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B. F. Ivanov

ANALOG OF AN INEQUALITY OF BOHR FOR
INTEGRALS OF FUNCTIONS FROM Lp(Rn). I

Abstract. Let p ∈ (2,+∞], n ≥ 1 and ∆ = (∆1, . . . ,∆n),
∆k > 0, 1 ≤ k ≤ n. It is proved that for functions γ(t) ∈ Lp(Rn)
spectrum of which is separated from each of n the coordinate
hyperplanes on the distance not less than ∆k, 1 ≤ k ≤ n respec-
tively, the inequality is valid:∥∥∥∥∥∥

∫
Et

γ(τ) dτ

∥∥∥∥∥∥
L∞(Rn)

≤ Cn(q)

[
n∏

k=1

1

∆
1/q
k

]
∥γ(τ)∥Lp(Rn) ,

where t = (t1, . . . , tn) ∈ Rn, Et = {τ | τ = (τ1, . . . , τn) ∈ Rn,
τj ∈ [0, tj ], if tj ≥ 0, and τj ∈ [tj , 0], if tj < 0, 1 ≤ j ≤ n}, and
the constant C(q) > 0,

1

p
+

1

q
= 1 does not depend on γ(τ) and

vector ∆.
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Let us consider an arbitrary Λ > 0 and denote by P (Λ) the set of all
finite trigonometric sums

p(t) =
N∑

m=1

pme
iλmt,

the Fourier exponents of which satisfy the following condition

min
1≤m≤N

|λm| ≥ Λ.

H.Bohr announced [1] and proved [2] that for such sums the next
inequality, which later ([3–5] and etc.) was named after Bohr, is valid

|p(t)| ≤ π

2Λ
∥dp(t)/dt∥L∞(R1) , p(t) ∈ P (Λ),

c⃝ Ivanov B. F., 2014
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There exist several generalizations of this inequality – the details see in
the author’s paper [6]. The author’s generalization was proposed in the
article [6] mentioned above. Unlike other authors results in [6] the Bohr
inequality was considered as the inequality which gives the estimation
of the integral of the function via the norm of this function for some
subclasses of the Lp(Rn) space for p ∈ (1, 2]. The proof of the main results
in [6] were significantly based on Hausdorff–Young inequality which did
not permit to extend the obtained results to the case p > 2. In present
paper the case p ∈ (2,+∞] is considered.

Let p ∈ (2,+∞], n ≥ 1, ∆ = (∆1,∆2, . . . ,∆n) is any vector with
positive coordinates and t = (t1, t2, . . . , tn) ∈ Rn.

Let us introduce the following designations:

1) Q(∆) =
n∪

k=1

{y | y = (y1, y2, . . . , yn) ∈ Rn, |yk| < ∆k}, i. e. Q(∆) –

“cross” origin neighborhood in Rn;
2) Γ(Rn \ Q(∆), p) – the set of all functions γ(t) ∈ Lp(Rn), the Fourier
transformations supporters of which are in Rn \Q(∆);
3) Et = {τ | τ = (τ1, τ2, . . . , τn) ∈ Rn, τj ∈ [0, tj ], if tj ≥ 0, and τj ∈ [tj , 0],
if tj < 0, 1 ≤ j ≤ n} – is the parallelepiped in Rn.

The main assertion of this paper is the theorem 3.2, section 3, which
is the following.

Theorem 3.2. Let n ≥ 1, p ∈ (2,+∞] and ∆ = (∆1, . . . ,∆n), ∆k > 0,
1 ≤ k ≤ n. Then for any function γ(τ) ∈ Γ(Rn \ Q(∆), p) the next
inequality is fulfilled:∥∥∥∥∥∥

∫
Et

γ(τ)dτ

∥∥∥∥∥∥
L∞(Rn)

≤ Cn(q)

[
n∏

k=1

1

∆
1/q
k

]
∥γ(τ)∥Lp(Rn) , (0.1)

where
1

p
+

1

q
= 1, and the constant C(q) > 0 does not depend on γ(τ)

and vector ∆.

Let us note that if n = 1 and p = +∞ then the inequality (0.1) may
be obtained from [4] and [5].

The assertion of the theorem 3.2 for n = 1 was essentially employed
by the author for the construction of the frequency criteria of the boun-
dedness and smoothness in Frechet sense with respect to the parameters
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of the ordinary differential equation systems solutions [7], and also for the
boundedness of the nonlinear differential equations solutions [8].

The paper consists of the introduction and the three sections the first
two of which are preliminary and the third contains theorem 3.2.

