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OPTIMAL BOUNDS FOR CERTAIN BIVARIATE MEANS

Abstract. New bivariate means, introduced and investigated in
[1], play a central role in this work. The lower and upper bounds
for those means are obtained. Bounding quantities are the one-
parameter means derived from the harmonic and contraharmonic
means by forming convex combinations of the variables of these
two means.
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§ 1. Introduction

Recently several researchers have obtained optimal bounds for some
bivariate means such as logarithmic mean, two Seiffert means, Neuman-
Sándor mean, Neuman means, to mention few. The optimal bounds are
the other bivariate means which are simpler than those for which the
optimal bounds are sought. For more details the interested reader is
referred to [1 – 7] and the references therein.

This paper deals with optimal lower and upper bounds for the family of
bivariate means introduced in [1] and is organized as follows. In Section 2
we give definition and some basic properties of the generic one-parameter
family of means. Definitions of bivariate means used in this paper are
given in Section 3. In particular, we include there formulas for the four
new means investigated in [1]. Optimal bounds for these means are es-
tablished in Section 4. The bounding quantities are the one-parameter
generalizations of either the harmonic or the contraharmonic means.

c⃝ Edward Neuman, 2014



36 Edward Neuman

§ 2. Definition and basic properties of the
one-parameter family of means

For the reader’s convenience we recall definition and basic properties
of the one-parameter family of bivariate means. Following [3] we define
two nonnegative numbers w1 and w2:

w1 =
1 + p

2
, w2 =

1− p

2
, (2.1)

where the parameter p satisfies 0 ≤ |p| ≤ 1. Clearly w1 + w2 = 1. In
what follows (a, b) will stand for the pair of unequal positive numbers.
We associate with (a, b) another pair of positive numbers (x, y), where

x = w1a+ w2b, y = w1b+ w2a. (2.2)

Thus x and y are the convex combinations of a and b. One can easily
verify that (for 0 < p ≤ 1) a < x < y < b if a < b or b < y < x < a if
b < a.

For the sake of presentation let N stand for a generic bivariate sym-
metric mean. We define a one-parameter mean Np(a, b) ≡ Np as follows

Np(a, b) = N (x, y). (2.3)

In the sequel we will call mean Np the p-mean or the p-mean generated
by N .

We recall now some elementary properties of the p-means. Using (2.3),
(2.1), and (2.2) we see that

N−p(a, b) = N (y, x) = N (x, y) = Np(a, b).

Thus the function p → Np is an even function. Without a loss of generality
we may assume that 0 ≤ p ≤ 1. It follows from (2.1) and (2.2) that

N0 = A, N1 = N . (2.4)

Moreover, the function p → Np is strictly decreasing if N < A, i. e.,

N1 ≤ Np ≤ N0 (2.5)

or is strictly increasing if N > A, i. e.,

N0 ≤ Np ≤ N1. (2.6)
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§ 3. Bivariate means used in this paper

In this section we give definitions and formulas of certain bivariate
means used in the next section of this paper.

First we define a number v as follows

v =
a− b

a+ b
. (3.1)

Clearly 0 < |v| < 1.
The arithmetic, harmonic and contraharmonic means of a and b, de-

noted respectively by, A, H and C, are defined in usual way

A =
a+ b

2
, H =

2ab

a+ b
and C =

a2 + b2

a+ b
.

One can easily verify that

H = A(1− v2) and C = A(1 + v2).

The p-means generated by H and C are denoted, respectively, by Hp

and Cp. It is an elementary task to show that

Hp = A(1− (pv)2) and Cp = A(1 + (pv)2). (3.2)

We recall now formulas for the four means which play a central role in
this paper. They have been introduced and studied in [1]:

NAG =
1

2
A

(
1 + (1− v2)

tanh −1v

v

)
, (3.3)

NGA =
1

2
A

(√
1− v2 +

sin−1 v

v

)
, (3.4)

NQA =
1

2
A

(√
1 + v2 +

sinh −1v

v

)
, (3.5)

NAQ =
1

2
A

(
1 + (1 + v2)

tan−1 v

v

)
, (3.6)

where the symbols G and Q stand for the geometric and the root-square
means of a and b, respectively. Recall that

G =
√
ab and Q =

√
a2 + b2

2
.
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The four means defined in (3.3)–(3.6) are special cases of the Schwab-
Borchardt mean SB which is defined as follows

SB(a, b) ≡ SB =


√
b2 − a2

cos−1(a/b)
if a < b,

√
a2 − b2

cosh −1(a/b)
if b < a

(see, e.g., [9], [10]). This mean has been studied extensively in [11], [12],
and in [13]. It is well known that the mean SB is strict, nonsymmetric
and homogeneous of degree one in its variables. The Schwab-Borchardt
mean is the iterative mean, i. e.,

SB = lim
n→∞

an = lim
n→∞

bn ,

where

a0 = a, b0 = b, an+1 =
an + bn

2
, bn+1 =

√
an+1bn

(n = 0, 1, . . .).
The four means under discussion are defined in terms of SB, A, G and

Q as follows: NAG = SB(A,G), NGA = SB(G,A), NQA = SB(Q,A) and
NAQ = SB(A,Q).

All the means mentioned above are comparable. It is known that (see
[5, Theorem 4.2])

H < G < NAG < NGA < A < NQA < NAQ < Q < C. (3.7)

As in [1] we call means given in (3.3) – (3.6) the four new means.

§ 4. Optimal bounds for the four new means

The goal of this section is to obtain optimal bounds for the four new
means defined in the previous section with the bounding quantities being
either the p-mean generated the harmonic mean or the p-mean generated
by the contraharmonic mean.

