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Introduction

In this note we obtain several sharp distance estimates in spaces of
analytic spaces in tube domains over symmetric cones.

This line of investigation can be considered as a continuation of pre-
vious papers [1], [2] and [3].

These new results are contained in the second and third section of
this note. We remark that for the first time in literature we consider this
extremal problem related to distance estimates in spaces of analytic func-
tions on tube domains over symmetric cones. The first section contains
required preliminaries on analysis on symmetric cones.

In one dimensional tubular domain which is upperhalfspace C+ (see
[4]) our theorems are not new and they were obtained recently in [5].

Moreover, arguments in proofs we provided below are similar to those
we have in one dimension and the base of proof is again the so-called
Bergman reproducing formula, but in the tubular domain over symmetric
cone. (see, for example, [4] for this integral representation).

We shortly remind the history of this problem.
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No. 13-353 01-97508) and by the Ministry of Education and Science of the Russian
Federation (project No. 1.1704.2014K).
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After the appearance of [6] various papers appeared where arguments
which can be seen in [6] were extended and modifyied in various directions
[1 – 3].

In particular in mentioned papers various new results on distances
for analytic function spaces in higher dimension (unit ball and polydisk)
were obtained. Namely new results for large scales of analytic mixed norm
spaces in higher dimension were proved.

Later several new sharp results for harmonic functions of several vari-
ables in the unit ball and upperhalfplane of Euclidean space were also
obtained, see, for example, [1] and references there.

We mention separatly [5] and [7] where the case of higher dimension
was considered in special cases of analytic spaces on subframe and new
analogues results in the context of bounded strictly pseudoconvex domains
with smooth boundary were also provided.

The classical Bergman representation formula in various forms and in
various domains serves as a base in all these papers in proofs of main
results.

We would like to note also the recent results, obtained by Wen Xu
in [8], repeating arguments of Ruhan Zhao in the unit ball, on distances
from Bloch functions to some Mobius invariant function spaces in one and
higher dimension in a relatively direct way.

Probably for the first time in literature these extremal problems are
connected with distances in analytic spaces appeared before in [9] and in
[10] where this problem was formulated and certain cases connected with
spaces of bounded analytic functions in the unit disk were considered.

These results were mentioned [11], some other results on distance prob-
lems in BMOA spaces may be found also in [12].

Various other extremal problems in analytic function spaces also were
considered before in various papers, see for example [13 – 16].

In those papers other results around this topic and some applications
of certain extremal problems may also be found.

The goal of this note is to develop further some ideas from our recent
mentioned papers and present a new sharp theorem in a tube domain over
symmetric cones.

It is worth nothing note that in the case of upper halfplane of complex
plane C which is a tube domain in one dimension such results have already
been obtained previously by author [5]. Recently authors obtained a series
of sharp results for distances in analytic function spaces on products of
various domains (Siegel domains of second type, tubular domains). For
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formulation of our results we will need various standard definitions from
the theory of tube domains over symmetric cones (see [4], [17–19]).

Let TΩ = V + iΩ be the tube domain over an irreducible symmetric
cone Ω in the complexification V C of an n-dimensional Euclidean space V .
H(TΩ) denotes the space of all holomorphic functions on TΩ. Following
the notation of [18] and [4] we denote the rank of the cone Ω by r and by
∆ the determinant function on V .

Letting V = Rn, we have as an example of a symmetric cone on Rn

the Lorentz cone Λn which is a rank 2 cone defined for n ≥ 3 by

Λn = {y ∈ Rn : y21 − · · · − y2n > 0, y1 > 0}.

The determinant function in this case is given by the Lorentz form

∆(y) = y21 − · · · − y2n

(see for example [4]).
Let us introduce some convenient notations regarding multi-indices.
If t = (t1, . . . , tr), then t⋆ = (tr, . . . , t1) and, for a ∈ R, t + a =

= (t1 + a, . . . , tr + a). Also, if t, k ∈ Rr, then t < k means tj < kj for all
1 ≤ j ≤ r.

We are going to use the following multi-index

g0 =

(
(j − 1)

d

2

)
1≤j≤r

, where (r − 1)
d

2
=

n

r
− 1.

For τ ∈ R+ and the associated determinant function ∆(x) [4] we set

A∞
τ (TΩ) =

{
F ∈ H(TΩ) : ∥F∥A∞

τ
= sup

x+iy∈TΩ

|F (x+ iy)|∆τ (y) < ∞
}
.

(1)
It can be checked that this is a Banach space . Below we denote by

∆s the generalized power function [18], [4].
For 1 ≤ p, q < +∞ and ν ∈ R, and ν > n

r − 1 we denote by Ap,q
ν (TΩ)

the mixed-norm weighted Bergman space consisting of analytic functions
f in TΩ such that

∥F∥Ap,q
ν

=

(∫
Ω

(∫
V

|F (x+ iy)|pd x
)q/p

∆ν(y)
d y

∆(y)n/r

)1/q

< ∞.
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This is a Banach space.
Replacing above A by L we will get as usual the corresponding larger

space of all measurable functions in tube over symmetric cone with the
same quazinorm (see [18], [19]).

It is known that the Ap,q
ν (TΩ) space is nontrivial if and only if ν >

> n
r − 1, (see [17], [4]).
When p = q we write (see [4])

Ap,q
ν (TΩ) = Ap

ν(TΩ).