The proposed article contains §1, §2 and presents the first part of the
paper; the main second part contains §3 and is prepared for publication.

The author expresses his deep gratitude to professor N.A. Shirokov
for his attention to this research and valuable advices on it.

§1. Designations and Lemma on the Fourier
Transformation Support of Several Functions

Product

The section begins with the notation form choice of the Fourier trans-
formation and the summary of several notations of the standard formulas
following from such form. Thereafter the lemma 1.1 on the Fourier trans-
formation support of several functions product in the case which is not
suited for the direct employment of general theorems (for instance, [9,
ch. 1, §5], [10, ch. 2, §7 ]) on the existence of resultant and on the support
is proved. The assertion of lemma 1.1 will be used in §3.

Let n ≥ 1. Following [11, p. 77], let us denote the Fourier transforma-
tion of the function by u(t) ∈ L1(Rn) as û(y), where y ∈ Rn, but following
[12, p. 425], let us choose û(y) as

û(y) =

∫
Rn

e−i(y,t)u(t)dt.

The reciprocal Fourier transformation of the function v(y) ∈ L1(Rn),
also following [11, p. 77], let us designate as ṽ(t), t ∈ Rn, where ṽ(t)
according [12, p. 427] has the form:

ṽ(t) =

(
1

2π

)n ∫
Rn

ei(y,t)v(y)dy.

Following [11, p. 73], [9, p. 31], let us denote the space of infinitely
differentiable rapidly decreasing at infinity functions by S(Rn), and [11,
p. 77] S′(Rn) — the space of slowly increasing distributions, i. e. [10,
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p. 149], the space of slow growth distributions, i. e. the space of linear con-
tinuous functionals on S(Rn). According to [11, p. 73], [10, p. 15] let us de-
note the space of finite infinitely differentiable functions on Rn by D(Rn),
and the space of linear continuous functionals on D(Rn) by D′(Rn).

Let us associate with each complex valued locally integrable function
γ(t), t ∈ Rn, the functional [9, p. 30, p. 32]

(γ, φ) =

∫
Rn

γ(t)φ(t)dt, φ(t) ∈ D(Rn).

The distributions from D′(Rn), generated by locally integrable func-
tions, are called [11, p. 75] the regular functions. Since D(Rn) is densely
embedded in S(Rn) then S′(Rn) ⊂ D′(Rn). As is known [11, p. 77], for
example, the functionals generated by functions γ(t) ∈ Lp(Rn), p ≥ 1, are
the slowly increasing distributions.

The linear continuous functional on S(Rn), designated as γ̂(y) and
defined (with regard to the choice of the definition for (γ, φ) and the form
of Fourier transformation) as

(γ̂, φ̂) = (2π)n(γ, φ)

is called the slowly increasing function Fourier transformation.
According to the introduced designations we obtain the known formu-

las (see, for instance, [10, ch. II, §9] ) in the following form:

{γ̂1(y) ∗ γ̂2(y)}̃ (t) = (2π)nγ1(t) · γ2(t)
{γ̂1(y) · γ̂2(y)}̃ (t) = γ1(t) ∗ γ2(t)

}
(1.1)

Let n ≥ 2, 1 ≤ k < n and ∆k+1, . . . ,∆n > 0. Let us designate

G(∆k+1, . . . ,∆n) =
n∪

β=k+1

{y | y = (y1, . . . , yn) ∈ Rn, |yβ | < ∆β}.

If n− k = 1 then G(∆n) is the direct product of Rn−1 by the interval
(−∆n, ∆n). If n − k > 1 then G(∆k+1, . . . ,∆n) is the direct product
of Rk by “cross” neighborhood of zero in Rn−k = {y | y = (yk+1, . . . , yn),
yj ∈ R1, k + 1 ≤ j ≤ n}.

Lemma 1.1. Let n ≥ 2, 1 ≤ k < n, p ∈ [1,+∞], the functions gλ(θ) ∈
∈ Lq(R1),

1

p
+

1

q
= 1, 1 ≤ λ ≤ k, γ(τ) ∈ Lp(Rn), ∆ = (∆1, . . . ,∆n) – the
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vector with positive coordinates and supp γ̂(y) ∩Q(∆) = ∅. Then(
supp

{
γ(τ1, . . . , τk, τk+1, . . . , τn)

k∏
λ=1

gλ(τλ)

}
(̂y)

)∩
∩
G(∆k+1, . . . ,∆n) = ∅.

