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ON THE GENERALIZED CONVEXITY AND CONCAVITY

Abstract. A function f : R+ → R+ is (m1,m2)-convex (con-
cave) if f(m1(x, y)) ≤ (≥)m2(f(x), f(y)) for all x, y ∈ R+ =
= (0,∞) and m1 and m2 are two mean functions. Anderson et
al. [1] studies the dependence of (m1,m2)-convexity (concavity)
on m1 and m2 and gave the sufficient conditions of (m1,m2)-
convexity and concavity of a function defined by Maclaurin se-
ries. In this paper, we make a contribution to the topic and
study the (m1,m2)-convexity and concavity of a function where
m1 and m2 are identric and Alzer mean. As well, we prove a
conjecture posed by Bruce Ebanks in [2].
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1. Introduction. A function M : (0,∞)× (0,∞)→ (0,∞) is called
a Mean function if

1) M(x, y) = M(y, x),

2) M(x, x) = x,

3) x < M(x, y) < y, whenever x < y,

4) M(a x, a y) = aM(x, y) for all a > 0,

Some examples of mean functions of two distinct positive real numbers
are given below:

Arithmetic mean: A = A(x, y) =
x + y

2
,

Geometric mean: G = G(x, y) =
√
xy,
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Harmonic mean: H = H(x, y) =
1

A(1/x, 1/y)
,

Logarithmic mean: L = L(x, y) =
x− y

log(x)− log(y)
,

Identric mean: I = I(x, y) =
1

e

(
xx

yy

)1/(x−y)

,

Alzer mean: Jp = Jp(x, y) =
p

p + 1

xp+1 − yp+1

xp − yp
, p 6= 0,−1,

Power mean: Mt = Mt(x, y) =


(
xt + yt

2

)1/t

, t 6= 0,
√
x y, t = 0 .

It is easy to observe that J1(x, y) = A(x, y), J0(x, y) = L(x, y), J−2(x, y) =
= H(x, y). For the historical background of these means we refer the
reader to see [3]–[7] and the bibliography of these papers.

Before we introduce the earlier results from the literature we recall the
following definition, see [1, 8].

Definition 1. Let f : I0 → (0,∞) be continuous, where I0 is a sub-
interval of (0,∞). Let M and N be two any mean functions. We say that
the function f is MN -convex (concave) if

f(M(x, y)) ≤ (≥)N(f(x), f(y)) for all x, y ∈ I0 .

Throughout the paper, the notion I0 is reserved for the sub-internal
of (0,∞).

In [1], Anderson, Vamanamurthy and Vuorinen studied the convexity
and concavity of a function f with respect two mean values, and gave the
following detailed result:

Lemma 1. [1, Theorem 2.4] Let f : I0 → (0,∞) be a differentiable
function. In items (4)–(9), let I0 = (0, b), 0 < b <∞. Then

1) f is AA-convex (concave) if and only if f ′(x) is increasing (decrea-
sing),

2) f is AG-convex (concave) if and only if f ′(x)/f(x) is increasing
(decreasing),

3) f is AH-convex (concave) if and only if f ′(x)/f(x)2 is increasing
(decreasing),
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4) f is GA-convex (concave) if and only if xf ′(x) is increasing (decrea-
sing),

5) f is GG-convex (concave) if and only if xf ′(x)/f(x) is increasing
(decreasing),

6) f is GH-convex (concave) if and only if xf ′(x)/f(x)2 is increasing
(decreasing),

7) f is HA-convex (concave) if and only if x2f ′(x) is increasing (de-
creasing),

8) f is HG-convex (concave) if and only if x2f ′(x)/f(x) is increasing
(decreasing),

9) f is HH-convex (concave) if and only if x2f ′(x)/f(x)2 is increasing
(decreasing).

After the publication ([1]), many authors have studied generalized con-
vexity. For a partial survey of the recent results, see [9].

In [10], the following inequalities were studied:

Lemma 2. Let f : I0 → (0,∞) be a continuous function, then

1) f is LL-convex (concave) if f is increasing and log-convex (concave),

2) f is AL-convex (concave) if f is increasing and log-convex (concave).

Recently, Baricz [11] took one step further and studied the MN -
convexity(concavity) of a function f in a generalized way, and gave the
following result:

Lemma 3. [11, Lemma 3] Let p, q ∈ R and let f : [a, b] → (0,∞) be a
differentiable function for a, b ∈ (0,∞). The function f is (p, q)-convex
((p, q)-concave) if and only if x 7→ x1−pf ′(x)(f(x))q−1 is an increasing
(decreasing) function.

It can be observed easily that (1, 1)-convexity means the AA-convexity,
(1, 0)-convexity means the AG-convexity, and (0, 0)-convexity means GG-
convexity.

Lemma 4. [11, Theorem 7] Let a, b ∈ (0,∞) and f : [a, b] → (0,∞) be

a differentiable function. Denote g(x) =
∫ x

1
f(t) dt and h(x) =

∫ b

x
f(t) dt.

Then
(a) If the function x 7→ x1−pf(x) is increasing (decreasing), then g is
(p, q)-convex (h is (p, q)-convex) for all p ∈ R and q ≥ 1.



6 B. A. Bhayo, L. Yin

(b) If the function x 7→ x1−pf(x) is increasing (decreasing), then g is
(p, q)-convex (h is (p, q)-convex) for all p 6= (0, 1) and q < 0.

2. Main results. In this paper we make a contribution to the
subject by giving the following theorems, which could be natural questions
to ask after reading the above literature. These results are the extension
of [1, 11, 10].

