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INEQUALITIES FOR THE RIEMANN-STIELTJES
INTEGRAL OF S-DOMINATED INTEGRATORS WITH
APPLICATIONS. I

Abstract. Assume that u,v : [a,b] — R are monotonic nonde-
creasing on the interval [a,b]. We say that the complex-valued
function h : [a,b] — C is S-dominated by the pair (u,v) if

B (y) = (@)* < Ju(y) —u(@)][v(y) —v ()]

for any x,y € [a,b]. In this paper we show amongst other that

[ rwane| < [ i@l [iroleo.

for any continuous function f : [a,b] — C. Applications for the
trapezoidal and midpoint inequalities are given. New inequali-
ties for some Cebysev and (CBS)-type functionals are presented.
Natural applications for continuous functions of selfadjoint and
unitary operators on Hilbert spaces are provided as well.
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1. Introduction. One of the most important properties of the
Riemann—Stieltjes integral f; f () dg (t) is the fact that this integral exists
if one of the functions is of bounded variation while the other is continuous.
The following sharp inequality holds

b

b
|t @ds o] < max I @1/ (0).
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provided that f : [a,b] — C is continuous on [a,b] and ¢ : [a,b] — C is of

b
bounded variation on this interval. Here \/ (¢) denotes the total variation
a

of g on [a,b)].
When g is Lipschitzian with the constant L > 0, i.e.,

lg(t) —g(s)| < Lt — s

for any t,s € [a,b], then we have
b
<L [ If @)

for any Riemann integrable function f : [a,b] — C.
Moreover, if the integrator g is monotonic nondecreasing on the in-
terval [a,b] and f : [a,b] — C is continuous, then we have the modulus

inequality
)< [ s wlas

The above inequalities have been used by many authors to derive various
integral inequalities. We provide here some simple examples.

The following generalized trapezoidal inequality for the function of
bounded variation f : [a,b] — C was obtained in 1999 by the author
[1, Proposition 1]

t) dg (t)

t)dg (t

t)dt — (z —a) f(a) = (b—x) f (b)

IN

(1)

< E(b_a>+'x-a;bu\b/<f>,

a

where x € [a, b] . The constant % cannot be replaced by a smaller quantity.
See also [2] for a different proof and other details.
The best inequality one can derive from is the trapezoid inequality

b
T IO 4wy < S - )V ()

t)dt —
2
Here the constant % is also the best possible.

(b—
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For related results, see [3]-[27].

In order to extend the classical Ostrowski’s inequality for differen-
tiable functions with bounded derivatives to the larger class of functions
of bounded variation, the author obtained in 1999 (see [1] or the RGMIA
preprint version of [28]) the following result

2 e

a

/f(t)dt—f(x)(b—a)

< B(b—a)+

for any x € [a,b] and f : [a,b] — C is a function of bounded variation
on [a,b]. Here \/Z (f) denotes the total variation of f on [a,b] and the
constant % is the best possible in . The best inequality one can obtain
from is the midpoint inequality, namely

[ roa-r () o-a

for which the constant % is also sharp.

For related results, see [29]-[57].

Motivated by the above results, we establish in this paper a bound for
the quantity

<5 0-a\ (),

/ £ (t)dg (1)

in the case when the integrand f is continuous while the function of
bounded variation g is S-dominated by a pair of monotonic functions in
the sense presented at the beginning of the next section. The applications
for the trapezoidal and midpoint inequalities are given. New inequalities
for some Cebysev and (CBS)-type functionals are presented. Natural app-
lications for continuous functions of selfadjoint and unitary operators on
Hilbert spaces are provided as well.

2. Some General Inequalities. Assume that u,v : [a,b] — R are
monotonic nondecreasing on the interval [a, b] . We say that the complex-
valued function A : [a,b] — C is S-dominated by the pair (u,v) if

(B (y) = h (@) < [u(y) —u(@)] oY) — o (@) (S)

for any z,y € [a, b].
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We observe that by the monotonicity of the functions u and v and by
the symmetry of the inequality over x and y we can assume that
is satisfied only for y > = with x,y € [a,b] .