This is the classical weighted Bergman space with usual modification when
p = ∞.

The (weighted) Bergman projection Pν is the orthogonal projection
from the Hilbert space L2

ν(TΩ) onto its closed subspace A2
ν(TΩ) and it is

given by the following integral formula (see [4])

Pνf(z) = Cν

∫
TΩ

Bν(z, w)f(w)dVν(w), (2)

where
Bν(z, w) = Cν∆

−(ν+n
r )((z − w)/i)

is the Bergman reproducing kernel for A2
ν(TΩ) (see [18], [4]).

Here we used the notation dVν(w) = ∆ν−n
r (v)dudv. We denote by

dV (w) or dv(w) the Lebegues measure on tubular domain over symmetric
cone. Below and here we use constantly the following notations w =
= u+ iv ∈ TΩ and also z = x+ iy ∈ TΩ.

Hence for any analytic function from A2
ν(TΩ) the following integral

formula is valid (see also [4])

f(z) = Cν

∫
TΩ

Bν(z, w)f(w)dVν(w). (3)

In this case sometimes below we say simply that the f function allows
Bergman representation via Bergman kernel with ν index.

Note that these assertions have direct copies in simpler cases of ana-
lytic function spaces in unit disk, polydisk, unit ball, upperhalfspace C+

and in spaces of harmonic functions in the unit ball or upperhalfspace
of Euclidean space Rn These classical facts are well-known and can be
found, for example, in [20] and in some items from references there.

Above and throughout the paper we write C (sometimes with indexes)
to denote positive constants which might be different each time we see
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them (and even in a chain of inequalities), but are independent of the
functions or variables being discussed.

In this paper we will also need a pointwise estimate for the Bergman
projection of functions in Lp,q(TΩ), defined by integral formula (2), when
this projection has sense. Note that such estimates in simpler cases of
unit disk, unit ball and polydisk are well-known (see [20]).

Let us first recall the following known basic integrability properties for
the determinant function, which appeared already above in definitions.

Lemma 1. Let α ∈ Cr and y ∈ Ω.
1) The integral

Jα(y) =

∫
Rn

∣∣∣∣∆−α

(
x+ iy

i

)∣∣∣∣ dx
converges if and only ifReα > g∗0+

n
r . In this case Jα(y) = Cα|∆−α+n/r(y)|.

2) For any multi-indices s and β from Cr and t ∈ Ω the function

y 7→ ∆β(y + t)∆s(y)

belongs to L1(Ω, dy
∆n/r(y)

) if and only if Re(s) > g0 and Re(s+ β) < −g∗0 .

In this case we have∫
Ω

∆β(y + t)∆s(y)
dy

∆n/r(y)
= Cβ,s∆s+β(t).

We refer to Corollary 2.18 and Corollary 2.19 of [17] for the proof of
the above lemma or [4].

As a corollary of one dimensional versions of these estimates (see, for
example, [19] Theorem 3.9) we obtain the following vital estimate (A)
which we will use in proof of our main result.∫

TΩ

∆β(y)|Bα+β+n
r
(z, w)|dV (z) ≤ C∆−α(v), (A)

β > −1, α > n
r − 1, z = x+ iy, w = u+ iv (see [19]).

Let τ be the set of all triples (p, q, ν) such that 1 ≤ p, q < ∞, ν > n
r −1.

The following vital pointwise estimate can be found, for example, in
[4].
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Lemma 2. Suppose (p, q, ν) ∈ τ . Then

|Pνf(z)| ≤ cp,q,r,ν,n∆
− ν

q −
n
rp (Im z)∥f∥Ap,q

ν
. (4)

Proof. This is a consequence of the lemma formulated above and Hölder’s
inequality (see [4]). □

Let Hp(TΩ) be standard Hardy space in tubular domain over symmet-
ric cone. Let further Hp

α(TΩ) be weighted Hardy class with ∆α(y) weight,
see [4].

These are spaces with finite norm

sup
y∈Ω

∫
Rn

|f(τ + iy)|pdτ∆pα(y),

1 ≤ p < ∞, α ∈ R.
Let 1 ≤ p < ∞, 1 ≤ q < ∞. Let also q ≤ s. Then (see [4]) Ap,q

ν ⊂ Hs
β ,

where ν > n
r − 1 and where β = ν

q + n
rp − n

rs . For p = q = s this
embedding with appropriate estimate is taking obviously a very simple
form (see [4] proposition 3.5) and the distance problem here can be easily
posed again obviously in general case and in mentioned simple case. Note
that for analytic and harmonic function spaces it was posed and solved in
[1 – 3]. Repeating arguments from these papers, an analogous result can
also be obtained, using approaches we provided above. This will be done
in section 2.

We define H̃p
s , 1 ≤ p < ∞, s ∈ R as a subset of Hp

s so that for each f
function from that subset the Bergman representation formula with large
enough α0 index is valid.

§ 1. New estimates for distances distA∞
α
(f, Ap

t ) in
analytic function spaces in tube domains over

symmetric cones

In this paper we restrict ourselves to a irreducible symmetric cone Ω
in the Euclidean vector space Rn of dimension n, endowed with an inner
product for which the cone Ω is self dual. We denote by TΩ = Rn + iΩ
the corresponding tube domain in Cn.

