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ON INEQUALITIES RELATED TO SOME QUASI-CONVEX
FUNCTIONS

Abstract. Estimations of errors in inequalities related to some
quasi-convex functions in literature are simplified. Two new ge-
neral inequalities for functions whose n-th derivatives for any
positive integer n in absolute values are quasi-convex have been
established. Some special cases are discussed with applications
in numerical integration and special means.
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1. Introduction. It is well known that a function f : [a,b] — R is
called quasi-convex on [a, b] if

fQz+ (1= Ny) <max{f(z), f(y)}

for all z,y € [a,b] and X € [0,1] (e.g., see [1] and [2]). Thus we see clearly
that if f : [a,b] — R is quasi-convex on [a,b] then for any ¢ € [a,b] we
have

f(t) <max{f(a),f(b)}

It should be noticed that any convex function is a quasi-convex function
and there exist quasi-convex functions which are neither convex nor con-
tinuous (e.g., see [3] and [4]).

Along this paper, we consider a real interval I C R, and denote that
I° is the interior of I.

In [5-7], we see the following three inequalities for quasi-convex func-
tions.
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Theorem A. [7, Theorem 6] Let f : I C R — R be a differentiable
mapping on I°, a,b € I° with a < b and f' € L'[a,b]. If |f’|? is quasi-
convex on [a,b] and g > 1, then the following inequality holds:

@+ s (442) + 5 0)] - o o) ] < "
)

< 25 (max{|f' (a) |7, 1" (B) |})7 .

Q=

Theorem B. [5, Theorem 4] Let f : I C R — R be a twice differentiable
mapping on I°, a,b € I° with a < b and f” € L'[a,b]. If |f"|7°7T is
quasi-convex on [a, b, for p > 1, then the following inequality holds:

b
fla)+f(b
@ (2)

< G2 () (5@1’;3) (maxe{| (@) 11,1 (8) [7})¥

Theorem C. [6, Theorem 3] Let f” : I C R — R be an absolutely
continuous function on I° such that f"” € L'[a,b], where a,b € I° with
a<b If|f",q = p%l is quasi-convex on |a,b|, for some fixed p > 1,
then the following inequality holds:

l)—Ta[f(a)+4(f(a)+f(b)> +f(b )H

P (B (p 1,20+ 1)} [ (max{] £ @) 9,17 (252) 1) +
4 (max{|f”' (b) |q, ‘f/// (aT—HJ) ’q})E :| .

Q=

IN

It should be noticed that

(max{| £’ (a) |7 |/ (8) [1}) 7 = max{|f' (a)|,|f (B) |},

which has been overlooked in the literature (see e.g., [3-13]). The inequa-
lities (1), (2) and (3) have a uniform bound independent of ¢q. Indeed,
for any ¢ > 0 and positive integer n, |f(™|9 is quasi-convex on [a,b] if
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and only if |f(™| is quasi-convex on [a,b]. Thus, instead of Theorem A,
Theorem B and Theorem C, we actually just have the following three
theorems as:

Theorem 1. Let f : I C R — R be a differentiable mapping on I°,
a,b € I° with a < b and f' € L[a,b]. If |f’| is quasi-convex on |a, b], then
the following inequality holds:

‘%[f(a)+4f(a7+b)+f ]—ﬁfbf dt’§ (4)
}-

a

< 329 max{|f (a) |, | (b) |

Theorem 2. Let f : I C R — R be a twice differentiable mapping on
I°, a,b € I° witha < b and f"” € L'[a,b]. If | f"| is quasi-convex on [a, b,
then the following inequality holds:

b 2
HOPIO L [y af < S mastlf” @I 0)1 6)

Theorem 3. Let f”: I C R — R be an absolutely continuous function
on I° such that f" € L'a,b], where a,b € I° with a < b. If |f"] is
quasi-convex on [a, b, then the following inequality holds:

t) dt—b_Ta[f(a)—i—4<f(a)'2"f(b)> )”S

Fib
< St Tomac{ [ (@) | £ (252) [} + ma{1 £ (252) 1,1 (8) }].
(6)

In this work, we will derive two new general inequalities for functions
whose nth derivatives for any positive integer n in absolute values are
quasi-convex, which provide some generalizations of the above three ine-
qualities and some other interesting inequalities as special cases. Some
applications in numerical integration and to special means are also given.

