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ON REGULARITY THEOREMS FOR LINEARLY
INVARIANT FAMILIES OF HARMONIC FUNCTIONS

Abstract. The classical theorem of growth regularity in the
class S of analytic and univalent in the unit disc A functions
f describes the growth character of different functionals of f € S
and z € A as z tends to dA. Earlier the authors proved the theo-
rems of growth and decrease regularity for harmonic and sense-
preserving in A functions which generalized the classical result
for the class S. In the presented paper we establish new proper-
ties of harmonic sense-preserving functions, connected with the
regularity theorems. The effects both common for analytic and
harmonic case and specific for harmonic functions are displayed.
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1. Introduction. For a function wu(z), continuous in the disk
A ={zeC:|z] <1}, we denote

M(r,u) = |m|ix lu(z)| and m(r,u) = |rr|1i<n lu(2)].

Let S be the class of all univalent analytic functions f(z) = z+ ... in
A. The theorem of growth regularity asserts that functions having the
maximal growth in the given class, grows smoothly (regularly).

Theorem A. [1], [2], [3| pp. 104, 105], [4, pp. 8-9] Let f € S. Then there
exist a dp € [0, 1] with

lim [M(r,f)u] = lim [M(r,f’)M =69,

r—1— 14+7r
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80 = 1iff f(2) = 2(1 — ze¥)=2. If §° # 1, then the functions under the
sign of the limit increase on r.
If 6 # 0, then there exists ©° € [0;27) such that

2 (13 0 0
N T e R [T e B

Here the functions under the sign of the limit are also increasing on r €
€ (0,1).

In [5], Ch. Pommerenke showed that many properties of functions
from the class S can be extended to linearly invariant families (LIFs) of
locally univalent analytic functions in A of finite order. In [6] and [7], the
theorem of growth regularity was obtained for such LIFs.

In [8], [9], the authors introduced the notion of LIF for complex-valued
harmonic functions f in A. Every such function can be presented, using
analytic functions h and ¢ in A in the following way:

f(z) = h(z) + g(2), (1)
where

hz) =2+ an(f)z" and g(z) =Y a_n(f)2".

As in [5], L. E. Shaubroek considered locally univalent functions in A.
Moreover, these functions are sense-preserving in A, i.e. the Jacobian

J¢(z) satisfies
Je) = R g () >0 Ve A

Definition 1. [8], [9] A set My of harmonic sense-preserving functions

f in A of form is called the linearly invariant family (LIF) if for all

f € My and for any conformal automorphism ¢(z) = fjr"aaz, a € A, the

function e~ f, (ze") belongs to My, where

fle(2)) = F(#(0))
W (0(0)¢’(0)

It is assumed that the order of a family My

fa(2) =

(2)

ordMy = sup |az(f)]

is finite. FeMu
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In the analytic case (when g(z) = 0), the definitions of LIF and ord 9ty
coincide with the definitions of Pommerenke [5].
In [10], for LIFs of harmonic functions, the strong order

— _ |a2(f) - G—1(f)a—2(f)‘
s T

was defined. The strong order proved to be convenient for investigation
of LIFs, because it is not necessary to assume the affine invariance of a
family. Moreover, for an affine LIF 9ty the strong order does not exceed
the old order:

1 -
ord My — 3 <ordMyg <ordMy.

This fact allows to describe properties of affine LIFs more precisely. For
a LIF 9 of analytic functions, ord My = ord My. Analogously to the
analytic case in [10] the universal LIF U was introduced and studied.
The family L{f is defined as the union of all LIFs 9 such that ord My <
< a. Equivalently, U/ is the set of all harmonic sense-preserving functions
f in A of the form such that

ord f = ord{e ¥ f,(ze):a € A, § €R} <.

It was shown in [10] that ordU/H > 1.
In [11] and [12], the following regularity theorems for harmonic func-
tions were proved:

Theorem B. (regularity of growth) Let f € U. Set

T

&)= [ M. I dp. a0 = [ (o) dp. ana

1 +p 2a 2
/ — p)rat? dp.
0
For each n > 2 successively denote

T T

B, (r) = / B 1(p)dp, Un(r,p) = / U, _1(p. ) dp, and

0 0
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T

Fu(r) = [ Faalo)dp.