This section is devoted to formulations and proofs of some of our main
results of this paper. As previously in case of an analytic functions in a
unit disk, a polydisk, a unit ball, and an upperhalfspace C+ and in the
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case of spaces of harmonic functions in Euclidean space [1 – 3], [5 – 7] the
role of the Bergman representation formula is crucial in these issues and
our proof is heavily based on it.

As it is known a variant of Bergman representation formula is available
also in Bergman-type analytic function spaces in tubular domains over
symmetric cones and this well-known fact (see [4], [17 – 19]), which is also
crucial in various problems in analytic function spaces in tubular domains
(see [4] and various references there) and is used also in our proofs below.

The following result can be found in [19] (section 4).

For all 1 < p < ∞ and 1 < q < ∞ and for all
n

r
≤ p1, where

1

p1
+

1

p
= 1, and

n

r
− 1 < ν, and for all functions f from Ap,q

ν and for all

n/r − 1 < α the Bergman representation formula with α index or with
the Bergman kernel Bα(z, w) is valid.

We remark that this result is a particular case of a more general as-
sertion for analytic mixed norm Ap,q

ν classes (see [19]) which means that
our main result below admits also some extensions, even to mixed norm
spaces which we defined above, this will be discussed below at the end
and in our next paper which is in preparation.

We will also need for our proofs the following important fact on integral
representations (see [21]). Let ν > n

r −1, α > n
r −1, then for all functions

from A∞
α the integral representations of Bergman with Bergman kernel

Bα+ν(z, w) (with α+ ν index) is valid.
We note also that by Lemma 2 we have

|f(x+ iy)|∆
n
rp+

ν
q (y) ≤ cp,q,r,ν∥f∥Ap,q

ν
, (5)

x+iy ∈ TΩ, (p, q, ν) ∈ τ . This means that we have a continuous embedding
Ap

ν ↪→ A∞
n
rp+

ν
p
for (p, p, ν) ∈ τ and this naturally leads to a problem of

estimating
distA∞

n
rp

+ ν
p

(f,Ap
ν)

for a given f ∈ A∞
n
rp+

ν
p
.

This problem is solved in our next theorem below, which is the main
result of this section. Let us set, for f ∈ H(TΩ), s ∈ R and ϵ > 0:

Vϵ,s(f) = {x+ iy ∈ TΩ : |f(x+ iy)|∆s(y) ≥ ϵ} . (6)
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Let also w = u + iv ∈ TΩ, z = x + iy ∈ TΩ. We denote by N1 and by
N2 two sets – the first one is Vϵ,s(f), the other one is the set of all those
points, which are in tubular domain TΩ, but not in N1.

Theorem 1. Let 1 < p < ∞, ν > p(nr − 1), β > t+ n
r − 1 , t = 1

p (ν+
n
r ).

Set, for f ∈ A∞
n
rp+

ν
p
:

l1(f) = distA∞
n
rp

+ ν
p

(f,Ap
ν), (7)

l2(f) = inf

{
ϵ > 0 :

∫
TΩ

(∫
Vϵ,t(f)

∆β−t−n
r (v)dudv

∆β+n
r

(z−w)
i

)p

∆ν−n
r (y)dxdy < ∞

}
(8)

Then there is a positive number β0, so that for all β > β0 we have
l1(f) ≍ l2(f).

Proof. We will use for our proofs the following observation (see [21]).
Let ν > n

r − 1, τ > n
r − 1, then for all functions from A∞

τ the integral
represenations of Bergman with Bergman kernel

Bτ+ν(z, w)

is valid.
We denote below the double integral which appeared in formulation

by G(f) and we will show first that l1(f) ≤ Cl2(f). We assume now that
l2(f) is finite.

We use the Bergman representation formula which we provided above,
namely (3), and using conditions on parameters we have the following
equalities.

First we have obviously by remark, with which we started this proof,
that for large enough β

f(z) = Cν

∫
TΩ

Bβ(z, w)f(w)dVβ(w) = f1(z) + f2(z),

f1(z) = Cν

∫
N2

Bβ(z, w)f(w)dVβ(w),

f2(z) = Cν

∫
N1

Bβ(z, w)f(w)dVβ(w).

Then we estimate both functions separately using lemmas provided
above and following some arguments we provided in one dimensional case
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that is the case of upper-half space C+ (see [5]).Here our arguments are
sketchy since they are parallel to arguments from [5]. Using definitions of
N1 and N2, proposed above, after some calculations, following arguments
from [5] and using estimation (A), we will have immediately

f1 ∈ A∞
n
rp+

ν
p

and
f2 ∈ Ap

ν .

We easily note that the last inclusion follows directly from the fact
that l2 is finite.

Moreover, it can be easily seen that the norm of f1 can be estimated
from above by Cϵ, where for some positive constant C (see [5]), since
obviously

sup
N2

|f(w)|∆t(v) ≤ ϵ.

