ -1
sin 81 = ——; sinffy = ———
o o
Putting now t; =t € [0,27], to = —t1 = —t, a1 = %eiﬁ, as = %e*iﬁ we
obtain
Re(cy — Aeyp) := ®(t) = o + (3 — a?) cos 2t + 3/a? — 1sin 2t (24)

—2X(cost — Va2 — 1sin t).
Using notations (15) we obtain:
d(t) = ®(z) = o® + a/a? + 3cos(2z — 27) — 2hacos z. (25)
The equation ®'(z) = 0 is equivalent to
—Asinz + Va2 + 3sin(2z — 27) =0 (26)
or
4(a® + 3)sin® z — 4002 + 3sin 27 sin® & + A2 — 4(a? + 3)] sin’
+2)\/a? + 3sin 27 sinz + (a® +3)sin® 27 = 0,
which ends the proof.
COROLARY. If f € U; = K then

max(As — M) =1+, AeR.
z
142

The extremal functions have the form fo(z) =
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