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CERTAIN INEQUALITIES INVOLVING THE
Q-DEFORMED GAMMA FUNCTION

Abstract. This paper is inspired by the work of J. Sándor in
2006. In the paper, the authors establish some double inequalities

involving the ratio
Γq(x+1)

Γq(x+ 1
2 )

, where Γq(x) is the q-deformation of

the classical Gamma function denoted by Γ(x). The method em-
ployed in presenting the results makes use of Jackson’s q-integral
representation of the q-deformed Gamma function. In addition,
Hölder’s inequality for the q-integral, as well as some basic analy-
tical techniques involving the q-analogue of the psi function are
used. As a consequence, q-analogues of the classical Wendel’s
asymptotic relation are obtained. At the end, sharpness of the
inequalities established in this paper is investigated.
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1. Introduction and Preliminaries. Let Γ(x) be the well-known
classical Gamma function defined for x > 0 by

Γ(x) =

∫ ∞
0

tx−1e−t dt.

The psi function ψ(x), otherwise known as the digamma function, is de-
fined as the logarithmic derivative of the Gamma function. That is,

ψ(x) =
d

dx
ln(Γ(x)) =

Γ′(x)

Γ(x)
, x > 0.
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The Jackson’s q-integrals from 0 to a and from 0 to ∞ are defined as
follows [1]: ∫ a

0

f(t) dqt = (1− q)a
∞∑
n=0

f(aqn)qn,

∫ ∞
0

f(t) dqt = (1− q)
∞∑
−∞

f(qn)qn

provided that the sums converge absolutely.

In a generic interval [a, b], the Jackson’s q-integral takes the following
form: ∫ b

a

f(t) dqt =

∫ b

0

f(t) dqt−
∫ a

0

f(t) dqt.

For more information on this special integral, see [1].

For a ∈ C, the set of complex numbers, we have the following notations:
(a; q)0 = 1, (a; q)n =

∏n−1
i=0 (1 − aqi), (a; q)∞ =

∏∞
i=0(1 − aqi) and

[n]q! = (q;q)n
(1−q)n .

The q-deformed Gamma function (also known as the q-Gamma function
or the q-analogue of the Gamma function) is defined for q ∈ (0, 1) and
x > 0 by

Γq(x) =

∫ 1
1−q

0

tx−1E−qtq dqt =

∫ [∞]q

0

tx−1E−qtq dqt = (1)

= (1− q)1−x
∞∏
n=0

1− qn+1

1− qn+x
,

where Etq =
∑∞
n=0 q

n(n−1)
2

tn

[n]q !
= (−(1 − q)t; q)∞ is a q-analogue of the

classical exponential function. See also [2], [3], [4], [5] and the references
therein.
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The function Γq exhibits the following properties (see [3])

Γq(x+ 1) = [x]qΓq(x), (2)

Γq(1) = 1,

Γq

(
1

2

)
=
√
πq,

where [x]q = 1−qx
1−q , and πq = q

1
4

([
− 1

2

]
q2

!
)2

is the q-analogue of π. Note

that πq is obtained by setting n = 0 in the q-factorial [n]q!.

Let ψq(x) be the q-analogue of the psi function similarly defined for x > 0
as follows

ψq(x) =
Γ′q(x)

Γq(x)
= − ln(1− q) + ln q

∞∑
n=0

qn+x

1− qn+x
.

It is well-known in literature that this function is increasing for x > 0.
For instance, see Lemma 2.2 of [6].

In 1987, Lew, Frauenthal and Keyfitz [7] by studying certain problems of
traffic flow established the double inequality:

2Γ

(
n+

1

2

)
≤ Γ

(
1

2

)
Γ(n+ 1) ≤ 2nΓ

(
n+

1

2

)
, n ∈ N. (3)

The inequalities (3) can be rearranged as follows:

2√
π
≤ Γ(n+ 1)

Γ
(
n+ 1

2

) ≤ 2n√
π
.

In 2006, Sándor [8] by using the following inequalities, proved by Wendel
[9] (

x

x+ s

)1−s

≤ Γ(x+ s)

xsΓ(x)
≤ 1 (4)

for x > 0 and s ∈ (0, 1), extended and refined inequality (3) as follows

√
x ≤ Γ(x+ 1)

Γ
(
x+ 1

2

) ≤√x+
1

2
(5)
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for x > 0.

