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INTEGRAL INEQUALITIES OF HERMITE - HADAMARD
TYPE FOR ((«, m),log)-CONVEX FUNCTIONS ON
CO-ORDINATES

Abstract. The convexity of functions is a basic concept in ma-
thematics and it has been generalized in various directions. Es-
tablishing integral inequalities of Hermite—Hadamard type for
various convex functions is one of the main topics in the theory
of convex functions and attracts a number of mathematicians for
several centuries. Currently an amount of literature on integral
inequalities of Hermite — Hadamard type for various convex func-
tions has been accumulated. In the paper the authors introduce
a new concept “((«, m),log)—convex functions on the co—ordina-
tes on the rectangle of the plane” and establish new integral ine-
qualities of the Hermite — Hadamard type for ((a, m), log)-convex
functions on the co—ordinates on the rectangle of the plane.
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1. Introduction. The convexity of functions is a very important and
fundamental concept in mathematics and mathematical sciences. It has
been being generalized to various forms and there is an amount of litera-
ture on integral inequalities of the Hermite — Hadamard type for various
convex functions.

Let us recall some definitions and related conclusions.

Definition 1. Let I C R = (—o0,00) be an interval. A function f :
I — R is said to be convex if

fOz+ (1= Ny) < Af(z) + (1 =N f(y)
holds for all z,y € I and X € [0,1].
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Let f: I CR — R be a convex function and a,b € I with a < b. Then

f<a+b> = bia/bf(flz)dxgw

2 2

is valid. This double inequality is well known in the literature as the
Hermite - Hadamard integral inequality for convex functions.

Definition 2. If a positive function f : I C R — R4 = (0, 00) satisfies

FOz+ (1 =Ny) < ) y)
for all A € [0, 1], then we call f a logarithmically convex function on I.

Remark 1. It is well known that logarithmic convexity of a function f
is equivalent to convexity of the function In f or log, f for a > 1.

Definition 3. [1] Let f:[0,b] — R and m € (0, 1]; if
fz+m(1 = N)y) < Af(z) +m(l—N)f(y)

is valid for all z,y € [0,b] and X\ € [0, 1], then we say that f is an m-convex
function on [0, b)].

Remark 2. The 1-convexity is equivalent to the ordinary convexity de-
fined by Definition

Theorem 1. [2] Let f : Ry = [0,00) — R be m-convex and m € (0, 1].
If f € Ly([a,b]) for 0 < a < b < oo, then

b
1 [ fa) + mf(b/m) mf(a/m)+ f(b)
b_a/f(x)dx§m1n{ 5 , 5 }

Definition 4. [3] Let f : [0,b] — R and (a,m) € (0, 1] x (0, 1]; if
FQz+m(1=Ay) <A f(x) +m(1—A)f(y)

is valid for all z,y € [0,b] and X € [0, 1], then we say that f is an (a,m)-
convex function on [0, b].

Remark 3. The (1, m)-convexity is equivalent to m-convexity. Any con-
vex function for which f(0) < 0 is m-convex for any m € (0, 1].
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Theorem 2. |4 Theorem 3.1] Let I O Ry be an open real interval and
let f: I — R be a differentiable function on I such that f' € L([a,b]) for
0<a<b<oo. If(f")?is (o, m)-convex on |a,b] for some given numbers
a,m € (0,1] and ¢ > 1, then

flay+fo 1
- b—a/a f(x)dx

! <o (%)/ mind [ @)+

ol (Y]] ol ()] o]}

1 1 1 o’ +a+2 1
where vy = iy oo+ 56) and v = oy (552 - )

Definition 5. [5,[6] A function f : A — R is said to be convex on the
co-ordinates A = [a,b] x [c,d] C R? with a < b and ¢ < d, if the partial
mappings

fy:[aab]%Rv fy(u):f(uay) and fx:[c7d]—>Ra fx(?)):f(l'ﬂ))

are convex for all fixed x € (a,b) and y € (c,d).

Remark 4. A formal definition for convex functions on the co—ordinates
may be restated [5, [6] as follows. A function f : A — R is said to be
convex on the co—ordinates A = [a,b] X [c,d] with a < b and ¢ < d, if

flx+ (1 =t)z, Ay + (1 = Nw) < tAf(x,y) +t(1 =N f(z,w)+
holds for all t, \ € [0,1] and (z,y), (z,w) € A.