We can give numerous examples of such functions.

For instance, if we take f,g € Lo [a,b], where Ls [a,b] is the Hilbert
space of all complex-valued functions that are square-Lebesgue integrable,
and denote

/f t)dt, u( /|f ) dt and v (z /|g ()| dt,

then we observe that u and v are monotonic nondecreasing on [a, b] and
by Cauchy—Bunyakovsky—Schwarz integral inequality we have

/!f |dt/|g )P dt <

dt

()] [v

|h(y) —

for any y > = with z,y € [a, b] .
Now, for p,q > 0 if we consider f(t) := t” and ¢ (t) := t? for t > 0,

then
1

mp+q+1
p+q+1

hyp.q (z) :=/0 tPHadt =

. ] @ 1
U, () := t2Pdt = —— 2Py (x ::/ t29dt = —— 29t
p () /0 2p+1 (%) 0 29 +1

Taking into account the above comments we observe that the function
hp.q is S-dominated by the pair (u,,v,) on any subinterval of [0, 00) .

Proposition 1. If h: [a,b] — C is S-dominated by the pair (u,v), then
h is of bounded variation on any subinterval [c,d]| C [a,b] and

~—

d 2
[\/ (h)] < fu(d) —u(e)]v(d) —v (o). (3

C

Proof. Consider a division § of the interval [c, d] given by

d:c=x9 <21 <...<Tp_1 < Ty =>.
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Since h : [a,b] — C is S-dominated by the pair (u,v) then we have

B (i) — b (@)] < Ju(zis) —u(@)]? [v (@) — o (2:)])?

for any i € {0,...,n — 1}.
Summing this inequality over 7 from 0 to n — 1 and utilizing the
Cauchy—Bunyakovsky—Schwarz discrete inequality we have

Taking the supremum over § we deduce the desired result . 0

Corollary 1. Ifh: [a,b] — C is S-dominated by the pair (u,v), then the
cumulative variation function V : [a,b] — [0, 00) defined by

V(2)=\/(h)

is also S-dominated by the pair (u,v).

Theorem 1. Assume that u,v : [a,b] — R are monotonic nondecreasing
on the interval [a,b] . If h : [a,b] — C is S-dominated by the pair (u,v) and
f @ [a,b] — C is a continuous function on [a, b] , then the Riemann—Stieltjes
integral f; f(t)dh (t) exists and

b 2 b b
/ f(t)dn(t) S/ |f(t)|du(t)/ |f ()] dv (1) (5)

Proof. Since the Riemann—Stieltjes integral f; f (t)dh (t) exists, then for
any sequence of partitions

IMa=t" <™ <. <t <t =p
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with the norm

v (IT(L”)> = max <t51)1 tl(-n)> —0 as n — oo,
i€{0,...,n—1}

and for any intermediate points fz(n) €t (-n),tfi)l] i€40,...,n—1} we
have:

| fwan| -

=| lm ni (&™) [n(En) —n (6] <

v (I.,(Ln)) —0 i=0

< Sl ) 1 ()

(1(">)—>0

<t S| o () ) ()] <

(6)

—0 ;—

< i (S b))
ol (Bl )])
(/ (0] dut ) (/ 0l do o )

where for the last inequality we employed the Cauchy—Bunyakovsky—
Schwarz weighted discrete inequality

n " /2 , 1/2
k=1 k=1 k=1
where my, ay, by > 0 for k€ {1,...,n}. O

3. Trapezoid and Midpoint Inequalities. We can use the
inequality to derive various inequalities of trapezoidal and midpoint
type as follows.
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Theorem 2. Assume that u,v : [a,b] — R are monotonic nondecreasing
on the interval [a,b]. If h : [a,b] — C is S-dominated by the pair (u,v),
then

h(a);h(w(b—a)—/abh(t)dt < (7)
b
< [—(b—a)[u(b)—u(a)]—/ sgn(t—a;b u(t)dt] x
b
X [%(b—a)[v(b)—v(a)]—/ sgn(t—a;—b v(t)dt] <
1

<3 (b—a)® [u(b) = u(a)] [o (b) — v (a)].