The objective of this paper is to establish certain inequalities involving
the q-deformed Gamma function. First, employing similar techniques as
in [8], [9], and [10], we prove an q-analogue of the double inequality (5).
Next, using basic analytical procedures, we prove some related double
inequality. At the end, we investigate the sharpness of the inequalities
established.

2. Main Results. Let us begin with the following Lemma.

Lemma 1. Assume that s ∈ (0, 1) and q ∈ (0, 1). Then for any x > 0
the following inequality is valid.(

[x]q
[x+ s]q

)1−s

≤ Γq(x+ s)

[x]sqΓq(x)
≤ 1. (6)

Proof. We employ the Hölder’s inequality for the Jackson’s q-integral:∫ ∞
0

f(t)g(t) dqt ≤
[∫ ∞

0

(f(t))a dqt

] 1
a
[∫ ∞

0

(g(t))b dqt

] 1
b

,

where 1
a + 1

b = 1 and a > 1.

Let a = 1
1−s , b = 1

s , f(t) = t(1−s)(x−1)E
−(1−s)qt
q and g(t) = tsxE−sqtq .

Then the Hölder’s inequality implies

Γq(x+ s) =

∫ 1
1−q

0

tx+s−1E−qtq dqt ≤

≤

[∫ 1
1−q

0

(
t(1−s)(x−1)E−(1−s)qt

q

) 1
1−s

dqt

]1−s

×

×

[∫ 1
1−q

0

(
tsxE−sqtq

) 1
s dqt

]s
=

=

[∫ 1
1−q

0

tx−1E−qtq dqt

]1−s [∫ 1
1−q

0

txE−qtq dqt

]s
=

= [Γq(x)]
1−s

[Γq(x+ 1)]
s
.

Thus,
Γq(x+ s) ≤ [Γq(x)]

1−s
[Γq(x+ 1)]

s
. (7)
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Substituting (2) into (7) we obtain

Γq(x+ s) ≤ [Γq(x)]
1−s

[x]sq [Γq(x)]
s
,

which implies
Γq(x+ s) ≤ [x]sqΓq(x). (8)

Substitution s by 1− s in (8) gives

Γq(x+ 1− s) ≤ [x]1−sq Γq(x). (9)

Substitution x by x+ s results to

Γq(x+ 1) ≤ [x+ s]1−sq Γq(x+ s). (10)

Now, combining inequalities (8) and (10), we obtain

Γq(x+ 1)

[x+ s]1−sq

≤ Γq(x+ s) ≤ [x]sqΓq(x),

which can be written as

[x]q

[x+ s]1−sq

Γq(x) ≤ Γq(x+ s) ≤ [x]sqΓq(x). (11)

Finally, (11) can be rearranged as:(
[x]q

[x+ s]q

)1−s

≤ Γq(x+ s)

[x]sqΓq(x)
≤ 1,

which concludes the proof of Lemma 1. �

Theorem 1. Assume that q ∈ (0, 1). Then the inequality√
[x]q ≤

Γq(x+ 1)

Γq
(
x+ 1

2

) ≤√[x+
1

2

]
q

(12)

is valid for any x > 0.

Proof. By setting s = 1
2 in the q-analogue of the Wendel’s inequalities

(6), we get

1√
[x]q
≤ Γq(x)

Γq
(
x+ 1

2

) ≤
√[

x+ 1
2

]
q

[x]q
. (13)
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Using (2), we can arrange (13) as follows:

√
[x]q ≤

Γq(x+ 1)

Γq
(
x+ 1

2

) ≤√[x+
1

2

]
q

. �

Remark 1. Inequalities (6) imply

lim
x→∞

Γq(x+ s)

[x]sqΓq(x)
= 1. (14)

Remark 2. Since [x]β−αq
Γq(x+α)
Γq(x+β) =

Γq(x+α)
[x]αq Γq(x) .

[x]βqΓq(x)

Γq(x+β) , then using (14)

we obtain

lim
x→∞

[x]β−αq

Γq(x+ α)

Γq(x+ β)
= 1, α, β ∈ (0, 1). (15)

Remark 3. The equalities (14), (15) are the q-analogues of the classical
Wendel’s asymptotic relation [9]:

lim
x→∞

Γ(x+ s)

xsΓ(x)
= 1. (16)

Theorem 2. Assume that q ∈ (0, 1) is fixed. Then the inequalities

1
√
πq

<
Γq(x+ 1)

Γq
(
x+ 1

2

) < (1 +
√
q) .