Definition 6. [7] For some (a1, m1), (a2, ma) € (0,1]%, a function f :
[0,b6] x [0,d] = R is said to be (a1, m1)-(aa, ma)-convex on the co—ordina-
tes [0,b] x [0,d], if

fta+my(1 —t)b, Ac +ma(1 — N)d) < t** A2 f(a,c)+
+ mat®t (1 — A*?) f(a,d) + my(1 — t*)N2 f(b,c)+
+ myma(1 —t*)(1 — X*2) f(b,d)

holds for all t,\ € [0,1] and (z,y), (z,w) € [0,b] x [0,d].
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Definition 7. [8] For m,ms,a € (0,1] and s € [—1,1], a function f :
[0,0] x [0,d] — Ryq is called (cr,m1)-(s, m2)-convex on co-ordinates if

fltz+mi(1 —t)z, Ay + ma(l — Nw) <N f(x,y)+
+ma (1 = t)N f(z,y) + mat®(1 — N)° f(x,w)+
+mima(1 —t*)(1 — N)°f(z,w)
holds for all (t,\) € [0,1] x (0,1) and (z,y), (z,w) € [0,b] x [0,d].

Theorem 3. [5,[6] Theorem 2.2] Let f : A = [a, b] X [¢,d] — R be convex
on the co—-ordinates A = [a,b] X [¢,d]| with a < b and ¢ < d. Then

a+b c+d 17 1 b ctd
f( 5 ' g >§§[b_a/af(x, 5 )dgH_
d
dic/ f<a;rb7y)dy]§
1 b pd
m//f(%y)dydxg

(b
Hbia (Lbf(x,c)dw+Lbf(x,d)dx)+

n d#ﬂ(/cdf(a,y)dw/Cdf(b,y)dy)]

< 1 1F(a,0) + 10,6 + (o) + (b, d)].

For more information on integral inequalities of the Hermite - Hadamard
type for convex functions on the co—ordinates, please refer to [9]-[12] and
closely related references therein.

In this paper, we will introduce a new concept “((c, m),log)-convex
functions on the co—ordinates on the rectangle of the plane” and estab-
lish some new integral inequalities of the Hermite — Hadamard type for
((or, m),log)-convex functions on the co—ordinates on the rectangle of the
plane.

+

IN

IN

2. A definition and a lemma. Now we introduce the definition
as follows.
Definition 8. A mapping f : [0,b]x][c,d] — Ry issaid to be ((a, m), log)-
convex on co—ordinates [0,b] X [¢,d] with ¢,d € R, ¢ < d, and b > 0 if
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fltz+ml —t)z, \y+ (1 — MNw) <
<t f (@, )M (@, w)] 7+ m(1 = ) [F (= ) f (2, w)]

holds for all t, A € [0,1] and (z,y), (z,w) € [0,b] X [c,d] and some m,a €
€ (0,1].

Remark 5. The Definition [§ implies

Fltz +m(l =)z, Ay + (1 — Nw) < t°[f (2, )] [f (z, )]+

+m(l—t)[f (2, ) f(zw)] 7 <
<t ANf(z,y) +t%(1 = N) f(z,w)+
+m(1 —t*)Af(z,y) + m(l —t*)(1 — \) f(z,w).
If the function f is ((a, m),log)-convex on co—ordinates [0,b] x [c,d], then
it is (o, m)-(1,1)-convex on co-ordinates [0,b] X [c,d| (with (a1, m1) =

= (a,m) and (a2, m2) = (1,1) in Definition [6] or with (a,m1) = (v, m)
and (s, ms) = (1,1) in Definition [7).

In order to prove our main results, we need the following lemma.