Proof. Let us show that for any test function φ̂(y) ∈ S(Rn), such that

supp φ̂(y) ⊂ G(∆k+1, . . . ,∆n) (1.2)

the following equality is fulfilled({
γ(τ1, . . . , τk, τk+1, . . . , τn)

k∏
λ=1

gλ(τλ)

}
(̂y), φ̂(y)

)
= 0,

which implies the lemma assertion.
Let us take the arbitrary test function φ̂(y) ∈ S(Rn) such that

supp φ̂(y) ⊂ G(∆k+1, . . . ,∆n),

and construct the sequence {φm(y)}∞m=1 of the test finite functions con-
verging to φ̂(y) in the sense of convergence in the space S(Rn) and satis-
fying for each m = 1, 2 . . . the following conditions:

1) supp φm(y) ⊆ supp φ̂(y), (1.3)

2) supp φm(y) ⊂ G(∆k+1, . . . ,∆n) ∩ {y | y = (y1, . . . , yn),
|yj | < 3m, 1 ≤ j ≤ n}. (1.4)

Following [9, p. 32], let us denote the infinitely differentiable function
which is unit valued in the cube {y | y = (y1, . . . , yn), |yj | ≤ 1, 1 ≤ j ≤ n},
and zero valued outside the cube {y | y = (y1, . . . , yn), |yj | ≤ 2, 1 ≤ j ≤
≤ n} by e1(y), y ∈ Rn and set

φm(y) = φ̂(y) · em(y), em(y) = e1

(
1

m
y

)
, m = 2, 3, . . .

Then:

supp φm(y) ⊆ supp φ̂(y) ∩ supp e1

(
1

m
y

)
. (1.5)
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From (1.5) we obtain:

1) the assertion (1.3),

2) supp φm(y) ⊆ supp e1

(
1

m
y

)
= {y | y = (y1, . . . , yn), |yj | ≤ 2m,

1 ≤ j ≤ n} ⊂ {y | y = (y1, . . . , yn), |yj | < 3m, 1 ≤ j ≤ n}. (1.6)

Since according assumption supp φ̂(y) ⊂ G(∆k+1, . . . ,∆n), then (1.4)
follows from (1.3) and (1.6). Besides, the definition of the function em(y)
implies that φm(y) = φ̂(y) in the cube {y | y = (y1, . . . , yn), |yj | ≤ m, 1 ≤
≤ j ≤ n}.

Let r = (r1, r2, . . . , rn) be any vector with nonnegative integer coordi-
nates. Then as m→ ∞ :

∂r1+r2+···+rn

∂yr11 ∂y
r2
2 . . . ∂yrnn

φm(y1, y2, . . . , yn) = Dr

{
φ̂(y) e1

(
1

m
y

)}
=

= {Drφ̂(y)} e1
(

1

m
y

)
+
O(1)

m
.

Thus we obtain:
1) the φm(y) derivatives of any order in any bounded domain uniformly
converge to corresponding derivative of the function φ̂(y) as m→ ∞;
2) since we may point out U(0, b) — the ball of radius b > 0 such that
supp φ̂(y) ⊂ U(0, b), then (1.3) implies that supp φm(y) ⊂ U(0, b)
for any m = 1, 2, . . . and consequently for any k = (k1, k2, . . . , kn),
r = (r1, r2, . . . , rn), where k1, k2, . . . , kn, r1, r2, . . . , rn are the nonnega-
tive integer numbers:

|ykDrφm(y)| =
∣∣∣∣yk1

1 yk2
2 . . . ykn

n

∂r1+r2+···+rnφm(y)

∂yr11 ∂y
r2
2 . . . ∂yrnn

∣∣∣∣ <
< bk1+k2+...+kn |Drφm(y)| ≤ Ckr,

moreover the constants Ckr may be chosen independent of m.
Thus the sequence φ1(y), φ2(y), . . . , φm(y), . . . converges to φ̂(y) in the

sense of convergence in S(Rn).
Further since the inclusion (1.4) is strict and the set supp φm(y) is

closed and bounded, then at each m = 1, 2, . . . there exists the set of n−k
positive numbers ρk+1(m), ρk+2(m), . . . , ρn(m) such that ∆j > 3ρj(m) >
> 0, k + 1 ≤ j ≤ n and

supp φm(y) ⊂ G(∆k+1 − 3ρk+1(m), . . . ,∆n − 3ρn(m))∩
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∩{y | y = (y1, . . . , yn), |yj | < 3m, 1 ≤ j ≤ n}. (1.7)

Thus for any test function φ̂(y) ∈ S(Rn), satisfying (1.2) we have:({
γ(τ1, . . . , τk, τk+1, . . . , τn)

k∏
λ=1

gλ(τλ)

