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ON THE STABILIZATION OF THE LINEAR HYBRID
SYSTEM STRUCTURE

Abstract. The linear control hybrid system, consisting of a fi-
nite set of subsystems (modes) having different dimensions, is
considered. The moments of reset time are determined by some
complementary function – evolutionary time. This function sa-
tisfies the special complementary ordinary differential equation.
The mode stabilization problem is solved for some class of piece-
wise linear controls. The method of stabilization relies on the set
of invariant planes, the existence of which is due to the special
form of the hybrid system.
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1. Introduction. The variable structure linear dynamical sys-
tems, i. e. the systems changing, while functioning, their dimensions and
coefficient matrices, belong to the class of hybrid systems. The hybrid
systems are dynamical systems demonstrating interacting of continuous
and discrete dynamics [1], [2]. Their applications involve mathematical
modeling in robotics, biochemistry, chemical technology, air and ground
transportation and so on.

Roughly speaking, the main components of these systems are the parti-
tion of the phase space into a finite set of subspaces, the set of subsystems
(modes) with continuous dynamics (each subsystem is defined in its sub-
space), and the set of mappings realizing, in some sense, a transfer from
one subspace to another. The moments of reset time may be determined,
as it was proposed in [3], [4], by the solutions of complementary system of
differential equations. In this paper the problem of stabilizing of modes is
solved for the linear control hybrid system. The method of stabilization is
developed. Otherwise speaking, this method permits to achieve and then
to preserve the desired structure of the system.
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2. The controllable evolutionary time. Let us consider the
hybrid linear system which consists of a set of linear subsystems, or modes,
Sk

Ẋk = AkXk, (1)

which dimensions k depend on time, k = k(t), k = 1, ..., n, and the coeffi-
cient matrices are piecewise constant. Suppose that a function y = y(t),
evolutionary time (in our terminology), satisfying the following conditions

ẏ = BT
k Xk + u, (2)

y(t) ∈ ∆k = [yk, yk+1], (3)

is responsible for a changing of modes: the mode undergoes a changing
when y(t) becomes equal to yk or yk+1 (the procedure of mode changing
will be described below). Here Rk ⊃ XT

k = (x1, ..., xk) – a system state,
T – the symbol of transposition, R ∋ y(t) – an evolutionary time, Ak =
= {aij} – a square constant matrix of order k, BT

k = (b1, ..., bk) ∈ Rk –
a constant vector, u – a control, yk – some given constants (thresholds),
yk < yk+1, y1 = −∞, yn+1 = +∞. We say that the system S, described
by equations (1)–(3), is in the state Sk.

It is essential that the system (1), (2) has invariant sets [5], namely
the integral planes

Πk = {(x1, ..., xk, y) : α1x1 + ...+ αkxk + βky = c}

with constant c, where (α1, ..., αk, βk) is a nonzero solution of the system

a1iα1 + ...+ akiαk + (bi + pi)βk = 0, i = 1, ..., k.

The procedure of mode changing: when the trajectory of the system
(1), (2) attains the plane y = yk at some moment of time tk, the transfer
from the state Sk to the state Sk−1 occurs, while hitting the plane y =
= yk+1 at some moment of time tk+1 means the transfer from Sk to Sk+1.
The transfer maps φk,k−1(φk,k+1) from Sk to Sk−1 (from Sk to Sk+1)
have the following form

φk,k−1 : Zk → C(k − 1, k)Zk + Ek−1(−ε), (4)

where Zk = (x1, ..., xk, yk)
T , Ek−1(−ε) = (0, ..., 0,−ε)T , (−ε) is at k-th

place, with
0 ≤ ε < mink(yk+1 − yk), k = 1, ..., n− 1,



54 A. N. Kirillov

C(k, k − 1) – the k × (k + 1) constant matrix with elements cij , where

ck,k+1 = 1, ck,j = 0, j = 1, ..., k, ci,k+1 = 0, i = 1, ..., k − 1,

φk,k+1 : Zk → D(k, k + 1)Zk + Ek+2(ε), (5)

where D(k, k + 1) – the (k + 2) × (k + 1) constant matrix with elements
dij , dk+2,k+1 = 1, dk+2,j = 0, j = 1, ..., k, di,k+1 = 0, i = 1, ..., k + 1. We
suppose that φk,k−1(Zk), (φk,k+1(Zk)) are the initial data for the states
Sk (Sk+1) and the switching occurs instantaneously.