Proof. Integrating by parts in the Riemann—Stieltjes integral, we have

M(b_a)—[Lbh(t)dt:/ab(t—a;b)dh(t). (8)

a+b a+b

Applying the inequality we have
dv (t) .

/ab(t—a;b)dh(t)gg/ab du(t)/ab
(9)

Integrating by parts in the Riemann—Stieltjes integral we also have

t— t—

du (t) = (10)
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:%(b—a)[u(b)—u(a)]—/absgn(t—a;b)u(t)dt

and a similar relation for v.

By the Cebysev inequality for monotonic nondecreasing functions F,
G that states that

bia/abF(t)G(t)dtzbia/abF(t)dt-bia/:G(t)dt

we also have

1 b a+b b
> - - —
5 /a sgn (t 5 )dt/a u(t)dt =0

and a similar result for v.

Utilizing — we deduce the desired result . 0

Theorem 3. Assume that u,v : [a,b] — R are monotonic nondecreasing
on the interval [a,b]. If h : [a,b] — C is S-dominated by the pair (u,v),

then
(“;b> —/abh(t)dt
g/bsgn< —a+b)u(t)dt/absgn(t—a;—b)v(t)dtg

(b—a)*[u(b) —u(a)] v (b) —v(a)].

I~

< (12)

IN

1
4
Proof. Integrating by parts in the Riemann—Stieltjes integral we have

h(a;b)(b—a)—/abh(t)dt: (13)

a+b b

:/a ’ (t—a)dh(t)—/@y(b—t)dh(t}-
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Taking the modulus in (13) we have

h(a;—b) (b—a)—/abh(t)dt

a+b

/a T (t—a)dh ()

< (14)

< +

Lbb(b—t)dh(t)

Applying the inequality twice, we have

atb 1/2 atb 1/2
< (/ (t—a)du (t)) (/ (t—a)dv (t))

) 1/2 ) 1/2
§<L+b(b—t)du(t)> (/1+b(b—t)dv(t)> .

a+b
2

(t —a) dh (t)

ﬁ (b—t)dh (t)

2 2

Summing these inequalities and utilizing the elementary result
aB A6 < (o +22) "% (82 4 62) "

where a, 5, \,§ > 0, we have

a+b

/2(t—a)dh(t) + [f (b—#)dh (t)] < (15)
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Integrating by parts in the Riemann—Stieltjes integral we have

ofb b
/ (t—a)du(t)+[l+b (b— ) du(t) = (16)
- atb b
— (t—ayu ()™ —/ w () di + (b—t)u(t)|lly)+/mu(t)dt:

:%(b—a)u(a;—b>—/a (b di—

and the last integral is nonnegative as shown in the proof of Theorem
The same equality holds for v as well.
Utilising the Griiss integral inequality

bia/abF(t)G(t)dt—bia/abF(t)dt-bia/abG(t)dt <

1
Sz(M—m)(N—”)

(17)

that holds for the Lebesgue integrable functions F' and G that satisfy the

conditions
m<F({t)<Mandn<G(t)<N

for almost every t € [a,b], we have

1 b
- /Sgn(t—a; )u(t)dt:
—a
b
= n(t
—a

0<
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which implies that

/ sn (t— a;b>u(t)dt§ %(b—a) W) —u@)].  (18)

A similar result holds for v.

Making use of the inequalities , , and we deduce the
desired result . U

4. Applications for Cebysev and (CBS)-Type Functionals.
The following lemma is of interest in itself.

Lemma 1. Let F : [a,b] X [a,b] — C be continuous on the rectangle
[a, b] % [a,b] and let h : [a,b] — C be an S-dominated function by the pair
(u,v) which are monotonic nondecreasing on |a,b]. Then we have

b b
/ ( / F(x,wdh(y)) dh ()
b b 1/2
s(/( |F<x,y>rdu<y>>du<x>> x

2

</ \F(x,y>|dv<y>)dv<x> x
b b 1/2
x / \F(x,y>|du<y>>dv<x> <
b b 1/2
x / \F(sc,yndv(y))du(x)

Proof. Assume that x is fixed in [a,b]. If we apply Theorem (1| for the
S-dominated function h : [a,b] — C we have

/abF(:Eydh (/ IF (2, )] du (y ) (/ F ()| do( )) .