}
(̂y), φ̂(y)

)
=

= lim
m→∞

({
γ(τ1, . . . , τk, τk+1, . . . , τn)

k∏
λ=1

gλ(τλ)

}
(̂y), φm(y)

)
, (1.8)

where φm(y), m = 1, 2, . . . satisfies (1.7).
In the equality (1.8) the set supp φm(y) is contained, according (1.7),

in the set of some complex form which is the intersection of the cube in
Rn with the edge 6m and the set G(∆k+1−3ρk+1(m), . . . ,∆n−3ρn(m)).
For each m = 1, 2, . . . let us transform the expression, which is under the
integral in the right-hand side of (1.8), changing the function φm(y) by the
sum of functions the support of which is contained in the set more simple
in some sense, namely in the parallelepiped which is the direct product of
the cube in Rn−1 with the edge 6m by some small interval specified for
each parallelepiped.

Let a, b > 0, m ≥ 1 and k be from the lemma assumption. Let us
introduce some designations:
1) η(θ, a, b), θ ∈ R1 is the auxiliary infinitely differentiable function, satis-
fying the following conditions: η(θ, a, b) = 1, if |θ| ≤ a, and η(θ, a, b) = 0,
if |θ| ≥ a+ b;
2) φm(k + 1, y) = φm(y) · η(yk+1,∆k+1 − 3ρk+1(m), ρk+1(m));
3) φm(k+l, y) = [φm(y)−φm(k+1, y)−. . .−φm(k+l−1, y)] η(yk+l,∆k+l −
− 3ρk+l(m), ρk+l(m)), 2 ≤ l ≤ n− 1;
4) φm(n, y) = φm(y)− φm(k + 1, y)− . . .− φm(n− 1, y).

Then:

φm(y) = φm(k+1, y)+φm(k+2, y)+ . . .+φm(n−1, y)+φm(n, y). (1.9)

Let us note some properties of the functions φm(k + l, y), 1 ≤ l ≤ n.
The definition implies that the function η(yk+1,∆k+1−3ρk+1(m), ρk+1(m))
is infinitely differentiable with respect to yk+1 ∈ R1, equals 1 for |yk+1| ≤
≤ ∆k+1−3ρk+1(m) and equals zero for |yk+1| ≥ ∆k+1−2ρk+1(m). Hence
the function φm(k + 1, y) is infinitely differentiable and φm(k + 1, y) =
= φm(y), when

y ∈ supp φm(y) ∩ {y | y = (y1, . . . , yn), |yk+1| ≤ ∆k+1 − 3ρk+1(m)}.
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Besides supp φm(k + 1, y) ⊆ supp φm(y) ∩ {y | y = (y1, . . . , yn), |yk+1| <
< ∆k+1 − 2ρk+1(m)}.

Thus (1.6) implies that supp φm(k + 1, y) ⊂ {y | y = (y1, . . . , yn),
|yi| < 3m, 1 ≤ i ≤ n, i ̸= k + 1, |yk+1| < ∆k+1 − 2ρk+1(m)}.

Further for l = 2, . . . , n :
the functions φm(k + l, y) are, evidently, infinitely differentiable and

supp φm(k + l, y) ⊂ {y | y = (y1, . . . , yn), |yi| < 3m, 1 ≤ i ≤ n,

i ̸= k + l, |yk+l| < ∆k+l − 2ρk+l(m)}, 2 ≤ l ≤ n− 1; (1.10)

φm(n, y) is infinitely differentiable and

supp φm(n, y) ⊂ {y | y = (y1, . . . , yn), |yi| < 3m, 1 ≤ i ≤ n, i ̸= n,

|yn| < ∆n − 3ρn(m)}.

Hence (1.8) and (1.9) implies that({
γ(τ1, . . . , τk, τk+1, . . . , τn)

k∏
λ=1

gλ(τλ)

}
(̂y), φ̂(y)

)
=

=

n∑
j=k+1

lim
m→∞

({
γ(τ1, . . . , τk, τk+1, . . . , τn)

k∏
λ=1

gλ(τλ)

}
(̂y), φm(j, y)

)
,

(1.11)
if each of limits exists.

Let us show that for each k + 1 ≤ j ≤ n the expression under the
sign of limit in the right-hand side of (1.11) equals zero. We can take
any natural numbers m ≥ 1, j ∈ {k + 1, . . . , n}, the function φm(j, n)
and, following the reasoning from [9, p. 134], let us at first construct the
sequence {φm(l, j, y)}∞l=1 of the test functions from D(Rn), converging to
φm(j, n) and such that each function φm(l, j, y) is the sum of the func-
tions from D(Rn), which are the functions with the separated variables
y1, y2, . . . , yn.