1
√
πq

(17)

are valid for x ∈ (0, 1).

Proof. Define a function U(q, x) for q ∈ (0, 1) and x ≥ 0 by

U(q, x) =
Γq(x+ 1)

Γq
(
x+ 1

2

) .
Notice that Γq(1) = Γq(2) = 1, Γq(

1
2 + 1) = [ 1

2 ]qΓq(
1
2 ) = [ 1

2 ]q
√
πq,

[ 1
2 ]q =

1−√q
1−q , U(q, 0) = 1√

πq
and U(q, 1) =

(
1 +
√
q
)
. 1√
πq

.

Now let f(q, x) = lnU(q, x). Then

f(q, x) = ln
Γq(x+ 1)

Γq
(
x+ 1

2

) = ln Γq(x+ 1)− ln Γq

(
x+

1

2

)
.
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For a fixed q ∈ (0, 1), we obtain

f ′(q, x) = ψq(x+ 1)− ψq
(
x+

1

2

)
> 0,

since ψq(x) is increasing for x > 0. Hence, U(q, x) = ef(q,x) is increa-
sing on x > 0, and for x ∈ (0, 1) we have U(q, 0) < U(q, x) < U(q, 1)
establishing (17). �

Remark 4. Define F by F (q, x) = [x]
− 1

2
q

Γq(x+1)

Γq(x+ 1
2 )

for q ∈ (0, 1) and x > 0.

Let g(x) = lnF (q, x) = ln Γq(x + 1) − ln Γq(x + 1
2 ) − 1

2 ln[x]q. Then,

g′(x) = ψq(x + 1) − ψq(x + 1
2 ) + 1

2
qx ln q
1−qx . The following Stieltjes integral

representations are valid

ψq(x) = − ln(1− q)−
∫ ∞

0

e−xt

1− e−t
dµq(t),

∫ ∞
0

e−xt dµq(t) = − q
x ln q

1− qx

where µq(t) = − ln q
∑∞
k=1 δ(t + k ln q) and δ represents the Dirac delta

function. See [11] and the references therein. Then

g′(x) = −
∫ ∞

0

e−(x+1)t

1− e−t
dµq(t) +

∫ ∞
0

e−(x+ 1
2 )t

1− e−t
dµq(t)−

1

2

∫ ∞
0

e−xt dµq(t)

=

∫ ∞
0

e−xt

1− e−t
φ(t) dµq(t)

where φ(t) = e−
1
2 t − 1

2e
−t − 1

2 < 0. By the Hausdorff-Bernstein-Widder
theorem (see [12] and the references therein), we obtain g′(x) < 0, so
g(x) is strictly deacreasing. Consequently, F (q, x) is strictly decreasing.
Hence, F (q, x) ≥ limx→∞ F (q, x) = 1 yielding the lower bound of (12).

Remark 5. Define G by G(q, x) = [x + 1
2 ]
− 1

2
q

Γq(x+1)

Γq(x+ 1
2 )

for q ∈ (0, 1) and

x > 0. Let w(x) = lnG(q, x) = ln Γq(x+ 1)− ln Γq(x+ 1
2 )− 1

2 ln[x+ 1
2 ]q.

Then, w′(x) = ψq(x+1)−ψq(x+ 1
2 )+ 1

2
qx+

1
2 ln q

1−qx+
1
2

. By setting a = 1
2 , b = 1,

c = 1
2 and k = 1 in Theorem 7.2 of [13], we obtain,

ψq(x+ 1)− ψq(x+ 1
2 ) ≥ − 1

2
qx+

1
2 ln q

1−qx+
1
2

.

Consequently, w′(x) ≥ 0, so w(x) is increasing. As a result, G(q, x) is
also increasing. Hence, G(q, x) ≤ limx→∞G(q, x) = 1 yielding the upper
bound of (12).
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Remark 6. Let H(q, x) =
√
πqΓq(x+1)

Γq(x+ 1
2 )

. Then, H(q, x) is increasing, and

for x ∈ (0, 1) we have,
1 = limx→0+ H(q, x) ≤ H(q, x) and H(q, x) ≤ limx→1− H(q, x) = 1 +

√
q

respectively yielding the lower and upper bounds of (17).

Based on the above remarks, the estimates in (12) and (17) are sharp.
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