0

Then
a) for every ¢ € [0;2m) and n € N, the functions
) ( o T)2a+2 (1 _ r)2a+2
itp RV ~
Tp(re”) (14 r)2e-2’ M(r, Jy) (1+7)2e=2’
\Iln )
() Walrg) IS
Ey(r)’ Fy(r) Fo(r)

are non-increasing on r € (0;1);
b) there exist constants 6° € [0;1] and ¢° € [0;27) such that for
1<n<2a+2,

& = lim {M(T’ Jr) (1 - T)2a+2] ~ lim Tp(re'®’) (1—r)2e+2|
r—1= | Jp(0) (1 +7)2e—2 Jp(0) (1 +7r)2e—2

o [ Mg T a—rprert)
TS | Tp(0)4(a+ 1) (1+r)2e3 |

— Tm
il | J1(0)4(a +1

e [B 200 1) dp 1 e
) ) A

)
[ ‘%Jf(?“ei‘po)) (1 . T)2a+3
) (14 r)2a—3

r—1—

r 300
y fo ‘%Jf(pe @ )‘ dp (1 — r)20+2
= 1m e

S O A

0 max ¥, (7, )
— lim q)”—m: lim M: lim —2

rl= T (0)Fu(r)  roi= Jp(0)Fu(r)  roi= J5(0)Fu(r) |

Fo(
c) 0° = 1 for functions qo(2) = €Ok (ze7) + 7Pk, (ze), where

o€ A, 0eR, and
1 1+2\“
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Theorem C. (regularity of decrease) Let f € U, Set

Qu(r) = / mip, Jy)dp, Ei(r) = / A=ppe=

For each n > 2 successively denote

/ Qn 1 dpa and E / En 1
Then

a) for every ¢ € [0;27) and n € N the functions

(1 +r)2at2 (1 + r)2at2 d Qn(r)

Jf(Tei"D)W’ m(T’Jf)m7 B

are non-decreasing on r € (0;1);
b) there exist constants g € [1;00] and g € [0;27) such that

dg = lim m(r, Jp) (1 + T)2a+2] =1 [Jf(rewo) (1 +r)2at2?
r—1— Jf(O) (1 — T)rofz Jf(O) (1 — r)20z72

r—1—

= lim —Qn(T) :
o TH0) B ()

c) for ¢ € [0;27) denote
1
Ry(r, ) = / Ty (pe'®) dp,

T

1
R, (r,p) = /Rn—l(p, ©)dp

(under the assumptions of Theorem C' the integrals converge). If §y < oo
then for n > 1 the function RE(—(“P)D) is non-decreasing on r € (0;1).
Moreover,

and for n > 2, set
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d) if J¢(#) is bounded in A, then for every n € N and every ¢ € [0;27),
the functions

in Ry, (r,
Rulrg) g9
Ey(r) Ey(r)
are non-decreasing on r € (0;1) and
min R, (7, )

e) 6o = 1 for functions qg(2) = €ky(2e7) + 0¥k, (2e=), where
o €A, 0 €R, and ko(2) is the function defined by (3).

Definition 2. We say that the constant ¢° from Theorem B is a direction
of mazimal growth (d.m.g.) of a function f(z). The constant g from
Theorem C'is a direction of maximal decrease (d.m.d.) of f(z).

Definition 3. The numbers §° from Theorem B and §y from Theorem
C are called the Hayman numbers of a function f(z).

In the presented paper we establish new properties of U, connected
with the regularity theorems.

2. Main results.  For fixed ¢ € [0;1) introduce the class U,
consisting of all functions f = h +g € U such that |¢'(0)] < c. That is,
Jp(0) > 1—¢? >0 for all f €U .. The class UL is not a LIF. Note that
the family ¢! is not compact in the topology inducted by locally uniform

convergence in A, but for Zflgc the following theorem takes place.

Theorem 1. The family U is compact in the topology inducted by

a,c
locally uniform convergence in A.

Proof. Let f, € UaH,c, fn = hn +gn, n € N, h,, and g, be analytic
functions in A. By A, denote the set of all analytic functions A in A such
that there exists an analytic function g in A and f = h+g € UX. In other
words, A, is the set of analytic parts of functions f € U2 . The linearly
invariance of U implies that A, is a LIF of analytic functions. But for
LIFs of analytic functions ord A, = ord A,. Therefore for all h € A,

(1+r)>-t

1’ (2)] < (A=)t

|Z| =T,
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see [5]. Since J;(z) = |h/(2)]2 — |¢'(2)]?> > 0 for all z € A and all f € U
we have ( Jo1
14+7)*"
<

for all f = h+g € UL and z € A, |z| = r. Consequently, U, C
C U is uniformly bounded on compact subsets of A. According to the
compactness principle, there exists a subsequence of f,, (let us save the
notation) which converges locally uniformly in A to a harmonic function
fo- Let us show that fo € U

For f € U the following inequality holds (see [10])

(=2 _ Jy(2)
< ! (]_ _ T‘)2O‘+2 )

(177 = 7,0)

< 2] = .