The Weierstrass theorem (see, for [13, p. 348–349]) implies that for
any natural number l we may point out such polynomial PN(l)(y) of some
degree N(l), that for each vector r = (r1, . . . , rn) with nonnegative integer
coordinates satisfying the following condition 0 ≤ |r| ≤ l, where |r| =
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= r1 + . . . + rn, in the cube Π0 = {y | y = (y1, . . . , yn), |ys| ≤ 4m, 1 ≤
≤ s ≤ n} the following inequality will be fulfilled

|Drφm(j, y)−DrPN(l)(y)| <
1

l
. (1.12)

Let us designate:

1) PN(l)(y) =

N(l)∑
|ν|=0

aν1ν2...νny
ν1
1 y

ν2
2 . . . yνn

n , where ν = (ν1, ν2, . . . , νn) – the

vector with nonnegative integer coordinates, |ν| = ν1 + ν2 + . . .+ νn and
aν1ν2...νn

– the constants;

2) φm(l, j, y) = PN(l)(y)


n∏

s=1
s̸=j

η(ys, 3m,m)

× η(yj ,∆j − 2ρj(m), ρj(m)).

(1.13)
Then φm(l, j, y) is the sum of products of the functions depending only

on one of the variables y1, y2, . . . . . . , yn :

φm(l, j, y) =

N(l)∑
|ν|=0

aν1ν2...νn


n∏

s=1
s̸=j

yνs
s η(ys, 3m,m)

×

×yνj

j η(yj ,∆j − 2ρj(m), ρj(m)) =

=

N(l)∑
|ν|=0

aν1ν2...νn


n∏

s=1
s̸=j

A1(νs, ys)

A2(νj , yj), (1.14)

where

A1(νs, ys) = yνs
s η(ys, 3m,m), s ̸= j

A2(νj , yj) = y
νj

j η(yj ,∆j − 2ρj(m), ρj(m)), s = j

}
. (1.15)

Let us take any m ≥ 1, j ∈ {k + 1, . . . , n}, the function φm(j, y) and
show that the sequence

ψm(l, j, y) = φm(l, j, y)− φm(j, y), l = 1, 2, . . .

converges to zero in the sense of convergence in D(Rn).
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According to the definition (see, for instance, [10, p. 85]), the sequence
ψm(1, j, y), ψm(2, j, y), . . . , ψm(l, j, y), . . . converges to zero if:
1) there exists the ball U(0, R) of radius R > 0 with the center at origin
such that: supp ψm(l, j, y) ⊂ U(0, R), l = 1, 2, . . .
2) for each r = (r1, . . . , rn), where ri, 1 ≤ i ≤ n are the integer nonnegative
numbers, the sequence Drψm(l, j, y) converges uniformly to zero as l →
→ +∞.

Let us denote

Π1j = {y | y = (y1, . . . , yn), |ys| ≤ 4m, 1 ≤ s ≤ n, s ̸= j,
|yj | ≤ ∆j − ρj(m)},

Π2j = {y | y = (y1, . . . , yn), |ys| ≤ 3m, 1 ≤ s ≤ n, s ̸= j,
|yj | ≤ ∆j − 2ρj(m)}.

The first condition from the convergence definition is evidently true
because according to (1.13):

supp φm(l, j, y) ⊆ Π1j ⊂ Π0j ⊂ U(0, 4m
√
n)

and according to (1.10):

supp φm(j, y) ⊂ Π2j ⊂ U(0, 4m
√
n).

Now we verify the second condition. Let y ∈ Π2j , then according to
the definition of the function φm(l, j, y), from (1.13) we obtain:

φm(l, j, y) = PN(l)(y)


n∏

s=1
s̸=j

η(ys, 3m,m)

×

×η(yj ,∆j − 2ρj(m), ρj(m)) = PN(l)(y),

because η(ys, 3m,m) = 1 for |ys| ≤ 3m, 1 ≤ s ≤ n, s ̸= j and η(yj ,∆j −
−2ρj(m), ρj(m)) = 1 for |yj | ≤ ∆j − 2ρj(m).