Remark 1. The transfer matrices C(k, k − 1), D(k, k + 1) are supposed
to be constant. It is not essential for the obtained results which remain
valid for the elements of C(k, k− 1), D(k, k+ 1) dependent on time or k.

Let us formulate the problem: we need to construct a control u which
transfers the system S from a state Sk to a state Sm, k,m ∈ {1, ..., n},
k ̸= m, in a finite time and then preserves the terminal state Sm.

Assume that the admissible control is u = p1x1 + ... + pk(t)xk(t) =
= PT

k Xk, where pi = pi(t) are the piecewise constant coefficients. Here
k(t) is the integer valued function: k(t) ∈ {1, ..., n}. Thus u belongs to
a class of the piecewise linear functions of Xk(t).

Remark 2. This problem differs from the traditional controllability or
stabilizability problems. The proposed system is described by a conti-
nuous state (Xk, y) as well as by a discrete state k, and we control the
latter. It may be said that a discrete state represents the structure of the
system. Thus it is apposite to designate the problem formulated above as
the problem of the structure stabilization.

Below we propose the method of the structure stabilization. Assume
that for k = 1, ..., n the systems (1) are asymptotically stable. The method
consists of three steps. Consider the transfer Sk → Sk+1.

1. Let tk(Xk0, δ) be such moment of time that ||X(t,Xk0)|| ≤ δ
(|| · || is an euclidean norm) for t ≥ tk(Xk0, δ) and some δ > 0, where
X(t,Xk0) is the trajectory of the system (1), satisfying the initial condi-
tion X(0, Xk0) = Xk0. It is clear that tk(Xk0, δ) exists due to the asymp-
totic stability of (1). Let us take pi = −bi, i = 1, ..., k, while t ≤ tk(Xk0, δ).
As a result the trajectory, remaining in Rk ×∆k, gets into the cylinder

Uδ(0) = {Xk ∈ Rk : ||Xk|| ≤ δ}

and remains there.
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2. At the moment t = tk(Xk0, δ) we take

u = p1x1 + ...+ pk(t)xk(t) = PT
k Xk,

where pi, i = 1..., k, satisfy the following inequality

k∑
j=1

pj ·
k∑

i=1

Â(k−1),i(j)xi0 >

> detAk(yk+1 − y0)−
k∑

j=1

bj ·
k∑

i=1

Â(k−1),i(j)xi0,

if detAk > 0 (for detAk < 0 the sign of inequality is opposite), where
Â(k−1),i(j) is a cofactor of the j-th row and the i-th column elements of
Aki – the matrix obtained from Ak via substituting of it’s i-th column
by −(b1 + p1, ..., bk + pk)

T . The existence of the inequality solution was
proved in [6].

The main idea of this step is that the vector (p1, ..., pk), satisfying
inequality, given above, provides such position of the integral plane Πk ⊂
⊂ Rk × R, for which Πk intersects the Y axis with y > yk+1 [6]. Then,
in view of asymptotical stability of the equilibrium of the system (1) and
taking into account that ||X(t,Xk0)|| ≤ δ for t ≥ tk(Xk0, δ) , we obtain
that the trajectory intersects the plane y = yk+1 in a finite time. As a re-
sult we obtain the transition to the state Sk+1.

3. Then let us put pi = −bi, i = 1, ..., k + 1, at the moment of time
when y = yk+1 + ε, and the system preserves its state Sk+1.

Using the presented procedure, providing the transfer Sk → Sk+1,
we can obtain the transfer from any state Sk to any state Sm, k,m ∈
∈ {1, ..., n}, k ̸= m.