Note that this last fact follows directly from the definition of N2 set and
estimates in lemma above which leads to the following inequality which
was denoted by us as (A) (see also [19]).∫

TΩ

∆−t(y)|Bβ(z, w)|dVβ(z) ≤ C∆−t(v),

z = x+iy, w = u+iv, for all β so that β > β0, for some large enough fixed
β0 which depends on n, r, ν, p and for t = ( 1p )(ν + n

r ) and ν > p(nr − 1)

(see [19] Theorem 3.9).
This gives immediately one part of our theorem. Indeed, we have

obviously

l1 ≤ C2∥f − f2∥A∞
t

= C3∥f1∥A∞
t

≤ C4ϵ.

It remains to prove that l2 ≤ l1. Let us assume that l1 < l2. Then
there are two numbers ϵ and ϵ1, both positive such that there exists fϵ1 ,
so that this function is in Ap

ν and ϵ > ϵ1 and also the following conditions
holds

∥f − fϵ1∥A∞
t

≤ ϵ1

and G(f) = ∞, where G is a double integral in formulation of theorem in
l2 (see (8)).
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Next from
∥f − fϵ1∥A∞

t
≤ ϵ1

we have the following two estimates, the second one is a direct corollary
of the first one. First we have for z = x+ iy

(ϵ− ϵ1)τVϵ,t(z)∆
−t(y) ≤ C|fϵ1(z)|,

where τVϵ,t(z) is a characteristic function of V = Vϵ,t(f) set we have
defined above.

And from the last estimation we have directly multiplying both sides
by Bergman kernel Bβ(z, w) and integrating by tube TΩ both sides with
the measure dVβ

G(f) ≤ C

∫
TΩ

(L(fϵ1))
p∆ν−n

r (y)dydx,

where
L = L(fϵ1 , z)

and

L(fϵ1 , z) =

∫
TΩ

|fϵ1(w)||Bβ(z, w)|dVβ(w).

Denote this expression by I. Put β + n
r = k1 + k2, where k1 = β − n

r − µ,
k2 = µ+ 2n

r (
1
p + 1

p1
).

By classical Holder inequality with p and p1, p
−1 + p−1

1 = 1 we obvi-
ously have Ip ≤ CI1I2, where

I1(f) =

∫
TΩ

|f1(z)|p|∆s((z − w)/i)|∆(β−n
r )p(y)dxdy,

I
p1
p

2 =

∫
TΩ

|∆v((z − w)/i)|dxdy,

where f1 = fϵ1 and s = µp− 2n
r − βp+ pn

r , v = −2n
r − µp1.

Choosing finally µ, so that the estimate (A) can be used twice above
and finally making some additional calculations we will get what we need.

Note here we have to use the fact that

ν > p
(n
r
− 1
)
,

which was given in formulation of our theorem.
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Hence we have now,∫
TΩ

(∫
TΩ

|fϵ1(z)|Bβ(z, w)|dVβ(z)

)p

∆ν−n
r (v)dV (w) ≤ C∥fϵ1∥

p
Ap

ν

G(f) ≤ C∥fϵ1∥Ap
ν
,

but we also have fϵ1 ∈ Ap
ν .

This will give as a contradiction with our assumption above that
G(f) = ∞. So we proved the estimate which we wanted to prove. The
proof of our first theorem is now complete. □

Finally, we add some vital remarks. Similar results are also true for
certain analytic Besov spaces namely Bp,q

ν classes in tube domains over
symmetric cones. To get such result for these classes we have to repeat
arguments in proofs of theorems above and use at final step in proofs the
embedding theorems which connect them directly with Bergman spaces
(see [17], [22]). For almost all facts we mention below we refer the reader,
for example, to [22]. We refer the reader to the definition of analytic
Besov Bp,q

ν spaces to [22]. In the following result we use the notation

qν,p = (min(p, p1))qν , qν =
ν +

n

r
− 1

n

r
− 1

,
1

p
+

1

p1
= 1. The problem on

distances in analytic Besov spaces can still be posed since

Bp,q
ν ⊂ A∞

n
rp+

ν
q

for ν > 0, 1 ≤ p < ∞, 1 < q < Qν,p, for certain Qν,p, Qν,p =
ν+n

r −1

L ,
L = max (0, n

rp1
− 1), for n

r ≤ p1 we put Qν,p = ∞, [19]. Note that the
following estimate is true qν,p ≤ Qν,p. Various projection theorems in
analytic Besov spaces in tube domains over symmetric cones have been
well studied recently in [22]. Note B2

0 = H2, where Hp is analytic Hardy
space in tube domain over symmetric cone.

We remark (see [22]) that the Ap,q
ν class for values of parameters which

we consider is a dense subspace of Bp,q
ν and hence the Bergman representa-

tion formula is valid for all functions from this Besov class [22]. Note also
that the Bergman representation formula with Bergman kernel with index
α is valid for all functions from Ap,q

ν for α > n
r − 1 and for 1 ≤ p < ∞,

and 1 ≤ q < Qν,p (see for example [19] and references there). We can
hence formulate our theorem via analytic Besov spaces. The restriction



On extremal problems in tubular domains over symmetric cones 55

on p from formulation of previous theorems will be replaced by new re-
strictions on p via Qν,p and qν,p which allows to use embeddings we need,
connecting analytic Besov and Bergman classes (see [19], [22]) and which
also allows to pose a problem on distances in analytic Besov class.

§ 2. On new sharp estimates for distHv
s
(f,Av

ν) and new
related estimates for mixed norm spaces

In this section we consider extremal problems based on embeddings
connecting analytic Hardy and Bergman spaces in tubular domains.