Thus according to (1.12) for y ∈ Π2j the following inequality is true

|Drψm(l, j, y)| = |Dr[φm(l, j, y)− φm(j, y)]| =

=
∣∣Dr[PN(l)(y)− φm(j, y)]

∣∣ < 1

l
.
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Let y ∈ Π1j \Π2j , then φm(j, y) = 0 and hence for any l = 1, 2, . . .
according to (1.13)

Drψm(l, j, y) = Drφm(l, j, y) =

= Dr

PN(l)(y)

 n∏
s=1
s̸=j

η(ys, 3m,m)

 η(yj ,∆j − 2ρj(m), ρj(m))

 =

= Dr{PN(l)(y) · Y (m, j, y)},

where Y (m, j, y) =

 n∏
s=1
s̸=j

η(ys, 3m,m)

 η(yj ,∆j − 2ρj(m), ρj(m)).

According to the formula of product differentiation
the function

∂r1+r2+...+rn

∂yr11 ∂y
r2
2 · · · ∂yrnn

{
PN(l)(y) · Y (m, j, y)

}
is the sum 2|r| of the following addends

∂a1+a2+...+an

∂ya1
1 ∂ya2

2 · · · ∂yan
n
PN(l)(y) ·

∂b1+b2+...+bn

∂yb11 ∂y
b2
2 · · · ∂ybnn

Y (m, j, y),

where a1 + b1 = r1, a2 + b2 = r2, . . . , an + bn = rn.
Thus for y ∈ Π1j \Π2j we have

|Drψm(l, j, y)| ≤ 2|r| max
0≤|a|≤|r|

∥∥∥∥ ∂a1+a2+...+an

∂ya1
1 ∂ya2

2 · · · ∂yan
n
PN(l)(y)

∥∥∥∥
L∞(Π1j\Π2j)

×

× max
0≤|b|≤|r|

∥∥∥∥∥ ∂b1+b2+...+bn

∂yb11 ∂y
b2
2 · · · ∂ybnn

Y (m, j, y)

∥∥∥∥∥
L∞(Π1j\Π2j)

,

where |a| = a1 + a2 + . . .+ an, |b| = b1 + b2 + . . .+ bn, |r| = |a|+ |b|.
For l ≥ |r| according to (1.12) the inequality will be true

|Drψm(l, j, y)| ≤ 2|r|
1

l
max

0≤|b|≤|r|

∥∥∥∥∥ ∂|b|

∂yb11 · · · ∂ybnn
Y (m, j, y)

∥∥∥∥∥
L∞(Π1j\Π2j)

,
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and because the partial derivatives
∂|b|

∂yb11 · · · ∂ybnn
Y (m, j, y) are bounded

on Π1j \Π2j and independent of l, then as l → ∞ :

∥Drψm(l, j, y)∥
L∞(Π1j\Π2j)

→ 0,

and therefore the sequence ψm(1, j, y), ψm(2, j, y), . . .
. . . , ψm(l, j, y), . . . converges to zero in the sense of convergence in D(Rn).

Thus according to the definition of the convergence in D(Rn), the
sequence φm(1, j, y), φm(2, j, n), . . . , φm(l, j, n), . . . converges to the
function φm(j, n) and according to (1.11):({

γ(τ1, . . . , τk, τk+1, . . . , τn)
k∏

λ=1

gλ(τλ)

}
(̂y), φ̂(y)

)
=

=

n∑
j=k+1

lim
m→+∞

lim
l→+∞

({γ(τ1, . . . , τk, τk+1, . . . , τn) ×

×
k∏

λ=1

gλ(τλ)

}
(̂y), φm(l, j, y)

)
. (1.16)

For each l = 1, 2, . . . according to (1.14) we obtain:({
γ(τ1, . . . , τk, τk+1, . . . , τn)

k∏
λ=1

gλ(τλ)

}
(̂y), φm(l, j, y)

)
=

=

N(l)∑
|r|=0

({
γ(τ1, . . . , τk, τk+1, . . . , τn)

k∏
λ=1

gλ(τλ)

}
(̂y1, . . . , yn),

ar1...rn


n∏

s=1
s̸=j

A1(rs, ys)

A2(rj , yj)

 . (1.17)

Assertion 1.1.1. Let n ≥ 2, k+1 ≤ j ≤ n and l ≥ 1. Then according to
the designations and assumptions introduced above:({

γ(τ1, . . . , τk, τk+1, . . . , τn)
k∏

λ=1

gλ(τλ)

}
(̂y),
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
n∏

s=1
s̸=j

A1(rs, ys)

A2(rj , yj)

 = 0. (1.18)

The proof of assertion 1.1.1. Changing, if it is necessary, the numera-
tion of the variables y1, y2, . . . , yn, we may without the loss of generality
suppose that in the equality (1.18): j = n. According to the assumption

∅ = (supp γ̂(y)) ∩Q(∆),

then
∅ = (supp γ̂(y)) ∩ {y | y = (y1, . . . , yn), |yn| < ∆n} =

= supp γ̂(y) ∩G(∆n).