Therefore for f, € U, we have

(1 r)?e? 2
J —_— > 0.
This implies Jy,(z) > 0 for all z € A. This means that the harmonic in A
function fo is sense-preserving.
_ Next, we prove that ord fo < «. Suppose not. Then, we may let
ord fo = # > «. Then, by the definition of the strong order, there exist
a conformal automorphism ¢(z) = f:—aaz of A and 6 € R such that for
harmonic function

—if i0y _ fO(SO(Zﬁ’w)) G L2
N O e ’;A +AL),

(A1 =1, fo = ho+ go) the inequality

Ay — Ay A 8-
=4 >oz+—2 (4)

is valid.
For the automorphism ¢ and the number 6 denote

o0

e (fa)a(ze?) = 3 (AP F + AT, (A = 1),

k=1
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From locally uniform convergence of f,, to fy, the Weierstrass theorem on
series of analytic functions, and inequality (4) it follows that for sufficiently
large n > N

AP — AM A 5—a
) >+ —.
1—[AZ? 2

Hence if n > N we have ord f, > a + B—Ta and f, ¢ U .. This contradic-
tion proves the theorem. [J

In claim c¢) of Theorem B and claim e) of Theorem C some set of
functions with the Hayman number 6° = 1 (or §y = 1 for the theorem
of decrease regularity) is described. These claims differ from the analytic
case. In the analytic case 6 = 1 and 6y = 1 only for the functions
e%ko(ze7?), where § € R, k,(z) is the function defined by [7, [13],
[14]. The following example shows that in the harmonic case this set has
more complicated structure. We construct the example of functions f
of arbitrary strong order 8 > 3/2 with §° = 1. These functions are not
equal to the function gg(z) from Theorem B. We use the Clunie and Sheil-
Small shear construction [I5] (see also [16, ch. 3.4]) to give our example.
Let us note that our construction is not stable. As one can show, if
we multiply the coanalytic part g of the function from our example by
constant k& € (0,1), then the strong order of the function changes step-
wise and 6° # 1 for this function.

Example. Put h/(z) = 8:“32;;, g (z) = zh/(z), z € A. Let
a € [1,00) be fixed. If p(2) = £, a € A, is an automorphism of
A, then for f = h + g we have

fo(2) = F(e) = HE)GE) = M E 2 ))+(g(f/( D g(fo(o)))

where H and G are functions analytic in A,
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Note that

e — g PRI R ~ )
B =R GO = o or

and, in particular,

Jr(0) =1 = |(0)*.

Therefore,
Jr(0) |1+ a|?>—2 l_ﬁ_aafz |1+ az|*
x| 1 cta 2 1 =
1+az| ) (1—la?)3
20—2 20—2
1 1+a 1 1+a
‘+2Hﬂ 1+ a2’ — |2 + af? ’ G )
- 2a+4 1— |af? = [2a+4 (1—12]%),
‘1 — z%:a ’1 — z}:—z

by generalized Schwarz’s lemma. Consequently, for r € (0,1)

Jr(z)  (14r)* !
sup = .
aca, Jr(0) (1 —1r)2at3

|z|=r

Therefore for = a + %, all a € A, and |z| = r we get

Jr(z) (1 +7)2~2
T (0) = (e ®)

In [10] it was shown that for functions f harmonic and sense-preserving
in A,

Jr(z) _ (Lt [2)?2
Tr(0) = (L [#])2F2

Rf:inf{ﬁ: VF:fa,VzeA}. (6)

From and @ we conclude that ord f < f = a + % From Theorem
B it follows that if for a function f harmonic and sense-preserving in A

lmlﬂhwﬂl—ﬂ”“
Tr(0) (T+7)27-2

> 0, (7)

r—1—
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then ord f > . For the considered function f the limit in equals 1.
Therefore, ord f = [ and

o [ (1= )2

=1.
1 [77(0) (14 7292

It is interesting to find out if there exist functions with 6° = 1 which are

not equal to the function from the example and the functions gy (2).