Let Ls,ε,v(f) =

{
y ∈ Ω :

(∫
Rn

|f(x+ iy)|vdx
) 1

v

(∆s(y)) ≥ ε

}
for ε > 0, s > 0, v > 0 and for an analytic function in TΩ tube.

Note, as we mentioned above, that Av
ν is embedded in Hv

s for s = ν
v

so we can pose a distance problem, 1 ≤ v < ∞.

Theorem 2. Let s = ν
v , 1 ≤ v < ∞, s ∈ R, ν > v(nr − 1). Let f ∈

∈ H̃v
s . Then we have l1(f) ≍ l2(f); where l1(f) = distHv

s
(f,Av

ν);
n
r < v′;

1
v + 1

v′ = 1.

l2(f) = inf

{
ε > 0 :

∫
Ω

(
τLε,s,v(f)(y)

) (
∆−n

r (y)
)
dy < ∞

}
.

Proof. (of one part of theorem 2).
First we prove that l1(f) ≥ l2(f) in a general form for Av,p

sp spaces. Let
us assume that l1 < l2. Then there are two numbers ε, ε1, ε > 0, ε1 > 0
such that fε1 ∈ Av,p

ν ; ε > ε1, ∥f − fε1∥Hv
s
≤ ε1 and∫

Ω

(
τLε,s(f)(y)

) (
∆−n

r (y)
)
dy = ∞.

We consider general case now. Hence we have(∫
Rn

|fε1(τ + iy)|vdτ
) 1

v

(∆s(y)) ≥ ∆s(y)

(∫
Rn

|f(τ + iy)|vdτ
) 1

v

−

− sup
y∈Ω

[∆s(y)]

(∫
Rn

|f(τ + iy)− fε1(τ + iy)|vdτ
) 1

v

≥

≥ (∆s(y))

(∫
Rn

|f(τ + iy)|vdτ
) 1

v

− ε1.
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Hence we have now

(ε− ε1)
p

∫
Ω

(∆(y))α̃
[
λL̃ε,s

(f)(y)
]
dy ≤

≤ c

∫
Ω

(∫
Rn

|fε1(τ + iy)|vdτ
) p

v

∆sp(y)∆α−n
r (y)dy

where α̃ = −n
r + α for any α ≥ 0. We have a contradiction. □

We actually proved the following theorem:

Theorem 3. Let sp > n/r − 1; p ≤ v; v ∈ [1,∞), p ∈ [1,∞), s ∈ R,
f ∈ H̃v

s , Then

distHv
s
(f,Av,p

sp ) ≥ inf

{
ε > 0 :

∫
Ω

τL̃ε,s,v
(f)(y)× (∆−n/r(y))dy < ∞

}
;

Lε,s,v(f) =

{
y ∈ Ω :

(∫
Rn

|f(x+ iy)|vdx
) 1

v

∆s(y) ≥ ε

}
.

Remark 1. Note that for v = p = 1, this result is known (see [23]).

We will return to p = v case and below we’ll show sharp theorem 2.
Note for that we have to prove only the reverse part since one part follows
from theorem 3.

Note again that

Ap,q
ν =

f ∈ H(TΩ) :

∫
Ω

∫
Rn

|f(x+ iy)|pdx


q
p (

∆ν−n/r(y)
)
dy


1
q

< ∞

 ;

1 ≤ p, q < ∞, ν > n
r − 1.

Note that the base of problem is the embedding Ap,v
ν ⊂ Hs

β ; 1 ≤ p <

< ∞; 1 ≤ v < ∞; v ≤ s; ν > n
r − 1; β = ν

v + n( 1
rp − 1

rs ) (see [23], [4]).
Note if v = p, s = 1 then we have

1) Ap
ν = Ap,p

ν ⊂ Hs
β ; 1 ≤ p < ∞; p ≤ s; ν > n

r − 1; β = ν
p + n

r

(
1
p − 1

s

)
;

2) If v = s = 1 we have then Ap,1
ν ⊂ H1

β ; 1 ≤ p < ∞; ν > n
r − 1;

β = ν + n
r

(
1
p − 1

)
;

3) If p = s, ν = β, Ap,1
β ⊂ Hp

β ; 1 ≤ p < ∞, ν > n
r − 1;
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4) If p = 1, v = s, A1,s
ν ⊂ Hs

β ; s ≥ 1; ν > n
r − 1; β = ν

s + n
r (1− 1/s).

Each embedding poses dist problem which was partially solved in
theorem 3 by us.
The mentioned four cases are of main interest for this paper and
we will focus on them now trying to prove a new result in all cases
separately, note that for p = 1; s = 1 all cases coincide and the
sharp theorem was already proved before in [23].

Theorem 4.

1) Let 1 ≤ p < ∞; ν > n
r −1; β = ν+(n/r)(1/p−1). Then let f ∈ H̃1

β ,

then l1(f) ≤ l2(f), where l1(f) = distH̃1
β
(f,Ap,1

ν );

l2(f) = inf

{
ε > 0 :

∫
Ω

(
τLε,β,1(f)(y)

) (
∆−n

r (y)
)
dy < ∞

}
.