Lemma 1. Let f: A = [a,b] X [c,d] C R* — R have partial derivatives
of the second order. If ;! € Li(A), then

—0){4f<a, &) — 2 (ad) — 2f(b,c) + £ (b,d) -
1 d
i [ - sk 2 [t - s0.0as
+ T/ / f(x,y)dwdy}z
/ / L4+t)(1+ N fr,(ta+ (1 —t)b, Ac+ (1 = N)d)dtdX. (1)
Proof. Integration by parts gives

// T+ )1+ N f,(ta+ (1 = 1)b, Ae + (1 = N)d)dt d\ =

t=1

= b/o (I+2N) {(1+t)f,;(ta+(1—t)b, Ac+ (1 =Nd)|,_,—

a —
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— /1 fof(ta4 (1 —=t)b, Ae + (1 — )\)d)dt} d\ =
0

1

DY) [4f(a70> —2f(b,¢) — 2f(a,d) + f(b,d)—

_ 2/1 Fla, Ae + (1= Nd)dA + /1 FbAe + (1= A)d)dr—
0 0

—Q/If(ta+(1—t)b, c)dt+/1f(ta+(1—t)b, d)dt+
0 0

+/0 /O f(m+(1—t)b,Ac+(1—A)d)dtdA].

Using substitutions z = ta+ (1 —t)b and y = Ac+ (1 — A)d for t, X € [0, 1],
we obtain (1). Lemma|l|is thus proved. O

3. Some integral inequalities of the Hermite - Hadamard type.
Now we are in a position to establish some new integral inequalities of the
Hermite — Hadamard type for differentiable ((a, m),log)-convex functions
on the co—ordinates on rectangle of the plane Ry x R.

The first main result is Theorem [4l

Theorem 4. Let f: Ry x R — R be a partially differentiable function
on Ry x R and f; € Li([a, 2] x [¢,d]) with 0 < a < b, ¢ < d, and
m € (0,1]. If | f7, * is ((a,m), log)-convex on co-ordinates [0, L1 x e, d]

for ¢ > 1 and some « € (0, 1], then

A = (g)mw b 1§<a+2>]1/qx

{20 (00 o]+
b q b a\ \ 1/a
3 5 F 1 . " . d
—i—ma( Q-+ ) (fxy(m7c) 7fxy(m7 ) )} )
where
L _
L(U,’U)—M, U#U7
F(u,v) = 5 Inv—-1Inu
—Uu, u="v
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Proof. By Lemma (1| and Holder’s integral inequality, we have

fA|<// (L+6) (L4 N)|fi, (ta+ (1 = 1)b, Ac + (1 — N)d)|dt dX <

g(/o /0 (l—l—t)(l-l—)\)dtd)\)l 1/q[/01/01(1+t)x

1/q

X (L4 N)|fa, fta+ (1 —t)b, Ae+ (1 — )d)|thdA} : (2)
Using the ((a, m), log)-convexity of |f, ;’y‘q, we have

// L+ 6L+ N)|f2, fta+ (1= t)b,Ac+ (1 — N)d)|"dtdA <

» q(1-=X)

SO

1 1 1

:|:/ <1+t)tadt}/ (1+)\”fﬂlcly(a’C>‘q/\|fg/0/y(a,d)‘q(1_/\)d/\+m[/ (1+
0 0 0

1 b qX b q(1-X)
[e% 12 1!
+t)(1—t )dt]/o (L+X) wy(a,c) fxy<a,d> dA. (3)
Note that
/ / (T+1)( 1+)\dtd>\—(3) ,
200+ 3
1+ t)t%dt = ,
/0 ( ) (a+1)(a+2)
1
a(3a +5)
1+8)(1 —t%)dt = .
/0 ( ) ) 2(a+1)(a+2)
1) If ‘ ;/y(a7c)|q = ’ als/y(a d |q and ‘ é’y(%,c)‘q = ‘ gy(%7d)|q’ we
have

1
12} 124 - 3 /
| a0 eV ar= S o

1 b b q(1-X) 3 b
A(1+A) :&/(E’C) f&/(%?d) fxy(m C)

R q

d)\:2
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(a c) A fi, (L e )‘
If land n = = 1, integrating by parts,
2) If ¢ = f;;y ik 7 # N el # grating by p

we can write

1
/0 A+ |12 (@ 0)[ £ (and) [V =

q 1
d) (14 X\) AdA_M[z —1- Ad)\}:
—|1" (. \/ Y. 22 /05

|
:| mylng ‘ |:2§_1_£—:| — (| C)\q,\f;’y(a,d)]q)

o)l b (5
(1+ M) AdA_H—d”{zg—1—/01nAd>\} =

Inn
b q
f;g;(E?d) )

f(%> (4)

and

q(1=X)