Definition 4. A direction of intensive growth (d.i.g.) of a function f(z)
is a constant ¢ € [0;2m) such that

lim
r—1—

e @

Jr(0) (1 _|_7«)2a2:| =4(f.¢) > 0.

A direction of intensive decrease (d.i.d) of a function f(z) is a constant
@ € [0;27) such that

1% 1 2a4-2
lim {Jf(re ) (1+7)

J1(0) u,_7g2a2]:=5Tf,¢)<:oo.

r—1—

Since we study LIFs, it is important to know how d.i.g.-’s and d.i.d.-’s
of a function f(z) are changed under the transformation e =% f, (ze?). The
case a = 0 is trivial: a d.i.g. (d.i.d.) ¢ — 0 of the function e~% f(ze')
corresponds to the d.i.g. (d.i.d.) ¢ of f(z). In this situation 6(f(z), ) =
= 6(f(ze?), o —0) (and &' (f(2), ) = 0'(f(ze'?), 0 — 0)). It is also inte-
resting to find out the relationship between the Hayman numbers of the
functions f and f, in general case. The following theorem concerns the
non-obvious case a # 0.

Theorem 2. Let f € UH. Denote

re' +a
1+ aret®’

P .
R(r) = % , (r)=arg a €A, re¥#—a.

1) ¢ is a d.i.g. (d.i.d.) of the function f,(z) iff v is a d.i.g. (d.i.d.)
of f(z) and

, iy _
e = 2. 8)

1 —ae™’
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2) for all v € [0, 27)

lim {Jf (re™) (1 = r)2a+2} — lim {Jf (R(r)et (M) (1 — R(r>)2a+2:|

=1 | Jp(0) (L4272 Tesi- | Jp(0) (T R()22)”
and

lim {Jf (re™) (1+ T)QQH] ~ lim [Jf(R(T)e’i'v(r)) (14 R("r’))%‘“]

r=1— | Jp(0) (1—r)2e=2]  ro1- J£(0) (1= R(r))? 2

Here ¢ and v are connected by (@
3) if ¢ is a d.i.g. of fo(2), v is a d.i.g. of f(z), and ¢ is connected
with v by (@, then

Jy(a) (1 — |af?)**2
J;(0) |1+ acie[ia

0(f,7) = (far )

if ¢ is a d.i.d. of fo(2), v is a d.i.d. of f(z), and ¢ is connected with ~y
by (@, then
Jr(a) |1+ aet? |t
6/ — 5/ . f .
(fa 7) (f 790) Jf(O) (1 — |a|2)2a_2

Proof. 1) Let ¢ be a d.i.g. of f,(2). This means that there exists the

limit | s, (rew) 1 r)2°‘+2
War0) = Lip. { J.0) (1t )] >0
Note that
I = H , (9)
W@+ a2
and
7. (0) = 2010 (10)

W ()]
Let us calculate the following limit, using @ and ,

Ty (R(r)e" ™) (1 - R(r))‘m”} _
Tr0) (14 R(r)2

0 def lim [

r—1—
ey (L= (1 R\
=1 ZJa A 1 v .
TE?—[ R e AN
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We have )
1-R 1-—
tim 280 oy gy = Ll
rol1— 1—7r r—1— |1 + aei®|?
Using (11)), we obtain

Jy(a) o (1= lal? )
(fa,)f(>\1+ ‘(—|1+aew|2) > 0. (12)

By , Tl_i}r{l_ R'(r) > 0, therefore the function R(r) increases on an

interval (rg, 1). By Theorem B, for ro <r <r; <1

Jp(R(r)e™ ™)) (1= R(r1))** 2 _ Jp(R(r)e™ ™)) (1= R(r))*+2
J¢(0) (1+ R(r1))2*2 ~ Jr(0) (14 R(r))2-2

Passing to the limit as 7y — 1— and using , we get

T (R(r)e) (1 — R(r))2o+2
PSR TR

Thus,

6(f,v) = lim

r—1—

Y 1 — 20042
(LB QRO gy
Jr(0) (T + R(r))?e~
Taking into account (12), we conclude that v is a d.i.g. of f(2).
Now let us consider the sets