(20)
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Applying again Theorem (1| and utilizing we have

</Fwydh ))dh()

<[] repaw|ae [| [ Fenny

/(/ |F (2, y)| du(y ) (/ IF (2,9)| dv ( >> :du(x)x
/(/ |F (2,y)| du(y ) (/ |F (z,y)| dv ( )) dv (z).

On making use of the Cauchy-Bunyakovsky—Schwarz inequality for the
Riemann—Stieltjes integral of monotonic nondecreasing integrators we have

for the integrator u

/(/ |F (2, y)| du (y ) (/ |F (z,y)] dv ( )> Zdu(aj)g (22)
S(/ </|ny|du )> ())UX
x ((/ab\F(x,y)ydv (y)> " (@)1/2

and for the integrator v

/(/ |F' (z,y)| du (y ) (/ |F (x,y)|dv( )) 2dv(a;)§ (23)
(/ (/ P (o) du >> <>>/x
x ((/b IF (2,9)] do <y>) v <w>> -

Utilising f we deduce the desired result . U

< (21)

dv (x) <
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When no confusion is possible, we write f; fdu instead of f; f(z)du(x).
For the complex-valued funvctions p, f, g and h, ¢ defined on the interval
[a, b] we define the following Cebysev type functionals

C(p, f,9; 1) /pdh/ pfgdh — /pfdh/ pgdh (24)

b b b b
C(p, f,g:h,0) = / pd / pfgdh + / pdh / pfgdl—  (25)

b b b b
—/ pfdf/ pgdh—/ pfdh/ pgdl

provided that all the Riemann—Stieltjes integrals involved above exist.
We observe that

and

C(p, f,9:h,h) =2C (p, f,g;h)

and
C(p frg:h,0) = C(p, f,9:4,h) .
Theorem 4. Let f, g : [a,b] — R be continuous and synchronous on
[a,b], i.e
(f@)=fW)(g(@)—g(y) =0
for any z,y € [a,b]. If h : [a,b] — C is an S-dominated function by

the pair (u,v) which are monotonic nondecreasing on [a, b], then for any
continuous nonnegative function p : [a,b] — [0, 00) we have

C . g WP < 20 (0, f.0:0,0) [C (0. frg: )2 C (b, £ 0502

i (26)
Proof. Define the function F : [a,b] X [a,b] — R by
F (z, y) p(x)py) (f (x) — fW)(9(x) —g(y) = (27)
pp(x) f(z)g(@)+p(x)pW) f(y)gly) -
(fc)f(fc)p(y)g( )—p ) fy)p(x)g(x).

We observe that, since p is nonnegative and f, g are synchronous, then
F (xz,y) > 0 for any x,y € [a,b]. The function F is also continuous on the
rectangle [a, b] X [a,b] .
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By simple calculation with the Riemann—Stieltjes integral we have

b b
/‘(/'Fuwnwmw>dh@>=20@nﬁ%h»

b b

b b
/(/ |F($,y)|dv(y))dv(w):QC(pJ,g;U)ZO

and

/ab </ab|F(:E,y)|du (y)> dv (z) = /ab (/ab|F(x’y)|dU (y)) du () =

=C(p, f,g;u,v) > 0.

Utilising inequality we have

2C (p, f,g; W))* < [2C (p, f, g;w)]" > [2C (p, f, g5 0)]"/* x
% [C (p, f, g:u, )] [C (. f, g5 u,0)] /2,

which is clearly equivalent to . 0

For the complex-valued functions p, f, g and h, ¢ defined on the interval
la, b] we define the following (CBS)-type functionals

b b b b
Bp, f.g:h, 1) ::/ p|f|2dh/ p|9|2d€+/ p|g|2dh/ plfI2 de—

(28)
-/ i / g~ / ' Tgdh / Tt

B(p,£,0:h) == 3B (0, .01, h) = (29)

and
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=/abp!f\2dh/abp\g|2dh—
_% (/abpfgdh>2+ (/abpfgdh>

If p is nonnegative and h is real-valued, then

(/aprgdh>2 - (/abpfydh>2,

2

which implies that

b b b 2
B(p,f,g;m:/ p|f!2dh/ plgl? dh - Re (/ pfadh>

Also, if p is nonnegative and f, g are real-valued, then

B(p, f,g;h) /pf2dh/ pg2dh—</ pfgdh>2.