2. The Results.
Lemma. (see [14]) Let f : [a,b] — R be such that the (n — 1)th derivative
f=1) (n > 1) is absolutely continuous on [a,b] and f") € L'[a,b]. Then
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we have the identity

b

[ f (@) de="526f (a)+2(1-0) f (%52) +0f (b) |+

Z%wl—@k+neﬂh—@%ﬂ oy (@b
t& (2k 4 1)122F e <T) + (7)
b
~1)" [ Ky (2,0) f™) (2) dz
where 0 € [0, 1] and

(m_a)n_e(b—a)({t—a)n_l che[ ib]
K@) =3 0" ey NG

( n - 2(7)1(— 1)!) o dfae (40,

Theorem 4. Let f : [a,b] — R be such that the (n — 1)th derivative
f(»=1) (n > 1) is absolutely continuous on [a,b] and f) € L'[a,b]. If
|f(")| is quasi-convex on [a,b], then we have

fb ) da— B2 [0f (a) + 2(1— 0) f (52) + 0F (b))

D Ck+1)O0—a)™ o (atDd (9)
TE eRegE <
I (n,0) max{|f™ (a)|,|f) (b

where 0 € [0, 1] and

[1—(n+1)0+2nm60" ] (b—a)" T

n <
. (n+ 1)!2" ’ 67
(n+1)'2” ’ "=
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Proof. From (7) of the Lemma, we have

(

n—

&

b
Jf

dx—“T“[@f(a)+2(1—0)f(‘%b)+0f(b)]—

11— 2k+1)0](b—a)™ o (a+D\|
) (2k + 1)1 22k e (T) ) -

k
fbKn (,8) F) ( )dw\ < fblKn (,0) f) (x) | dw < (11)

[V
._.

b
< maxgefa) [f (@) [ K (2,0) [de <

b
< max{|f" (a) [, |f™) (0) [} [ | Kn (,0) | do.

By elementary calculus, it is not difficult to get the following results:

, -+ Do+2nm -

. - (n+1)12n ’ 0

[ @0)a (n+1)0—1] (b — o)™ o

“ (n+1)I2n ’ — o
(12)

Consequently, the inequality (9) with (10) follows from (11) and (12).
The proof is completed. [

Corollary 1. Let f : [a,b] — R be such that the (n — 1)th derivative
f(»=1) (n > 1) is absolutely continuous on [a,b] and f) € L'[a,b]. If
|f(")] is quasi-convex on [a,b], then we get a midpoint type inequality

b o 22l )2t b
[[rwao=tger (o) - £ G n e (50| <
(b—a)"*

< N
~ (n+1)I2n

max{|f™) (a) [, [£") (0) I},

a trapezoid type inequality

n—1

b n-l B 2k+1 a
S f @) da =501 (@) + F O]+ (’2“,5111).)2% T fe (#) <
n(b—a)™

oy metlF Y @11 O],
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a Simpson type inequality

b b

2

T k=D (b-a)® o (atb
e o (+38)

a

<1 (ng ) max(i£ @L1F @) 1

where

5 —
1 ?7 n = 17
1 <7’L, —) = ]1° n=2,
3 (n=2)(b—a)" "
T 3ntnizn 0 N2

and an averaged midpoint-trapezoid type inequality

b

a

= (2k— 1) (b—a)2k+lf(2k) a+b ‘ -
= (2k+ 1)122k+1

<1 (ng ) max(l7 @117 )1

1
1 a8 n=1,
I n, — = n— —a n+1
( 2) { ( (nljgl;!znzrl , n2>2

where

11
Proof. Set 6 =0,1, =, =

35 (9) and (10). O

Remark 1. For n = 1, we have

b

< S22 (- 0 max{|f @)L, 1S ()]}

[ an- 30 1@ var (“50) + 10+

[ a2 [r@r2r (50) + £ 0]+

[ £ (@) do— 52 [0f (a) + 21— 0) £ (552) +0 () ]| <

(13)
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11
If we take 6 =0, 1, 33 in (13), then we get a midpoint inequality