1+)\ d\ =

fgy (_7 d)

G dl ))"[Qn 1_5—_1]:F(

In Inn

q

)

By utilizing , , and , we obtain
11
A)| g// L+ 6)(L+ N)|fr,(ta+ (L= t)b, Ac + (1 — A)d)|dt dA+
0 0

1/q
+ (1 —t)b, Ac+ (1 — N)d)|*dt dA) <

S(2)2(1_1/(1)<2(a+1§(oz+2))l/q{ 2020 +3)F(| £, (. )",

q q 1/q
7 5e) fw(E d) )}

This completes the proof of Theorem {4 O
If taking ¢ = 1 in Theorem |4] we can derive the following corollary.

| £, (a,d)|") + ma(3a + 5)F(

)
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Corollary 1. Under the conditions of Theorem |4, if ¢ = m = a = 1,
then

1
(. 8)] < S{5F (152, (@0 | £y (e, D))+
q
+AF (|1 AN
Theorem 5. Let f: Ry x R — R be a partially differentiable function
on Ry x R and f;, € Li([a, L] x [e,d]) with 0 < a < b, ¢ < d, and
m € (0,1]. If |f’y‘q is ((c,m), log)-convex on co-ordinates [0, 2] x [c, d]
for g > 1 and a € (0,1], then
3(g—1) 2¢—1)/(q— 1 1 Ha
J(f,A)| < [ ———L [2@a=D/(a=1) _q X
I A) = (2(2q—1)[ } 2(a+1)(a+2)
{20 9L 00" |y o, +

q

b q 1/q
) fiy(%?d) )} )

+ ma(3a + 5)L(

b
falsly (E? C)

where L(u,v) is defined by

Vv—1Uu

1
L(u,v) = / wol=tdt = { Inv —Inu’ 7
0 u, u=u.

(5)

Proof. By Lemma |1} Holder’s integral inequality, and the ((«, m),log)-
convexity of ‘ fa’j’y|q, it follows that

|J(f,A)] < (/1 /1(1 +1)(1+ A)q/(q_l)dtd)\>1_1/q><

1/q
U/ (L+8)|f, f(ta+ (L= t)b,Ae + (1 — )d)\thcu] <

1-1/
= </ / (1+t)(1+)‘)q/(q_1)dtd)\) q><
0 Jo
1,1
AL ool o e o
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. b ” b q(1-X) 1/q
(2 (L)) -

1-1/
2(2¢ — 1)

1 1
o A 1—X
x{(/o (14 )t dt)/o 12 (a, )| £, (a, d)|*C M ar+
1 1 (b qX (b q(1-X) 1/q

- (s 0) (ears)

x{2(2a +3)L(| £ (a, )|, | £y (a, D)) +
(D)

Corollary 2. Under the conditions of Theorem |5, if m = a = 1, then

< L 2 " | 2 d)") + 4L (|12, .0 | 2 b))}

gA
+m(1 —t%)

q

Y

+ma(3a + 5)L<

Theorem [5is proved. O

Theorem 6. Let f Ry x R — R be a partially differentiable function
on Ry x R and f;, € Li(fa, 2] x [¢,d]) with 0 < a < b, ¢ < d, and
m € (0,1]. If|f zy‘q is ((c,m), log)-convex on co-ordinates [0, 2] x [c, d]
for ¢ > 1 and « € (0,1], then

3a=1) e ) (L)
.80 < (= peanren g ) ()

. {F(\f;'y(%cﬂq, |2 (0. d)| ")+
¥

b ? b
:;:ly (Evc) fa/c/y (E:d)

Y

+maF(
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where F'(u,v) is given as in Theorem

Proof. By Lemma [1} Hélder’s inequality, and the ((c, m), log)-convexity
of | oy 1 we get

fA|<// (L+6) (L4 N)|fi,(ta+ (1 = 1)b, Ac+ (1 — N)d)|dt dX <

< (/ / (14 )/ @=D(1 4 )\)dtd)\)l_l/qx

1/q
U/ (L+N)|fo, fta+ (L= t)b,Ae+ (1 — )d)|thd)\] <

1-1/q
< (34D 1pee-n/a-n _ ] y
2(2¢ — 1)

1 1

T F——

b g b q(1-2) 1/q
gy(E’C) f;;(E,d) d)\} =

3(qg—1 1=1/q 1 1/q ,
— (o= e ) () R el

q b q b q 1/q
| fo, (a,d)] )—l—maF( ;;(E,c) f;’y(g,d) )] .