A={e":yisadig. of f(2)},

e’ +a . :
B = {m .(plsad.l.g. Of fa(Z)},
C={e":nisadig. of [fo(—a)(2)}-

Here [fa](—a)(2) is the transformation (2|) of the function f, with the
parameter —a. If  is a d.i.g. of [f,](—4)(2), then, as it was proved above,

ip
i — er +a
1+ aeiv’

where ¢ is a d.i.g. of f,(z). This implies that C' C B. Let ¢ be a d.i.g. of
fa(2). Then
e 4 a

e =
1+ aet’
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where 7 is a d.i.g. of f(z). Thus B C A. Since [fo](—a)(2) = f(2), we have
A = C and, consequently, A = B. This completes the proof of the state-
ment about d.i.g.-’s.

The statement about d.i.d.-’s is proved analogously.

2) Let us prove the first equality. If 7 is not a d.i.g. of f(z), then

{Jme”) (1- r>2a+2} .

)
ST 0) (1 r2e

r—1—

Thus, by ,

0 < lim [

r—1—

Jy(R(r)e™) (1 - R(T))Z’O‘”] _0
Jr(0) (L4 R(r))?e—2 '

This implies § = 0.
Now let us consider the case when + is a d.i.g. of f(z). We have proved

above that 0(f,7y) > ¢ (see (13)). It remains to show that §(f,~) < 0.
Denote .

re’” —a

Rl (T’) =

1 —are®

Since [fa](—a)(2) = f(2), v is a d.i.g. of [fa](—a)(2), i.e.

_ L Tl (1) (1 = r)20t2
HWelco =00 = 3 [ f]f()O) (1+ r)zo‘_2] -0

Arguing as in the proof of claim 1), one can note that there exists

J re’ —a
5% i To \1=aren (1 — Ry(r))%o*2
r—1- J5.(0) (L4 Ra(r))?>2

Apply to the function f,(z), using @7 , and :

Jg, (re'?) (1 — 7“)2a+2] _
Jr, (0) (L +7)2e2

6 < lim {

T or—l-
ret? +q
J; <—

. 1+ Ere“ﬁ) (1 — R(r))?>*2 - 1— 2a+2
= lim — clim | ——— =
r—1- | Je(a)|l +are®|* (1 + R(r))?>=2| r—1-\1— R(r)
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5.J(0) (|1 +aew|2)2“+2_ 5J£(0) |1+ aeie|te (14)

= T (@)L +aete]t 1—|af? o Je(a) (1— |a[2)2042"
On the other hand, by @D,

7 z-a\ _ Jf(z)
fa 1—az z—a o

W (@) |1 +a-

—az

Thus, using , , and , we can write 0* in the form

R Jpren) (1=
r—1 i 4 (1 + r)2a—2
Jp(a) [l + apsazs
2c0+2
L (LN
r—1— 1—7r

(@)1 +ae[* \ |1 —aer?

L 5(0) [Ltacee
=T @ U= e

:5<f’7)<]f J5(0) ( 1— |af? )2a+2:

Substituting
Jr(0) |1+ @ete |t
=9

U g 0 fapes?

in (Td), we get 8(f,) < 8. Therefore, 5(f,7) = 6.

The second equality of claim 2) is proved analogously.
3) The formula, connected &(f,7) and 8(fa, ¢) is obtained from (12),

using 0 = 4(f,7).
The second equality is proved analogously. [

Theorem [2| implies the following

Remark. Let f € U, For every ¢ € [0;27) there exist §(f,¢) € [0;1]
and 0'(f, ) € [1;00] such that for any circle or straight line I' C A,
orthogonal to OA at the point e'?, we have

- 200+2
[ (= D)
Pormeie | J4(0) (1 + |2])20—2

=0(f,»),
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: Jp(z) (L+]2])*? ,
| -5
Fazlineiv Jf(()) (]_ — |z|)2a—2 <f7 QO),

and the constants §(f,¢), &' (f,¢) do not depend on T'.

By U (§°) denote the set of all functions from U with the same
Hayman number 6° from Theorem B.

Let UH (5) be the set of all functions, having the Hayman number dq
from Theorem C.

Theorem 3. 1) If f € UH(5Y), ° € (0;1), then for every § € [6°,1)
there exists a € A such that f,(z) € UH(5).

2) If f € UF(6y), 59 € (1;00), then for every &' € (1,6°] there exists
a € A such that f,(z) € UZ(5).