The following result also holds.

Theorem 5. Let f, g : [a,b] — C be continuous on [a,b]. If h : [a,b] —
— C is an S-dominated function by the pair (u,v), which are monotonic
nondecreasing on [a,b], then for any continuos nonnegative function p :
[a,b] — [0, 00) we have

1B (p. f,g;:h)|* < %B (p, f.g3u,0) [B (p, f.g:w)]? (B (p, f.g:0)] /2.
(30)
Proof. Define the function F : [a,b] X [a,b] — R by
F(2,9) = p(@)p) |1 @) s @) ~ (@) )| = (31)

=p@)p @ [If @P g +1f @I lg @) -
~F @) 9@ W)W~ F@g @) Fg W) .
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We observe that, since p is nonnegative, then F' (z,y) > 0 for any z,y €
€ [a,b]. The function F is also continuous on the rectangle [a,b] X [a,b].
By simple calculation with the Riemann—Stieltjes integral we have

b b
/ (/ F<x,y>dh<y>> dh () = 2B (p, f.g; 1) .

b b
/ (/ |F(x,y)|du(y)) du (z) = 2B (p, f,g;u) > 0,

b b
/ (/ |F (x,y)|dv (y)> dv(z) = 2B (p, f,g;v) >0

and

/ab (/ablF(:c,y)ldu(y)> dv (x) z/ab (/ablF(:c,y)ldv(y)) du () =

=B (p, f,g9;u,v) >0

Utilising the inequality we have

2B (p, f,g;: h)]> < 2B (p, f, g;w)]"/* 2B (p, f, g; v)]"/* x
x [B(p, f,g:u,0)]"* B (p, f, g5 u, )],
which is clearly equivalent to . ([l

5. Applications for Selfadjoint Operators. We denote by B (H)
the Banach algebra of all bounded linear operators on a complex Hilbert
space (H;(-,-)). Let A € B(H) be selfadjoint and let ¢, be defined for
all A € R as follows

1, for —oo < s < A,
P (s) ==

0, for A < s < +o0.
Then for every A € R the operator
E)\ = P (A)

is a projection which reduces A.
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The properties of these projections are collected in the following fun-
damental result concerning the spectral representation of bounded selfad-
joint operators in Hilbert spaces, see for instance [58, p. 256]:

Let A be a bounded selfadjoint operator on the Hilbert space H.

Denote m = min {\ |A € Sp(A)} =: minSp (A) and

M =max{\|A € Sp(A)} =:maxSp(4).

Then there exists a family of projections {Ey},p, called the spectral
family of A, with the following properties:

a) Ey < Ey for A < )\,
b) Epm—o=0,Ey =1 and Ey g = FE) for all A € R.

We have the representation
M
A= / AdE).
m—0

More generally, for any continuous complex-valued function ¢ defined
on R and for any € > 0 there exists a § > 0 such that

<e

2 (A) - Z ¥ ()\;C) [E)\k - E)\k—lj|
k=1

whenever
M<m=MAM<..<A_1< A\, =M,

A — A1 <dforl<k<n,

A € M1, A] for 1 <k <n

this means that
M
p= [ p(ydE,
m—0
where the integral is of the Riemann—Stieltjes type.
With the above assumptions for A, F\ and ¢ we have the representa-

tions

M
gp(A)a::/ @ (N)dE\x for all x € H

m—0
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and

M
(p(A)z,y) = / e (AN d(Exz,y) forall z,y € H.