2) Let v ≥ 1; ν > n
r − 1. Let f ∈ Hv

s then l1(f) ≥ l2(f), where
l1(f) = distHv

s
(f,A1,v

ν );

l2(f) = inf

{
ε > 0 :

∫
Ω

(
τLε,s,v(f)(y)

) (
∆−n

r (y)
)
dy < ∞

}
,

s = ν
v + n

r (1−
1
v ).

3) Let f ∈ H̃v
s , s = ν/v, v ≥ 1, ν

v − n
r ≥ 1, ν > n

r − 1. Then l1(f) is
equivalent to l2(f),

l1(f) = distH̃v
s
(f,Av,1

ν
v
);

l2(f) = inf

{
ε > 0 :

∫
Ω

(
τLε,s,v(f)(y)

) (
∆−n

r (y)
)
dy < ∞

}
.

Proof. Note that the partial assertions of theorem 4 and theorem 2 can
be seen in theorem 3 which we already proved. It remains to show the
reverse in these assertions to get sharp theorem. We have the following
chain of estimates. We will need some embeddings.

Note first if ν > n
r − 1; 1 ≤ p < ∞; ν + n

r (
1
p − 1) > −1 + n

r∫
Ω

(∫
Rn

|f(x+ iy)|pdx
)1/p

∆ν−n
r (y)dy ≤

≤ c

∫
TΩ

|f(x+ iy)|∆ν+n
r ( 1

p−1)−n
r (y)dxdy. (A1)
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Since Ap,q
β (TΩ) ⊂ As,t

ν (TΩ): 1 ≤ p ≤ s < ∞, 1 ≤ q ≤ t < ∞,

ν, β > n
r − 1, β

q + n
rp = ν

t + n
rs (see [4]) (in our case p = q = 1; s = p;

t = 1; β + n
r = ν + n

rp ; β = ν + n
rp − n

r = ν + n
r (1/p− 1)) and

Av,1
ν
v

⊂ Av
ν ; v ≥ 1, ν ≥ v(

n

r
− 1). (Ã)

Remark 2. Approaches we will use in proofs can be applied also for
bounded pseudoconvex domains namely unit ball in Cn. This will extend
our previous assertions from [24] where we obtained result for v = 1 case.

Let us first show if f function has compact support and if f ∈ H1
ν then

we can use Bergman representation (reproducing) formula (for all values
of ν). Indeed if f ∈ H1

ν then we use the estimate(∫
Ω

(∫
Rn

|f(x+ iy)|dx
)q

∆α−n
r (y)dy

)1/q

≤

≤ c

(
sup
y∈Ω

(∫
Rn

|f(x+ iy)|dx
)q

(∆qν(y))

)1/q

×

×
(∫

Ω

∆α−n
r −qν(y)dy

)1/q

≤ c1∥f∥H1
ν

(B)

if α > n
r − 1; α − n

r − qν < −2n
r + 1 (and similarly Hv

ν ⊂ Av,q
α for all

q > q0, α > n
r − 1, v ≥ 1). This follows from the well-known estimate of

integral

Iα,β(t) =

∫
Ω

∆α(y + t)∆β(y)dy; α, β ∈ R

(see [4]). So now we have H1
ν ⊂ A1,q

α if q is large enough α > n
r − 1 but

for all α̃ > n
r − 1, f ∈ A1,q

α ; 1 ≤ q < ∞ (see [19]).

f(z) =

∫
TΩ

(Bα̃(z, w))(f(w))(∆
α̃−n

r (Imw))dv(w), z ∈ TΩ, (K1).

dv(w) = dudv, w = u+ iv. This is what we need. (Note similar argument
works for Hk

ν , k ≥ 1). □
In general case (not only for f functions with compact support as we

had above) the mentioned above embeddings between weighted Hardy
and Bergman spaces are also true (see [21 – 22]). The proof is the same
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as in one-dimensional case of analytic functions in the unit disk and it is
based on a fact that Lp(Rn) norm of f function is monotone in cone and
on existence of r−lattice of cone with nice properties (see [21–22]).

As we mentioned a part of theorem 4 (l1 ≥ l2) and first part of theorem
2 (l1 ≥ l2) follows from proof of theorem 3. The reverse (l1 ≤ l2) is similar
to proof of theorem 2 for v = 1, in addition in proof embeddings (A1), (Ã)
should be used. We show now the sharpness (reverse implication l1 ≤ l2)
in theorems 2 and 4 showing first the basic main case v = p = 1.

Based on (K1), we have now that the following decomposition holds
f = f1 + f2; z = x+ iy, w = u+ iv, z ∈ TΩ, w ∈ TΩ

f1(z) =

∫
Lε,ν

∫
Rn

Bα̃(z, w)f(w)(∆
α̃−n

r (Imw))dv(w);

f2(z) =

∫
Ω\Lε,ν

∫
Rn

Bα̃(z, w)f(w)(∆
α̃−n

r (Imw))dv(w); f ∈ H1
ν .

It remains to show that for large enough α̃

∥f2∥H1
ν
< ∞, (9)

∥f1∥A1
ν
< ∞. (10)

This gives what we need (sharpness of theorem 2 and half of theorem
4 for v = p = 1).