!/ r@de— - ()|« O mastls @117 ),

a trapezoid inequality

b
[ @

a Simpson inequality

b b—a

Fr@ de—""2r@+ar (“20) 4 r)]| <
p 2

5(6—(1)2 / /
— max{|f" (@) |, If (®) [}

which recapture the inequality (4), and an averaged midpoint-trapezoid
inequality

"1 @+ 70 < C L max(i (@) L1 013,

IN

[ =222 r@2r (S0) + 1)) <
2
OO (| ()], 1 (5]}

<

Remark 2. For n = 2, we have
b

ff(m)dx—b_T“[9f(a)+2(1_9>f(%)+9f<)} (15)
< 1(2,0) max{[f" (a) [, |f" (b) [},

[1—36+863](b—a)® n
1(2,0) = [39—1](52—461)3 n

24 ’

where

’ (16)

(AVARWAN
NI N[

11
If we take = 0,1, =, =

33 in (15) and (16), then we get a midpoint inequality

b
1@ ae—0-ar (%)) < 5L mastis @i o)1),
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a trapezoid inequality

b 3
[ =500 @+ r o] < S wasti @1 o)1,

which recapture the inequality (5), a Simpson inequality

[r) o= 1@+ ar (5) + s 0] <

j 3 (17)
O smae{| " (@) | 1" 8) ]

<

and an averaged midpoint-trapezoid inequality

b

[ =" [r@2r (*57) +£0)]| <

o 2
(b—a)2 7 "
< O a1 (@) 15 ) )

Remark 3. For n = 3, we have

b

[ f (@) dz = 5210f (a )+2(1—9)f(i)+9f( )]~
(1-30) (b f,, a+b) (18)
() |

24
1(3,0) max{[f" (a) |, [/ (

where

’ (19)

(AVARWAN
[\:JlH N

n
[40—1](b—a)* n

[1—46+546%](b—a)*
1(3,0) = 192 ’
192 g
11
If take 6 = 0,1, -, =
we take 135

inequality

in (18) and (19), then we get a midpoint type

b

)ff(x) de — (b—a) f (%) — &5 “)Sf”(%”)\g

(b — a)4 m m
< o max((” (@)1 ) 1),
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a trapezoid type inequality

] £ (@) de = 5211 (@) + £ ()] + L5227 (282
)

(b_a4 " "
< S max{| @) |1 0 1)

a Simpson inequality

ff(a:) dfc—b_a

a

[f(a)+4f(a;b>+f(b)”§ 0

4
< O mmax{(7” @) 17" )]}

and a midpoint-trapezoid type inequality

b

[ 7@ de "7 s +2f(“+b>+f(b)}+

J 2
L () | = S i @100

Theorem 5. Let f : [a,b] — R be such that the (n — 1)th derivative
f(»=1) (n > 1) is absolutely continuous on [a,b] and f) € L'[a,b]. If
| f(™)]| is quasi-convex on [a, b], then we have

\ <

[ (@) de — 555[0F (a) +2.(1— 6) £ (<52) + 67 (5))—

n—1

& 1—(2k+1)0](b— a)2k+1 f(2’<?) a_—i—b) ’ <

(2K + 1)1 22
£ ()], |5 (“‘2”?) 1+

ll(n’ 2 [ma,x {
+masc{[ £ (252) |, 11 (0) 1}].