In particular,
(p(A)z,x) = @ (AN d(Exx,z) forall x € H.
m—0

Moreover, we have the equality
M
o (A) || :/ o (V)2 d||Exa|® for all x € H.
-0

Utilising Theorem (1| we can prove easily the following Schwarz type
inequality:

Proposition 2. Let A be a bounded selfadjoint operator on the Hilbert
space H. Denote m := min{A|A € Sp(A)} = minSp(A4) and M :=
;= max{A|A€Sp(A)} = maxSp(A). If f : R — C is a continuous
function on [m, M|, then we have the inequality

[(F (A z,9)” < (If (D]a,2) (| f (A y,y) (32)

for any x,y € H.

Proof. Assume € > 0 and for fixed x,y € H define the functions h, u,v :
[m — e, M| — C given by

h(t) == (Ewx,y), u(t) = (Ewx,z) and v (t) := (Ewy,y)

where {E)},cp is the spectral family of the bounded selfadjoint operator
A.

For t,s € [m — e, M] with ¢t > s by utilizing the Schwarz inequality for
nonnegative operators P

(Pa,y)* < (Pz,z) (Py,y),

we have

[h(t) = h(s)]* = (B = Eo)a,y)[* <
< {(By — Eq) m,2) (By — Es) y,y) = (u(t) —u(s)) (v(t) —v(s)),
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which shows that h is S-dominated by the monotonic nondecreasing func-
tions (u,v) on [m — ¢, M].
Applying Theorem [1{to f, h, u and v on [m — &, M] we have

2 M M
s/’ uuﬂd«aax»/' Ol d(E.y))

M
| rwasa| <[ )
(33)

m—e

for any x,y € H.
Letting ¢ — 0+ in and utilizing the representation of continuous
functions of selfadjoint operators, we deduce the desired result . ([l

For continuous functions p, f, g, the selfadjoint operator A and x,y €
€ H we define the functionals

C(p frg:4,2,y) = (p(A)z,y) (p

(A) f(A)g(A)z,y) —
—(p(A) f(A)z,y) )

(p(A)g(A)z,y),
C(p, f,9:4,2) =C(p, f,9;A,2,2) =

(p(A)z,z) (p(A) f(A)g(A)z,x)—
(p(A) f(A)z,z) (p(A) g (A)z,x),

and
D(p, f,9:A,z,y) =

= (p(A)z,z) (p(A) f(A) g (A)y,y)+p(A)y,y) (p(A) f(A) g(A)z,z) -
—(p(A) g(A)z,z)(p(A) f(A)y,y) — (A g(A)y,y) (p(A) f(A)z,z).
The following result holds:

Proposition 3. Let A be a bounded selfadjoint operator on the Hilbert
space H. Denote m := min{A |\ € Sp(4)} = minSp(A) and M :=
:= max{A|A € Sp(A)} = maxSp(A). Assume that f,g : R — R are
continuous and synchronous functions on [m, M| and p : R — R is a
nonnegative continuous function on [m,M]. Then for any z,y € H we
have

g Ay < (34)

C
<=D(p, f,g: A2, y) [C(p, f,9; A, 2)] Y2 [C (p, f, 95 A, )] /2.

(
1
2
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The proof is similar to the one from Proposition [2 may be obtained by
utilizing the integral inequality from Theorem |4l The details are omitted.
A simpler version of the above inequality is as follows:

Corollary 2. Let the assumptions of Proposition 3 for A, f and g be
valid. Then for any x,y € H with ||z|| = ||y|]| = 1 we have

(2, 9) (f (A) g (A) @, y) = (f (A) z,9) (g (A) &, y)|” < (35)

Ay, y)—(g(A)y,y) (f (A)z,z)] x
z,x) — (f (A) z,2) (g (A) z,2)]"/* x

Remark 1. If we take, as an example, f(t) = t? and g (t) = t? for
p,q > 0 then for any positive operator A we have from the inequality

|, y) (APH9a,y) — (APz,y) (Alz,y)|” <

< % [(APTay o) + (AP, x) — (A%, z) (APy,y) — (A%y,y) (APz, x)] X
x [(APF9p, o) — (AP, x) (A%, )] [(APYay, y) — (APy,y) (A%, )] 2,
for any z,y € H with ||z| = ||y|| = 1.