Let ψ̂1(y1, . . . , yn−1) be the arbitrary test function from S(Rn−1) and

ψ̂(y) = ψ̂1(y1, . . . , yn−1)A2(rn, yn), where, as it is evidently follows from

(1.15), A2(rn, yn) is the test function. Then ψ̂(y) ∈ S(Rn), supp ψ̂(y) ⊂
⊂ G(∆n) and

ψ(τ) =

(
1

2π

)n ∫
Rn

ei(y,τ)ψ̂(y)dy = ψ1(τ1, . . . , τn−1)Ã2(rn, τn),

where τ = (τ1, . . . , τn), y = (y1, . . . , yn).
Hence

0 =
(
γ̂(y), ψ̂(y)

)
=

(
1

2π

)n ∫
Rn

γ(τ1, . . . , τn)ψ1(τ1, . . . , τn−1)×

×Ã2(rn, τn)dτ1 . . . dτn−1dτn =

(
1

2π

)n−1 ∫
Rn−1

ψ1(τ1, . . . , τn−1)×

×

 1

2π

∫
R1

γ(τ1, . . . , τn−1, τn) Ã2(rn, τn)dτn

 dτ1 . . . dτn−1. (1.19)
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Since ψ1(τ1, . . . , τn−1) ∈ S(Rn−1) is the arbitrary test function then
from the equality to zero of the integral in the right-hand side of (1.19),
according to Du Bois-Reymond lemma [10, p. 95] we obtain that for almost
all the points (τ1, . . . , τn−1) ∈ Rn−1 the following equality is true

0 =
1

2π

∫
R1

γ(τ1, . . . , τn−1, τn) Ã2(rn, τn)dτn. (1.20)

Therefore according to (1.20):({
γ(τ1, . . . , τk, τk+1, . . . , τn)

k∏
λ=1

gλ(τλ)

}
(̂y),

{
n−1∏
ν=1

A1(rν , yν)

}
×

×A2(rn, yn)) =

=

(
1

2π

)n ∫
Rn

γ(τ1, . . . , τk, τk+1, . . . , τn)

[
k∏

λ=1

gλ(τλ)

]{
n−1∏
ν=1

Ã1(rν , τν)

}
×

×Ã2(rn, τn)dτ1 . . . dτkdτk+1 . . . dτn =

=

(
1

2π

)n−1 ∫
Rn

[
k∏

λ=1

gλ(τλ)

]
·

{
n−1∏
ν=1

Ã1(rν , τν)

}
×

×

( 1

2π

)∫
R1

γ(τ1, . . . , τk, τk+1, . . . , τn)Ã2(rn, τn)dτn

 dτ1 . . . dτn−1 = 0.

The assertion 1.1.1 is proved. □
The proved assertion and (1.17) implies that({

γ(τ1, . . . , τk, τk+1, . . . , τn)
k∏

λ=1

gλ(τλ)

}
(̂y), φm(l, j, y)

)
= 0

and (1.16) implies the assertion of lemma 1.1. □
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§2. The Kernel K(t, a, b)

This section begins with the construction of the auxiliary function
Ω(τ, [−α, α], β), τ ∈ R1, with the help of which the kernel K(t, a, b), t ∈
∈ Rn used in §3 is defined Then the estimation of the kernel norm is
obtained in lemma 2.2.

Let us take any β > 0 and denote by ω(τ, β) such function, the Fourier
transformation of which is

ω̂(y, β) =
1

β2
ξ[−β/2, β/2](y) ∗ ξ[−β/2, β/2](y), (2.1)

where ξM (y) is the characteristic function of the set M ⊆ R1. Then ac-
cording to (2.1):

ω̂(y, β) =


1

β2
(β − |y|), |y| ≤ β

0, |y| > β
(2.2)

and ∫
R1

ω̂(y, β) dy = 1.

Let α > β. Denote by Ω(τ, [−α, α], β) such function, the Fourier trans-
formation of which is

Ω̂(y, [−α, α], β) = ξ[−α,α](y) ∗ ω̂(y, β). (2.3)

From (2.1), (2.2) and (2.3) we obtain that

0 ≤ Ω̂(y, [−α, α], β) ≤ 1

Ω̂(y, [−α, α], β) = 0, y ̸∈ (−α− β, α+ β)

Ω̂(y, [−α, α], β) = 1, y ∈ [−α+ β, α− β]

Ω̂′′
y2(y, [−α, α], β) ∈ L∞(R1)

 . (2.4)

For arbitrary vectors b = (b1, . . . , bn) and a = (a1, . . . , an) such that
0 < bk < ak, 1 ≤ k ≤ n let us denote by K(t, a, b), t ∈ Rn the function,
the Fourier transformation of which is

K̂(y, a, b) =
n∏

k=1

1

iyk

[
1− Ω̂(yk, [−ak, ak], bk)

]
, (2.5)
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where y = (y1, . . . , yn). From (2.4) it follows that K̂(y, a, b) = 0 for y ∈
∈ Q(a− b).