The proof of Theorem [6] is complete. O
Corollary 3. Under the conditions of Theorem |6 if m = o = 1, then

[J(f, A)l = (1>1/Q<M[2<2q—1>/<q—1> _ 1}>1_”qx

+m i (1—ta)dt/0 (1+X)

Y

2 2(2¢ — 1)

< { P12,

Theorem 7. Let f: Ry x R — R be a partially differentiable function

on Ry x R and :’E’y € Li(la, 2] x [e,d]) with 0 < a < b, ¢ < d, and

m € (0,1]. If| is ((c,m), log)-convex on co-ordinates [0, 2] x [c, d]

iyt d)[?) + B 00l | e}

b
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for ¢ > 1 and o € (0, 1], then
q— 1 (20-1)/(g—1) 2(1-1/q) 1 1/q
A < [L=E 19a-/a-1) _y
80 < (=11 ) ()

S AT AT
q a\ \ 1/

Proof. By Lemma [1} Hélder’s inequality, and the ((c, m), log)-convexity
of ‘ f;,qu’ we acquire

)

+maL(

where L(u,v) is given by (5).

J(f, A |<// L+ )1+ N)|fr,(ta+ (1 —t)b, A+ (1 — N)d)|dtdA <
1-1/
g(//[(1+t)(1+A)]q/<q—1>dtdA) q><

[/ /| yf(ta+ (1 —=1)b,Ac+ (1 - A )d)|thd>\]1/q§

q— 2(1-1/q)
< | [2(2(1—1)/((1—1) — 1] X
2qg —1

! 1
X{(/O tadt)/o }f;’y(a,c)“JA f;ly(aadﬂq(l_/\)d)\_,_
1 o 1 g (b g b 2(1=3) »
e o) [l |l o -

a—1 r 2g-1)/(q-1) 2o o Ve 1 q
_ 4 = q— q— _
- (2q—1[2 ”) (a+1> {L(}f”(a’c)‘ |

b q b a\ \ /g
2y +mar (|22, (e )| () )]

The proof of Theorem [7]is complete. O

b
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Corollary 4. Under the conditions of Theorem[7 if m = o = 1, then

1 2(1—1
J(f.A)] < (1) M(‘I;l[gmql)/(ql) _ 1]) e
A= 21

(L8 12 o)) + L1 00 72, )|}

S

Theorem 8. Let f : Ry x R — R be integrable on [a, %] x [c,d]
with 0 < a < b, ¢ < d, and m € (0,1]. If f is ((o,m),log)-convex on
co-ordinates [0, 23] x [c,d] for o € (0,1], then

f(a+b c+d> <

2 72

1 1 b
§2a+1{b—a/a {f

1 1 +d N +d
{— [T 29 e (220 s
1 d b b
b [ () om0 (e ,y)}dy}s

<gimaa=n ], [ [fensme-0r(Z)
+m3(2% 1)%(%,@/)] dedy,

+

where L(u,v) is the logarithmic mean.

Proof. Using the ((a,m),log)-convexity of f and by the GA inequality,
we have

f<a—|—b c+d) :/1f<ta+(1—t)b+(1—t)a+tb,c—;d)dtg
0

2 72 2
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_|_
3
—_
|
N———
&h
VR
=
|
=
S
+
~
S
o
_I_
IS
N———
| S
QU
~

m )

+2m(2® — 1) {f(%,)\c—i— (1- A)d)f(%, (1 - Ne+ Ad)] 1/2+

+m2(2% — 1)2 [f(% A+ (1— /\)d)f(%, (1-Ne+ Ad)} 1/2}d:cd/\ -
(

. 1/2
W,c—l—d—y)} }dxdyg

<gimaa=n | [, e amer0r()s

+m?2(2% — 1)%f (%, y)] dxzdy.