Theorem 1. Let f : I0 → (0,∞) be a continuously differentiable,
increasing and log-convex (concave) function. Then

I(f(x), f(y)) ≥ (≤)f(I(x, y)).

Theorem 2. Let f be a continuous real-valued function on (0,∞). If f
is strictly increasing and convex, then

Pf (x, y) ≤ Rf (x, y) (1)

where

Pf (x, y) = f

(
(xy)

1/4

(
x + y

2

)1/2
)

and

Rf (x, y) =
1

y − x

∫ y

x

f(t)dt.

Remark 1. In [2], Ebanks defined Pf (x, y) and Rf (x, y), and proposed
a problem for a continuous and strictly monotonic real-valued function f
on (0,∞) as follows:
Problem. Does strictly increasing and a convexity of f (or f ′′ > 0) imply
that Pf ≤ Rf?

It is obvious that the Theorem 2 gives an affirmative answer to the
Ebanks’ question.

Theorem 3. Let f : I0 → (0,∞).
(1) If f(x) is continuously differentiable, strictly increasing(decreasing)
and convex (concave) and fp−1(x)f ′(x) is increasing on (0, 1), then

Jp(f(x), f(y)) ≥ f(Jp(x, y))

Jp(f(x), f(y)) ≤ f(A(x, y))

for p ≤ 1.
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(2) If f(x) is continuously differentiable, strictly decreasing(increasing)
and convex(concave) and fp−1(x)f ′(x) is decreasing on (0, 1), then

Jp(f(x), f(y)) ≥ f(Jp(x, y))

Jp(f(x), f(y)) ≤ f(A(x, y))

for p > 1.

3. Lemmas and proofs. We recall the following lemmas which will
be used in the proofs of the theorems.

Lemma 5. [12] Let f, g : [a, b] → R be integrable functions, both in-
creasing or both decreasing. Furthermore, let p : [a, b]→ R be a positive,
integrable function. Then∫ b

a

p(x)f(x)dx·
∫ b

a

p(x)g(x)dx ≤
∫ b

a

p(x)dx ·
∫ b

a

p(x)f(x)g(x)dx. (2)

If one of the functions f or g is non-increasing and the other non-decreasing,
then the inequality (2) is reversed.

Lemma 6. [13] If f(x) is a continuous and convex function on [a, b], and
ϕ(x) is continuous on [a, b], then

f

(
1

b− a

∫ b

a

ϕ(x)dx

)
≤ 1

b− a

∫ b

a

f (ϕ(x)) dx. (3)

If function f(x) is continuous and concave on [a, b], the inequality (3) is
reversed.

Lemma 7. [4] Fix two positive number a, b. Then

L(a, b) ≤ I(a, b) ≤ A(a, b).

Lemma 8. [13] The function p 7→ Jp(x, y) is strictly increasing on R \
\{0,−1}.

Proof of Theorem 1. Since the proof of part (2) is similar to part (1),
we only prove the part (1) here. Clearly

ln I(f(x), f(y)) =
f(x) ln f(x)− f(y) ln f(y)

f(x)− f(y)
− 1.
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An easy computation and substitution t = f(u) yield

ln I(f(x), f(y)) =

∫ f(x)

f(y)
ln t dt∫ f(x)

f(y)
1 dt

=

∫ x

y
ln f(u)f ′(u)du∫ x

y
f ′(u)du

. (4)

Since the functions f(x) and f ′(x) are increasing on I ⊆ (0,∞) then,
using Lemma 5 and assuming x > y, we have∫ x

y

1du ·
∫ x

y

ln f(u)f ′(u)du ≥
∫ x

y

f ′(u)du ·
∫ x

y

ln f(u)du. (5)

Combining (4) and (5), we obtain

ln I(f(x), f(y)) ≥
∫ x

y
ln f(u)du

y − x
, (6)

where we assume that x > y. Using the inequality (6), Lemmas 6 and 7,
and considering the log-convexity of the function f(x), we get

I(f(x), f(y)) ≥ ln f

(∫ x

y
udu

y − x

)
= ln f

(
x + y

2

)
≥ ln f (I(x, y)) .

This completes the proof. �

Proof of Theorem 2. Since f is a strictly increasing and convex func-
tion, then from Lemma 5 and the inequality G(x, y) ≤ A(x, y) we obtain

Rf (x, y) ≥
∫ y

x
f(u)du

y − x
≥ f

(∫ y

x
udu

y − x

)
=

= f

(
x + y

2

)
≥ f

(
(xy)

1/4

(
x + y

2

)1/2
)

=

= Pf (x, y).

This completes the proof. �

Proof of Theorem 3. For the proof of part (1), letting t = f(u), we get

Jp(f(x), f(y)) =

∫ f(x)

f(y)
tpdt∫ f(x)

f(y)
tp−1dt

=

∫ x

y
fp(u)f ′(u)du∫ x

y
fp−1(u)f ′(u)du

.
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By using Lemma 5, we obtain

Jp(f(x), f(y)) ≥
∫ x

y
f(u)du

y − x
.

Considering convexity of the function f(x) and using Lemmas 6 and 8,
we get

Jp(f(x), f(y)) ≥ f

(∫ x

y
udu

y − x

)
= f

(
x + y

2

)
≥ f (Jp(x, y)) ,

which implies (1). The proof of part (2) follows similarly. �

The convexity and concavity properties of a real-valued function were
studied in [1, 11, 10, 14] in the sense of many classical means, i. e. arith-
metic mean, geometric mean, logarithmic mean, harmonic mean etc. In
this paper, we made a contribution to the topic, and studied the convexity
and concavity properties of a real-valued function with respect to identric
mean, Alzer mean, as well as proved the conjecture posed by Ebanks.
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