In the proofs presented in this section we will utilize the following
result (see, e.g., [14]).
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Theorem A. Let the functions f and g be continuous on [c, d], differen-
tiable on (c, d) and such that g′(t) ̸= 0 on (c, d). If f ′(t)/g′(t) is (strictly)
increasing (decreasing) on (c, d), then the functions

f(t)− f(d)

g(t)− g(d)
and

f(t)− f(c)

g(t)− g(c)

are also (strictly) increasing (decreasing) on (c, d).

In what follows we will assume that the numbers p and q are belong to
the unit interval [0, 1]. We are in a position to prove the following result.

Theorem 1. The following two-sided inequality

Hp < NAG < Hq (4.1)

is valid provided

p ≥
√

1

2
= 0.707106 . . . and q ≤

√
1

3
= 0.577350 . . . . (4.2)

Proof. Making use of (3.3) and (3.2) we see that the two-sided inequality
(4.1) inequality can be written as follows

q2 <
1

2v2

[
1− (1− v2)

tanh −1v

v

]
< p2.

Letting v = tanh t (t > 0) we obtain

q2 < ϕ1(t) < p2,

where

ϕ1(t) =
f(t)

g(t)
:=

sinh t cosh 2t− t cosh t

2 sinh 3t
.

Differentiation yields

f ′(t)

g′(t)
=

3 sinh 2t− 2t

6 sinh 2t
=

1

6

(
3− 2t

sinh 2t

)
:= h1(t).

Since the function 2t/ sinh 2t is strictly decreasing on the interval (0,∞)
we conclude that the function h1(t) is strictly increasing on the same do-
main. Application of Theorem A leads to the conclusion that the function
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ϕ1(t) is also strictly increasing on the interval (0,∞). One can easily ve-
rify that ϕ1(0

+) = 1/3 and ϕ1(∞−) = 1/2. This completes the proof of
(4.1) with the domains of validity for p and q as stated in (4.2). □

In the next theorem we give optimal bounds for the mean NGA in
terms of the p-mean generated by the harmonic mean.

Theorem 2. The inequalities

Hp < NGA < Hq (4.3)

are satisfied if

p ≥
√
1− π

4
= 0.463252 . . . and q ≤

√
1

6
= 0.408248 . . . . (4.4)

Proof. First we shall write the double inequality (4.3) in the equivalent
form. Making use of (3.4) together with the application of the first part
of (3.2), followed by a substitution v = sin t (0 < t < π/2), yields after
a little algebra,

q2 < ϕ2(t) < p2, (4.5)

where

ϕ2(t) =
f(t)

g(t)
:=

2 sin t− t− sin t cos t

2 sin3 t
.

Differentiation gives

f
′
(t)

g′(t)
=

1

6
sec 2(

t

2
) := h2(t).

Clearly the function h2(t) is strictly increasing on the interval (0, π/2). We
utilize Theorem A again to conclude that the function ϕ2 is also strictly
increasing on the same interval. It is easy to verify that

ϕ2(0
+) =

1

6
and ϕ2(

π

2
) = 1− π

4
.

This in conjunction with (4.5) yields the bounds for p and q as stated in
(4.4). □

In the following theorem we shall establish optimal bounds Cp and Cq

for the mean NQA.
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Theorem 3. If p = 0 and q ≥
√

1

6
= 0.408248 . . . , (4.6)

then Cp < NQA < Cq. (4.7)

Proof. We follow the lines of the proofs of two theorems already estab-
lished in this section. Making use of the second formula of (3.2) and (3.5)
we can write inequality (4.7) in the equivalent form as

p2 <
1

v2

[
1

2

(√
1 + v2 +

sinh −1v

v

)
− 1

]
< q2.

With the substitution v = sinh t (t > 0) the last double inequality be-
comes

p2 < ϕ3(t) < q2, (4.8)

where

ϕ3(t) =
f(t)

g(t)
:=

sinh t cosh t+ t− 2 sinh t

2 sinh 3t
.

Differentiating f(t) and g(t) we obtain, upon simplifications,

f
′
(t)

g′(t)
=

1

6 cosh 2(t/2)
:= h3(t).

Clearly function h3(t) is strictly decreasing on the interval (0,∞). This
in conjunction with Theorem A leads to the conclusion that the func-
tion ϕ3(t) is strictly decreasing on the the positive semi-axis. Utilizing
L’Hôpital rule we obtain ϕ3(0

+) = 1/6 and ϕ3(∞−) = 0. Combining this
with (4.8) yields (4.6). The proof is complete. □

We close this section with the following.

Theorem 4. The two-sided inequality

Cp < NAQ < Cq (4.9)

holds true if

p ≤
√
π − 2

2
= 0.534226 . . . and q ≥

√
1

3
= 0.577350 . . . . (4.10)
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Proof. Making use of the second formula of (3.2) and (3.6) one can rewrite
inequality (4.9) as follows

p2 <
1

2v2

[
(1 + v2)

tan−1 v

v
− 1

]
< q2.

With v = tan t (0 < t < π/4) the last two-sided inequality becomes

p2 < ϕ4(t) < q2, (4.11)

where

ϕ4(t) =
f(t)

g(t)
:=

t cos t− sin t cos2 t

2 sin3 t
.

This yields
f

′
(t)

g′(t)
=

1

6

(
3− 2t

sin 2t

)
:= h4(t).

Taking into account that the function 2t/ sin 2t is strictly increasing on the
interval (0, π/4) we conclude that the function h4(t) is strictly decreasing
on the same interval. This in turn, in view of Theorem A, implies that
the function ϕ4(t) is strictly decreasing. Simple calculations yield

ϕ4(0
+) =

1

3
and ϕ4(π/4) =

π − 2

4
.

This in conjunction with (4.11) yield the bounds (4.10). □
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