IN

2

where 0 € [0,1] and I (n,6) is as in (10).
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Proof. From (7) of the Lemma, we have

f i do =3¢ 0f (a) +2(1 - ) [ (452) + 05 (b) |-
"E [1—(2k+1)6] (b—a)®**! £z (a+b)
. (2k+1) 92k
b
— | k., £ ( da:‘<f]K (z,0) f) (2) | da =
T 1K (00) £ (@) 4 [ | (2.6) £ () <
' ass (22)
< r[nax ]\f(”) x) | f | K, (z,0) | de+
x€[a, 2Ll
+ max |f(™)( f (2,0)|dx <
xe[“T“’,b] ath

a+b

< max{|f™ (@) |,|f™ (<) [} | Ko (2,0) |do+t

a

K, (x,0)|dz,

Fmax(| £ (42) LIFO )]} [

Observe that

/|K x@]daf;—/\K (,0)|dr == /|K (x,0)|dx =
a+b

the inequality (21) follows from (22). The proof is completed. (]

Corollary 2. Let f : [a,b] — R be such that the (n — 1)th derivative
f»=1) (n > 1) is absolutely continuous on [a,b] and f) € L'[a,b]. If
|f(™)| is quasi-convex on [a,b], then we get a midpoint type inequality

et o52) - z%w ()] =

k
S(ﬁf s [max {9 @ [ agb)\}+
(

+max{| f™) (242) |, If(") )}

( 9).
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a trapezoid type inequality

b

Fr@ ezl s g+ 5 A0 e (450)) o

+
< e [ {0 (52 [+
+max{|f™) (<52) |, £ (b) [},

a Simpson type inequality

fre =22t @+ (S52) < s+

a
n—1

+§( )(b—a)2k+1f(2k) (a—I—b) ’ -

& 32k + 1) 271
Fa)], ( 5 ) }+

< ! m 3 )[max{
+maxc{[ £ (552) |, £ (1) 1},

2

where .
1 $, n = ].,
H(3) =0 e 22
(n—2)(b—a) n>3

3(n+1)127 > =

and an averaged midpoint-trapezoid type inequality

aff(x)dw—b;“[m ror(S0) 4]+
E (2k — 1) (b — a)** ! £020) (a~|—b) ‘ <

2 2k + 1) 22h T
£ (@) ], | (a + b)

I(n,
+max{|f) (25° )| If(") )I},

2 |:ma,X{
1
1 18" n=1,
I n,- | = n— —q)nT!

N[
SN—

<

where
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11
Proof. Set § =0, 1, 3'3 in (21) and (10). O
Remark 4. For n = 1, we have

‘jf(x) dr 207 (a )+2(1—9)f(a_2|_b)+0f(b)” <

< 1—268+292 (b—a)2[max{!f ), ’f (a+b> ‘}+ (23)
+max {| £ (552) |15 ) 1}].

If we take 6 = 0,1, in (23), then we get a midpoint inequality

OJIH
[\.’JIH

(jﬂ@dm b—a)f(232))
< (b—8a)z [max{u' @l ‘f, (a;b) }}+
+max {| £ (252) |, 1 (b

a trapezoid inequality

b

S f @) dz =501 @) + £ O] <

< O3 [ i 01| (“”) )

w2 01

a Simpson inequality

b

‘aff(x) d“"_b; 2
< 5(b7—2a)2 [max{]f’ (a)],‘f’ (a—2|—b) ‘}+
b
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and an averaged midpoint-trapezoid inequality

/) da:—b;a[f<a>+2f(“;b>+f(b>”g

< (b I6a) [max{\f’ (a)|,‘f’ (a;b) ’}Jr
+max{’f/ (aTb)"’f/(bHH

Remark 5. For n = 2, we have

b
ff()dx——[ef<)+21 0) f (452) +0r )] <

’ (2 0) ( b) (24)

17 (252) \ L (b)

<

max |f"

—l—max{

where I (2,0) is as expressed in (16).