Similarly, we acquire

! 1-— 1 -
f a—l—b’c—kd :/ s a+b’/\c—|—( ANd+ (1= ANec+ Md r <
2 2 0 2 2

! b b 1/2
g/o {%[f(%,k%—(l—/\)d)f(%,(l—)\)c+>\d>] +mx

x (1 - 2%) [f(aQ—;b,)\c—i— (1— A)d)f(aQ—;;b,(l - A)c+Ad)T/2}dA =
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“saa | (P (e
| Y (L VY (LI | YA
g U2 {2

_22& //{ Flta+ (1— )b y) + 2m(2* — 1)
xf((l_t)TCH_tb,y) +m?(2% — 1)2f(<1_?71—§+tb,yﬂdtdy =

b | [ e e or(n)

+m?(2% — 1)*f (W, y)} dxdy.

Combining the above inequalities leads to Theorem (8| O

Theorem 9. Let f : Ry x R — R be integrable on [a, %] x [c,d]
with 0 < a < b, ¢ < d, and m € (0,1]. If f is ((a,m),log)-convex on
co-ordinates [0, 23] x [c,d] for o € (0,1], then

m/j/abf(%y)dxdyﬁ Wlb—a)x
X /ab{L(f(x,c),f(x,d)) Fm(2e — 1)L(f(%,c>,f(%,d)>}d:c+

+ 2(a+11)(d )/d[f(a’yHmaf(%’y)]dyS
/ G(x,c,d)dz+

= 20+2( b—a

LT ll)(d— ) /Cd [f(a’y> +maf(%’y>}dy =

< m{(;(a,c, d) +maG(%,c,d) + 2L(f(a,¢), f(a,d))+
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a5} (3.0 el
() {1359}

f
< ;{G(a c d)+maG(£ c d)}
— 2a+1(a+1) e m? Y Y

b

where L(u,v) is the logarithmic mean and

Glz,c,d) = f(z,c) + f(z,d) +m(2* — 1)(f<%,c> + f(%,d))

for x € [a,%}.

Proof. Since L(z,y) < % for z,y > 0, from the ((a, m),log)-convexity
of f and by the GA inequality, we obtain

m/j /abf(:v,y)da:dy _

1 b
— ! a/ / Fla e+ (1 = N)d)dzd) <
- 0 a

< ﬁ /0 1 / b{ [F(@,0)f (@, )+

Fm(2% — 1) [f(%,c)f(%,d)} H}dm -

1

S / b{uf(x,c),f(x,dm

+m(2o — 1)L<f(%,c),f<%,d>> }dx <
1 b
< m/a G(z,c,d)dr <
1
< 2a1+1 /0 {taG(a, c,d) +m(l— t")G(%, c, d)} dt =

1 b
— m {G(a,c, d) + maG(E,c, d)}
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and

m/j /abf(x,y)dxdy _

d 1

_di //Of(m‘F(l—t)b,y)dtdyg
1
)

d pl
<o [ e v ep () ey -

(@+1)(d—0) /Cd[f(a,y)-l-maf(%,y)]dyg
1

= 2t 1) /0 {[f(a’c)]A[f (a,d)]' A+

s 0o [Gea)]

el 9]

ene sG] ()] o=
=m{w<a O, F(a,d)) +m(2° —1)L(f(%>c>,f(%,d)>+
)2
{5 ) )

1 b
< - 2 _
S o (a1 1) [G(a,c, d) +maG(m,c, d)}

Combining the above inequalities results in Theorem [9} O

Corollary 5. Under the conditions of Theorems[§ and[9, if « =m =1,

we have
a+b c+d 1 1 b c+d
<
f( 5 ' 9 )_Z{b—a/af(T’ 5 )dm—f—
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d b b 1/2
s [l ) (S e a-)] dy}s
b d
ot ey e 52
~a) _C//fwydxdy<

G
S d
; bia | 21060 saaydo + = [t + )] <

| /\

IN

b d
= [ o+ fwalas+ = [ )+ sy <

VAN
=~ =

(VAN
ool

[f(a,c) + f(a,d) + f(b,c) + f(b,d)+
+2L(f(a.¢), f(a,d)) +2L(f (b, ), f(b,d))] <

<

[f(a,c) + fla,d) + f(b,c) + f(b,d)].

| =
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