We have

distH1
ν
(f,A1

ν) = inf
g∈A1

ν

∥f − g∥H1
ν
≤ c∥f − f1∥H1

ν
= ∥f2∥H1

ν
< ∞

To show (9) we have to use the well known estimates for ∆t, Bα. We have
now by Fubbini’s theorem∫

Rn

|f2(x+ iy)|dx∆ν(y) ≤

≤
∫
Rn

∆ν(y)

∫
Ω\L

∫
Rn

|Bα̃(z, w)||f(w)|∆α̃−n
r (Imw)dv(w)dx ≤

≤ c

(
∆ν(y)

∫
Rn

∫
Ω\L

)∫
Rn

|Bα̃(z, w)||f(w)|∆α̃−n
r (Imw)dv(w)dx ≤
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≤ c∆ν(y)

∫
Ω\L

∫
Rn

|f(w)|∆α̃−n
r (v)∆−α̃(v + y)dv(w) ≤

≤ εc∆ν(y)

∫
Ω

∆−α̃(v + y)∆α̃−n
r −ν(v)dv ≤ εc;

α̃ >
n

r
− 1; ν >

n

r
− 1; w = u+ iv, z = x+ iy.

To show (10) (and then based on (A1) theorem 4 (part 1)) we have to
use the following estimates∫
TΩ

|f1(x+ iy)|∆ν−n
r (y)dxdy ≤ c∥f∥H1

ν

∫
Lε,ν(f)

∆α̃−n
r −ν(v)

∆α̃−ν(v)
dv ≤ c∥f∥H1

ν
.

To set these estimates note that (see [1])∫
TΩ

|Bα̃(z, w)|dvν̄(z) =
∫
TΩ

|Bα̃(z, w)|∆ν−n
r (y)dxdy ≤ c∆−(α̃−ν)(v);

dvν̄ = (∆ν̄(y))dxdy; ν̄ = ν − n

r
, w = u+ iv, z = x+ iy,

see also [4]; for large enough α̃. Theorems 2 and 4 for v = 1 = s = p are
proved. Using (A1) Theorem 4.1) is proved also.

Remark 3. We can use Ap
s ⊂ Ap̃,q

ν to set various not sharp results too.

Proof. (general case). The proof of sharpness of theorem 2 (general case)
is now a modification of proof of particular case we had above. First we
have to show that if f ∈ Hv

s then for large enough α̃, α̃ > α0

f(z) =

∫
Ω

∫
Rn

Bα̃(z, w)f(w)∆
α̃−n

r (Imw)dv(w).

For this we have to use also a known fact that (see [19])

f(z) =

∫
TΩ

Bα̃(z, w)f(w)∆
α̃−n

r (Imw)dv(w),

for all α̃ if α̃ > n
r −1; f ∈ Ap,q

ν ; 1 ≤ p < ∞; and if 1 ≤ q < ν+ n
r −1 = q̃ν,p;

or (q̃ν,p) = ∞; if n
r ≤ p′; 1

p + 1
p′ = 1, ν > n

r − 1.

Under condition n
r < p′ we put v = p and our estimate (B) set what we

need for any f function with compact support. Following the [4] (proof of
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theorem 4.10) and previous theorem we have to show (f1 and f2 defined
above) ∥f2∥Hv

s
< εc1 and ∥f1∥Av

ν
< c∥f∥Hv

s
; n

r < v′; ν > n
r − 1; s = ν

v ;
1 ≤ v < ∞, 1

v′ +
1
v = 1.

Note these estimates for v = 1 are obtained previously in [23]. We are
now using Minkowski and Young’s inequality

∥f2∥Hv
s
≤ c sup

y
[∆s(y)]×

×

(∫
Rn

(∫
Ω\Lε

∫
Rn

|Bα̃(z, w)||f(w)|
[
∆α̃−n

r (Imw)
]
dv(w)

)v

dx

) 1
v

≤

≤ c sup
y
[∆s(y)]

∫
Ω\Lε

[
∆−α̃(Im z + Imw)

]
[∥f(w)∥Lv ]∆α̃−n

r (Imw)dṽ ≤

≤ εc sup
y
(∆s(y))

(∫
Ω

∆−α̃(x+ y)∆α̃−n
r
−s(x)dx

)
≤ cε; ṽ = Imw;

Using (Ã) we also have

∥f1∥Av
ν
≤ c

∫
Ω

∆
ν
v
−n

r (ỹ)

(∫
Rn

|f1(x+ ỹi)|vdx
) 1

v

dỹ ≤
∫
Ω

[
∆

ν
v
−n

r (ỹ)
]
×

×
∫
Lε

∆−α̃(ỹ + y)∥fy∥Lv∆α̃−n
r (y)dydỹ ≤ c1∥f∥Hv

s
×

×
∫
Lε

∫
Ω

∆
ν
v
−n

r (ỹ)∆−α̃(ỹ + y)dỹ∆α̃−n
r
−s(y)dy ≤ c2∥f∥Hv

s
; ν >

(n
r
− 1
)
v;

α̃ > α0;
We above used Minkowski and then Young’s inequality. Theorem 2 is

proved. □

We show now the sharpness in theorem 4 (part 3). The proof is very
similar to proofs of previous assertion we just finished and careful analysis
of that proof shows it is actually contained there. Theorem is proved.

§ 3. On new estimates for distA∞
α
(f,Aq,p

ν )

Here we provide another sharp theorem for dist function and add some
vital related remarks.