11
If we take 8 = 0,1, 33 in (24) and (16), then we get a midpoint

inequality

fb (b— a)f(‘”b)‘ﬁ

: (=)

= [max{v (),

GO0

S(b

+max{

a trapezoid inequality

b

[ (@) do = 5211 () + £ )] <

“ F () )

(b—a)”
COITOINE

< g [max {17 (@),

+max{
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a Simpson inequality

[7@) do— "2 (@) + 41 (a;b) +1m)]] <

a

< Lot [ @ (52) [+
e { |17 (252) |, 177 () 1}]

and an averaged midpoint-trapezoid inequality

b

[ a2 1@ (“50) 41 0)]| <

a

< O e {117 (52) [+
+max {| £ (52) | 177 ®)1}]

Remark 6. For n = 3, we have

7 (@) do— 5207 (@ +2(1- ) £ (252) + 07 ()] -
——(1_%9%ib_a)3f” H’ ‘ < 1(3 [max{ " (a) |, | " (%b) ’}+ (25)
I %b NG }}

—|—max{

where I (3,0) is as expressed in (19).

11
If we take § = 0,1, 33 in (25) and (19), then we get a midpoint type

inequality
1% a+b ’ <
N <
/

o +

/\

N,<a+b)‘}+
MW i)

[ max

+max{




On inequalities related to some quasi-convex functions

59

a trapezoid type inequality

b

] £ @) de = 2500f (@) + £ )+ O (45) | <

< L [ {1 | <%”) =

128
s 9 117 1)

a Simpson inequality

b

[ o= "5 [r@+ar (*57) +£0]| <

a

B el ()
s 9 1570

which recapture the inequality (6) and an averaged midpoint-trapezoid

type inequality

jf dm—b;a[f(a)+2f (”b) + 1) ]+

2
+ (b ;8a)3f// (CL + b) < 381)4 [max {|f/// (a> |’
+maxc { | (42 | 17 ) 1}].

2

f/// (CL +b

3. Applications in numerical integration. We restrict further

considerations to the Simpson quadrature rule.

Theorem 6. Let 7 = {zg = a < 27 < -+ < x, = b} be a given
subdivision of the interval [a,b] such that h; = ;41 —x; = h = b*T"“ and

let the assumptions of Theorem 1 hold. Then we have

b

aff() _%Z: [ (ch)+4f(%>+f(mi+1)”§
<309 P @ L1 )1

36n

(26)
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Proof. From the inequality (14) in Remark 1 we obtain

Ti41
[ de=[f @)+ af (2) + f (@) ]| <
7’ 5h?
< - max{|f' () |, |f (zi41) [} < (27)
- o
5(b—a
< / !/ .
< 20 a7 @) 17 0)1)
By summing (27) over i from 0 to n — 1, we get
n—1, Ti+1
S| S F@) de— [ @)+ 4f () f () ]| <
e (28)
—a
< / / .
< 20 sl @17 ) 1)
Consequently, the inequality (26) follows from (28). O
Theorem 7. Let 7 = {zg = a < 217 < -+ < x, = b} be a given

subdivision of the interval [a,b] such that h; = ;41 —x; = h = =% and
let the assumptions of Theorem 2 hold. Then we have

b n—1

[F@ dt— 55 [F @) +4f (252 ) + f (@) || <
a 1=0
maxc{|f” (a) |, £ () 1}

_(b-a’ (29)

—  81n?

Proof. From the inequality (17) in Remark 2 we obtain

<

Tit1 ‘

S Fe) dt— [ (@) +af (S ) + f (vi) |

Tq

3

< omax{| 7" (20) |, 17" (i) 1} < (30)
(b_a)3 " 1"

< O sl @)1, 15" 8 I}

By summing (30) over i from 0 to n — 1, we get

<

n—1, Ti+1 ‘

S| S s = gff @ v ar (50) + f i) -

< B max{(7" (@) L 15" ()1,
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Consequently, the inequality (29) follows from (31). O

Theorem 8. Let 7 = {zg = a < 217 < -+ < x, = b} be a given
subdivision of the interval [a,b] such that h; = ;41 —x; = h = b;—“ and
let the assumptions of Theorem 3 hold. Then we have

) )
Fron t—-E[ (e0) +4f (24252} 4 £ (i) || < )

(b a)4 177 "
< ooy max{” @1 () ).