6. Applications for Unitary Operators. Let (H,(-,-)) be a
complex Hilbert space. We recall that the bounded linear operator U :
H — H on H is unitary iff U* = UL

It is well known that (see for instance [58, pp. 275-276]), if U is a
unitary operator, then there exists a family of projections {E\} AE[0,27]
called the spectral family of U with the following properties:

a) B\ < E, for 0 <\ < p < 2m;

b) Eo =0 and E2, = 1y (the identity operator on H);

c) Exyo=FE) for 0 <\ < 2m;

d) U= fo% e’ dE) where the integral is of the Riemann—Stieltjes type.
Moreover, if {Fy} Ae[0,24] 1S @ family of projections satisfying the re-

quirements a)-d) above for the operator U, then F)\ = E) for all A\ €
€ [0,2x].
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Also, for each continuous complex-valued function f : C(0,1) — C on
the complex unit circle C (0,1), we have

f(U) = /0 " (™) dE,

where the integral is taken in the Riemann—Stieltjes sense.
In particular, we have the equalities

2
fU)z= /0 f (") dE\z,

27 )
(f () ,y) = / £ () d{Bxz,y)
and o
I ) z|? = / £ (M) d | B
0
for any z,y € H.

Proposition 4. Let U be a unitary operator on a Hilbert space H. Then
for each continuous complex-valued function f : C (0,1) — C on the com-
plex unit circle C (0, 1), we have

(F W)z, y)|* < (I ()] 2, 2) (|f (U)] g, y) (36)

for any x,y € H.

Proof. Let {E/\}/\e[o,%r] be the spectral family of the unitary operator U.
For fixed z,y € H define the functions h,u, v : [0, 27] — C given by

h(t) = (Ewx,y), u(t) = (Fwx,x) and v (t) := (Ewy,y) .

For t,s € [0,27], with ¢t > s, by utilizing the Schwarz inequality for
nonnegative operators P

(Pa,y)|* < (Pz,z) (Py,y),

we have

B (1) = h(s)]* = [((E: = Bs),y)|” <
< (B — Es) m,2) (B — Es) y,y) = (u(t) —u(s)) (v(t) —v(s)),
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which shows that h is S-dominated by the monotonic nondecreasing func-
tions (u,v) on [0, 27| .
Applying Theorem [1{to f (e*), h, u and v on [0, 27] we have

2
<

léﬂf@%dNEwwD

< [TIr e s [ 17 @) dE)

for any x,y € H.
Utilising the representation of continuous functions of unitary opera-
tors, we deduce the desired result . ]

For the complex-valued functions f, g defined on the complex unit
circle C (0, 1) and the unitary operator U on the Hilbert space H we define
the following functionals:

(f,g;Uw y) =
9 ()P yy)+ (lg @) a2 ) (£ O)F y,y) -

(s :

~(f ()7 <>,xwf<> ©)y,9) = (FW) g W) z,) (FU) g (U)y.y).
B(f,9:U,z,y) = (If (U) ><W()F%y>—
——kfumaunxy +{TW)g(U)2,y)’]

and
B(f,g:U,z) = B(f,g;U,2,2) =
= (If )P a,) (lg (U z.2) —Re (f (V)G (V) 7, 2)°,

where x,y € H.

Proposition 5. Let U be a unitary operator on a Hilbert space H. Then
for every continuous complex-valued functions f,g : C (0,1) — C on the
complex unit circle C (0,1), we have

—_

B (f,9;U,z,y)|° < 3P (f,9:U,z,9) [B(f,9:U, 2)]"* B (f,9;U, )]/
for any x,y € H. (37)
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The proof follows from Theorem |5 applied to the functions f (eit) ,

g(e"), p(t) =1, h(t) = (Bww,y), u(t) = (Ez,z) and v (t) := (Ewy,y)
where {Ex},c(o,2-] I8 the spectral family of the unitary operator U and
t € [0,27]. The details are omitted.
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