The method of structure stabilization essentially relies on the asymp-
totic stability of the system (1). It means that each matrix Ak has all
eigenvalues with negative real parts. Let us consider the general hyper-
bolic case, e. g. the spectrum of Ak has not common points with the
imaginary axis. It is known that in this case we have the direct decom-
position Rk = Es ⊕Eu, where Es, Eu are such invariant subspaces of the
operator Lk, corresponding to Ak, that the eigenvalues of the restrictions
Lk|Es have negative real parts and the eigenvalues of Lk|Eu have positive
real parts. If Xk0 ∈ Es then the method of structure stabilization remains
the same, as it was presented above.
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Therefore we consider the case Xk0 /∈ Es. Then there exists such
component xj(t) of X(t,Xk0) that xj(t) → ∞ as t → +∞. Thus we
can take pj in the following form: pj = −bj + cjsign xj , where cj > 0 –
some constant, while pi = −bi for i = 1, ..., k, i ̸= j. As a result (2)
implies that the trajectory attains the plane y = yk+1 in a finite time.
Then, similarly to the third step of the method presented above, we put
pi = −bi, i = 1, ..., k + 1. Thus we obtain the transfer Sk → Sk+1.

3. The controllable continuous state. Now instead of (1), (2)
we consider the controllable system

Ẋk = AkXk +Gkvk, ẏ = BT
k Xk, (6)

together with (3), where vk ∈ Rl – a control, Gk is a constant matrix.
Then we can use the classical method of linear stabilization [7] in order
to make the origin Xk = 0 asymptotically stable. It is sufficient to find
such matrix Mk that the system Ẋk = (Ak + GkMk)Xk = NkXk be
asymptotically stable, where

vk = MkXk.

Without loss of generality, but keeping in view the method of structural
stabilization, we consider the case for which vk ∈ R, Gk ∈ Rk, Mk ∈ Rk.

If α1x1 + ...+ αkxk + βky = α1x10 + ...+ αkxk0 + βky0 is the integral
plane of the system

Ẋk = NkXk, ẏ = BT
k Xk,

then, analogously to [6], it is easy to show that αT = (α1, ..., αk) satisfies
the linear system

NT
k α = −βkBk, (7)

where Nk = Ak + GkM
T
k . Let ȳ be the coordinate of the intersection

point of an integral plane with the axis Y and assume that

ȳ =
1

βk

k∑
i−1

αixi0 > yk+1. (8)

It is well known, that if

rankLk = rank(Gk AkGk A2
kGk...A

k−1
k Gk) = k, (9)
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then we can find such Mk that the matrix Nk has any desired eigenvalues
[7]. Let all eigenvalues be with the negative real parts, which provides the
asymptotic stability of the system Ẋk = NkXk. In addition [7]

Mk = dTP−1
k L−1

k , (10)

where Pk = (Ikp + ek, I
2
kp + ek−1, ..., I

k
kp + e1), p = −L−1

k Ak
kGk, Ik =

= (0̄, e1, ..., ek−1), 0̄ ∈ Rk is the zero vector, ei ∈ Rk – the vector with zero
components except the i-th component which equals 1. The components
di of d ∈ Rk equal di = pi−qi, i = 0, 1, ..., k−1, where pi – the components
of p, qi – the coefficients of the polynomial Qk(λ) which roots equal to
the eigenvalues of the matrix Nk.

The result, presented below, provides only local stabilization. Assume
that Xk0 ∈ Uδ(0), where Uδ(0) is the cylinder from section 2. Then for
vk, constructed above, the trajectory X(t,Xk0) remains in Uδ(0). The
previous arguments imply the following theorem.

Theorem 1. Let Xk0 ∈ Uδ(0), Xk0 ̸= 0 and assumptions (7)–(10) are
valid. Then the control vk = MkXk, stabilizing the system Ẋk = AkXk +
+Gkvk, provides the transfer of the system (6), (3) from Sk to Sk+1.

Remark 3. It is naturally to formulate the following problem: for which
maximal set of Xk0 the presented theorem is true?

4. Conclusion. The method of the linear hybrid system structure
stabilization is proposed in this paper. The feedback piecewise linear
control of the discrete state is constructed.

The hybrid systems, considered in this paper, have different appli-
cations in the problems of mathematical modeling, particularly in the
economic dynamics. Thus, in [8] the linear model of the economic growth
dynamics with the structural variations was proposed. The control growth
problem was solved for the industrial group, consisting of several enter-
prises, the number of which was not constant, but depended on the eco-
nomic efficiency and changed in time.

Future investigations will be dedicated to some extensions of the pro-
posed methods of the structure stabilization, especially the constraints on
the admissible controls and phase variables, specific for applications, will
be taken into account.
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