Lemma 2.1. Let n ≥ 1, t = (t1, . . . , tn) ∈ Rn a = (a1, . . . , an),
b = (b1, . . . , bn) are any vectors which coordinates satisfy the following
condition: 0 < bk < ak, 1 ≤ k ≤ n. Then

K(t, a, b) =

(
1

π

)n n∏
k=1

sign tk·∞∫
1
2 bktk

sin

(
2
ak
bk
θ

)
sin2 θ

θ3
dθ. (2.6)

Proof. From (2.5) we obtain:

K(t, a, b) =
n∏

k=1

 1

2π

∫
R1

eiyktk
1

iyk

[
1− Ω̂(yk, [−ak, ak], bk)

]
dyk

 .

Let us choose k ∈ {1, . . . , n}. Since

1

2π

∫
R1

eiyktk

iyk
dyk =

1

2
sign tk

and for any ρ > 0:[
ξ[−ρ,ρ](yk)

]
(̃tk) =

1

2π

∫
R1

eiyktkξ[−ρ,ρ](yk) dyk =
sin ρtk
πtk

,

then from (1.1), (2.1) and (2.3) we have:

1

2π

∫
R1

eiyktk
1

iyk

[
1− Ω̂(yk, [−ak, ak], bk)

]
dyk =

=
1

2
sign tk − 1

2
sign tk ∗ 2π

{[
ξ[−ak,ak](yk)

]
(̃tk)×

×
(
2π

bk

)2

·
( [
ξ[−bk/2, bk/2](yk)

]
(̃tk)

)2}
=

=
1

2
sign tk − 2

b2kπ

∫
R1

sign(tk − τ)
sin akτ · sin2(bkτ/2)

τ3
dτ =
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=
1

2
sign tk − 2

b2kπ
sign tk

∫
R1

sin akτ · sin2(bkτ/2)
τ3

dτ+

+
4

b2kπ

sign tk·∞∫
tk

sin akτ · sin2(bkτ/2)
τ3

dτ.

After changing the variable in the right-hand side integrals bkτ/2 = θ,
we obtain:

K(t, a, b) =
n∏

k=1

1

2
sign tk − sign tk · 1

2π

∫
R1

sin(2akθ/bk) · sin2 θ
θ3

dθ+

+
1

π

sign tk·∞∫
1
2 bktk

sin(2akθ/bk) · sin2 θ
θ3

dθ. (2.7)

Since according to [14, p. 193, the formula 858.731]:

∞∫
0

sin(2akθ/bk) · sin2 θ
θ3

dθ =
π

2
, (2.8)

then substituting (2.8) in (2.7) we obtain the assertion of this lemma. □

Lemma 2.2. Let n = 1, a > 0, M ∈ (1,+∞) and q ∈ [1,+∞), then:∥∥∥∥K (t, a, 1

M
a

)∥∥∥∥
Lq(R1)

=
1

a1/q
C1(M, q),

where

C1(M, q) =

4M

∫ ∞

0

∣∣∣∣∣∣ 1π
∞∫
x

sin 2Mθ · sin2 θ
θ3

dθ

∣∣∣∣∣∣
q

dx


1/q

.
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Proof. Let us put n = 1 and b =
1

M
a ∈ R1 in (2.6). Then

K

(
t, a,

1

M
a

)
=

1

π

sign t·∞∫
1

2M at

sin 2Mθ · sin2 θ
θ3

dθ,

whence it follows that

∥∥∥∥K (t, a, 1

M
a

)∥∥∥∥
Lq(R1)

=


∫
R1

∣∣∣∣∣∣∣
1

π

sign t·∞∫
1

2M at

sin 2Mθ · sin2 θ
θ3

dθ

∣∣∣∣∣∣∣
q

dt


1/q

=

=
1

a1/q
·

4M

∞∫
0

∣∣∣∣∣∣ 1π
∞∫
x

sin 2Mθ · sin2 θ
θ3

dθ

∣∣∣∣∣∣
q

dx


1/q

=
1

a1/q
C1(M, q).

□
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