Proof. From the inequality (20) in Remark 3 we obtain

Tit1

[ @) dt =B [f @) +4f (S5 ) + f @) || <

Zq

h4 1 "
_%ma;{lf () | 17" (i) |} < (33)
< S wmax{1" @) |, |1 ()]}

By summing (33) over i from 0 to n — 1, we get

n—1, Ti+1

‘ ] r@ dt—%[f(mi)+4f(%>+f(96i+1)”S
B b a)’ (34)
S Trens max{[f" (a) [, f" (b)]}.

Consequently, the inequality (32) follows from (34). OJ

4. Applications to special means. We now consider the appli-
cations of the Simpson inequalities (14), (17) and (20) to the following
special means:

b
(1) The arithmetic mean: A (a,b) := ot

, a,b>0.

(2) The Geometric mean: G (a,b) := v/ab, a,b > 0.

2
(3) The harmonic mean: H (a,b) := j—bb’ a,b>0.
b—a

(4) The logarithmic mean: L (a,b) := , a#b, a,b>0.

Inb—1na



62 Z. Liu

bb 1/(1)*0‘)
(—) , a#b, a,b>0.
aa

ppt1 _ gp+l
p+1)(b—a

(5) The identric mean: I (a,b) :=

Q|

(6) The p-logarithmic mean: L, (a,b) = [

>0, p# —1,0.
Using the Simpson inequalities (14), (17) and (20), some new inequa-
lities are derived for the above means.

)];, a#b, ab>

Proposition 1. Let a,b € R,0 < a <bandn € N, n > 3. Then we have

1 2 5n(b—a)b™ !
—A(a™b")+ A" - L <
‘3 (a™,b )+3 (a,b) n(a,b)‘_ % ,
1 2 n(n—1)(b—a)’ b2
SA(a",b") + A" — L} <
‘3A(a,b)+3A (a,b) n(a,b)‘_ o1

and

n(n—l)(n—m(b—a)?’bn—é

1 2
- n n “An _Tn <
SA(@" ") + ZA (a,) — L (a,b) | < —

3

Proof. The assertion follows from applying the inequalities (14), (17)
and (20) to the mapping f(x) = 2™, € [a,b] and n € N which im-
plies that |f' (z)| = nz™™ Y, [f"(z)| = n(n—1)2""2 and |[f" (2)| =
=n(n—1)(n—2)2"3 are quasi-convex on [a, b]. [J

Proposition 2. Let a,b € R, 0 < a < b. Then we have

Lo 2,1 ~1 ’ 5(b—a)
< ] .y <
SH (@) + 347 (@)~ L7 (a,b) | < 200
1, 2 1 ‘ (b—a)?
Z z _ < M
SH (@) + $A7 (@)~ L7 (a,b) | <
and .
Lo 2,1 ~1 ‘ (b—a)
Z - - b) | <

Proof. The assertion follows from applying the inequalities (14), (17) and
1

1
(20) to the mapping f (z) = —, x € [a, b] which implies that |f' (z) | = ot
x

2
lf" ()] = s and |f"" (z)| = g are quasi-convex on [a, b]. O
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Proposition 3. Let a,b € R, 0 < a < b. Then we have

‘%[lnG(a,b)—l—ZlnA(a,b)] —lnI(a,b)‘ i %’

E[m@(a,b) +21nA(a,b)] —lnI(a,b>\ < (1)8;_&@2)2
and

)%[lnG(a,b)—k?lnA(a,b)] —1InT(a,b) ) < %'

Proof. The assertion follows from applying the inequalities (14), (17) and
1

(10) to the mapping f (z) = Inx, x € [a, b] which implies that |f’ (z) | = —,
x

2
lf" ()] = 3 and |f" (z)| = —3 are quasi-convex on [a, b]. O
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