In our previous theorem 1 we solved distA∞
α
(f,Aq

ν) problem based on
embedding Aq

ν ⊂ A∞
α ; for certain fixed ν; 1 ≤ q < ∞ where Aq

ν = Aq,q
ν ,

A∞
α =

{
f ∈ H(TΩ) : sup

z∈TΩ

|f(x+ iy)|∆α(y) < ∞
}
; α ≥ 0, z = x+ iy.
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We generalize this result to Ap,q
α . The distance problem still can be

posed since we have an embedding

sup
z∈TΩ

|F (z)|∆
n
rp+

ν
q (y) ≤ c∥F∥Ap,q

ν
, p, q ∈ [1,∞); ν >

n

r
− 1 (K)

(see [4], [23]).
So we can pose a dist problem based on this inclusion.

Remark 4. Note that if {Bj} is an r-lattice in tubular domain TΩ then
we have for all p ∈ (0,∞), ν > n

r − 1∑
j≥0

∆ν−n
r (ζi)

∫
Bj

|g(ζ)|pdζ ≤ ∥g∥p
Ap,p

ν
≤ c

∑
j≥0

∆ν−n
r (ζi)

∫
Bj

|g|pdζ;

(see [4], [23]).
We define a space Sp,q

α as a space of analytic functions with norms

∑
j

∆α(ζj)

(∫
Bj

|g(ζ)|pdζ

) q
p

; 1 ≤ p, q < ∞, α > 0

and using for fixed ν, t the fact that Ap,p
ν ⊂ Ap,q

t , p ≤ q (see above) we
can pose various other dist problems based on these inclusions. Note we
have also similarly, (see [4])

∥F∥Ap,q
ν

≍

∑
j

∆ν(yj)∥F (◦+ iyj)∥qp

 1
q

; 1 ≤ p, q < ∞, ν >
n

r
− 1,

for {yj} lattice in symmetric cone Ω, where the inner norm is the norm of
Hardy space. We can then define similarly Mp,q

ν classes. From here for ex-
ample various problems of estimates of distSp,q

α
(f,Av,s

t ) or distAp,q
α

(f, Sv,s
t )

(or with M instead of S) functions with some restrictions on v, s, p, q, t, α
arise naturally. This will be the base of our further work in this direction.

The following theorem for classical BergmanAp
ν spaces has been proved

above. We formulate it again for readers convenience.

Theorem A. Let 1 ≤ p < ∞, ν > p
(
n
r − 1

)
; β0 > t + n

r − 1; t =

= 1
p

(
ν + n

r

)
. Let f ∈ A∞

t . Then for all β, β > β0

l1 = distA∞
t
(f,Ap

ν) ≍
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≍ inf

ε > 0 :

∫
TΩ

 ∫
Vε,t(f)

∆β−t−n
r (Im z)

∆β+n
r ( z−w̄

i
)

dudv


p

∆ν−n
r (y)dxdy < ∞

 = l2(f),

where Vε,t(f) = {z ∈ TΩ : |f(z)|∆t(Im z) ≥ ε}.

We generalize this theorem to mixed norm Ap,q
ν spaces below.

Let Bβ,µ =
µ+

n

r
− 1

β
; Aβ,µ =

µ− (
n

r
− 1)

β − (
n

r
− 1)

.

Theorem 5. Let β0 > t+
n

r
−1; t =

n

rs
+
µ

q
; f ∈ A∞

t . Let also µ >
n

r
−1,

s, q ∈ [1,∞); β0 >
n

r
− 1; q <

µ+
n

r
− 1

n
r − 1

. Let also

Vε,t = {z ∈ TΩ : |f(z)|∆t(Im z) ≥ ε}; z = x+ iy; w = u+ iv. Then for
all β > β0, we have

distA∞
t
(f,As,q

µ ) ≍

≍ inf
{
ε > 0 :

∫
Ω

∫
Rn

 ∫
Vε,t(f)

∆β−t−n
r (Im z)dxdy

∆β+n
r ( z−w̄

i
)


s

du


q
s

∆µ−n
r (v)dv < ∞}.

The proof of this theorem follows immediately from arguments of proof
of previous theorem 1 and the theorem below on boundedness of Bergman
projection in mixed norm spaces with positive Bergman kernel. Note also
that the half of theorem (one implication) is immediately follows from the
arguments of the proof of theorem 1.

Theorem 6. (see [19]). Let µ, ν ∈ R, 1 ≤ p, q < ∞, let also

P+
µ f(z) =

∫
TΩ

|f(w)|∆µ−n
r (Imw)dv(w)∣∣∆µ+n
r

(
z−w̄
i

)∣∣ ;

then P+
µ is bounded on (Lp,q

ν )(TΩ); µ, ν >
n

r
− 1; if and only if

max(A,B) ≤ q <
ν +

n

r
− 1

n

r
− 1

; B = Bµ,ν , A = Aµ,ν .

We omit details leaving them to readers. The proof will be given in
our another paper.
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Remark 5. Some results of this paper have also direct analogues for
harmonic function spaces with mixed norm of several variables in unit
ball and upper half spaces, see also [1], [25] for related results in particular
values of parameters.

This work partially was done by authors during the visit of first author
to IMAR (Romania) at the end of 2012. The author thanks IMAR for
support.
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