Proof. By Theorem B, for any ¢ € [0;27) there exists

i [Jrlret®) (1= e
1 _ |
T'—lgl— |: Jf(()) (1 _|_7=>2a—2 5(fa 90)
i
Let us fix a € A ¢ € [0;27). Denote z = m_—q’ 2| = R(r) and
1 —arew

consider the limit

oy i [Z2.(2) (L= Rl
e {Jfaw) R

Let us calculate §*(p), using (9) and

r—1—

] - Jy(re'?) (1 — R(r))**?
0" (¢) = lim 55 | =
~ | J(a) ‘1+d7"e”—a HI+ R()

1—are®

iy | e®) (L= )Pt Jp(0) (1 R(r)\ P 1
oot | 0) Fr)2e20ia) \ 17 )1+a;eéLgp

By (11),

o 50 ) 220 (L= a2 et
T o) T e = )T

J5(0) (1 — faf?)*~2

~U @) e
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o p | MBR(), Jp) (L= R(r)*T2] aes
T R(r)—1-— Jfa(o) (14 R(r))2e—2

a-

Let ¢ be equal to d.m.g. ©° of f(z) and a = pe'’. Then §(f, ) = 6° and

o Jr(0) (A—=p**2 4 Ji(0) (1+p)**?
’ Jr(pe#’) (1 —p)te J(pei?”) (1 — p)2a—2 < Oa: (15)

By Theorem B, there exists a d.m.g. ¢ € [0;27) of f,(z) such that

Jp, (re’®’) (1= r>2a+2]

Jr(0) (14 7)2e=2

r—1—

0, = lim [

Jf < T‘eij"l—!—a ) (1 _ r)2a+2

14+are*¥1

= 1 -
- | Tr(a)|1 + areier |4 (1 + r)2a—2
. 1
Denote R; (r)e”l(r) = u, where 71 (r) is a real-valued function.
1 + are*#:

Then, using for R(r) = R1(r), we obtain

M 1 — 20+2
5, < lim (Ba(r),Jy) (1—7) _
r—1— | Jf(a)|l + areier|* (1 4 r)20—2

M(Ry(r). Jp) (1~ R1<r>>2a+j x

=, [ 7,00 (L1 Ri(r)?2

r—1—

200+2

0) |1+ aetr|te
a) (1 - |a[2)2o+2 =

NI N S

Jr(a) |1+ aeter |4 rLl(l—Rl )
J(
I (

_ s 1 1+ aete )
— @i ae T Jaf?

< ¢°

)

)
J(0) (L+p)' 0 Js(0) (L4 p)*2
T(@) (1= = Jy(a) (1= ppee™

Taking into account inequality , we get

50 J10) (A+p2e?
Jy(pet?’) (1 —p)2et2
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Jp(0)  (14p)2*—2
Jf(pei‘f’o) (1—p)2at2
as p = 0, and tends to zero as p — 1—, then we can find p € [0;1) such
that &, takes preassigned value from [§°;1).

Claim 2 of the theorem is proved analogously. [

decreases on p, equals 1

Since the continuous function

In [7] (see also [17], [14]) it was proved that the set of all d.i.g.-’s and
d.i.d.-’s of a given analytic function is at most countable. The following
theorem shows that this statement is true for set of d.i.g.-’s of harmonic
function too. But we don’t know whether this fact is true for set of d.i.d.-’s.

Theorem 4. Let f € U . Then the set of all d.i.g.-’s of f is at most
countable.

Proof. If f =h+gc U, then ordh < . Since
J(2) = W ()P =g ()" < |1 (=)
for all z € A, then for ¢ € [0,27) and r € [0,1)

_ ,r)oz—l—l

,reitp —r 242 )
Jf( ) (1 ) < ‘h/(’l“eup)l(l

J,0) (L rp2 = <1+r>a1} Loy 10

By Theorem B and theorem of growth regularity from [7], there exist the
limits

_ oy [Jp(re®) (1—r)2et?
o=t 175w @ +7°)20‘_2} ’
and - (1 )20-+2
~ ; -r

From 1) we get 0(f,p) < Sigf&f). If ¢ is a d.i.g. of f, then 0(f,¢) > 0.

Consequently, d(h, @) > 0 and ¢ is a d.i.g. of h. Therefore the set V' of all
d.i.g.-’s of f is contained in the set W of all d.i.g.-’s of h. As it was proved
in [7], W is at most countable. Hence V' is at most countable too. [J
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