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ON ASYMPTOTIC VALUES OF FUNCTIONS IN A
POLYDISK DOMAIN AND BAGEMIHL’S THEOREM

Abstract. Asymptotic sets of functions in a polydisk domain
of arbitrary connectivity are studied. We construct an example
of such function, having preassigned asymptotic set. This re-
sult generalizes well-known examples, obtained by M. Heins and
W. Gross for entire functions. Moreover, it is found out that not
all results on asymptotic sets of functions in C can be extended
to functions in Cn. In particular, this fact is connected with the
failure of Bagemihl’s theorem on ambiguous points for functions
in Rn, n ≥ 3.
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LetD1, . . . , Dn be domains in C, D = D1×· · ·×Dn, z0 = (z0
1 , . . . , z

0
n) ∈

∈ ∂D be an accessible boundary point i.e., there exists an open arc Γ ⊂ D
with endpoint z0. Let f be a function defined in D.

Definition 1. [1, Section 1.6, p.8], [2] We say that a ∈ C is an asymptotic
value of f at the point z0 if there exists an arc γa ⊂ D with endpoint z0

such that
lim

γa3z→z0
f(z) = a.

The arc γa is called an asymptotic curve corresponding to the asymp-
totic value a. The set of all asymptotic values (or, briefly, the asymptotic
set) of f at the point z0 is denoted by As(f, z0).

Asymptotic sets were actively studied for entire functions and mero-
morphic functions in C.
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It is well known that for a nonconstant entire function this set is ana-
lytic (in the sense of Suslin) [3]. This means that As(f,∞) can be repre-
sented in the form

As(f,∞) =
⋃

(n1,n2,... )

{An1
∩An1n2

∩An1n2n3
∩ . . . },

where nk, k = 1, 2, . . . , are integer numbers, An1...nk are closed sets and
the union extends over all sequences (n1, n2, . . . ) (see [4, p. 105], [5, p.
136] for details). From the Iversen theorem [6] (see also [1, ch. 1], [7,
section 5.1, p. 171]) it follows that for such functions this set contains
the infinity. Many articles are devoted to constructing the examples of
functions, having prescribed asymptotic sets. W. Gross [8] constructed
an entire function whose set of asymptotic values at the infinity is equal
to C. M. Heins [9] proved that every analytic set containing the infinity
is an asymptotic set of some entire function.

In [10] and [11] functions analytic in planar domains of arbitrary con-
nectivity were considered. For such functions theorems of W. Gross and
M. Heins were generalized. Here the case when z0 belongs to an isolated
boundary fragment was considered.

Definition 2. [12] A domain D ⊂ C has an isolated boundary fragment
if one of the following conditions holds:

(I) There exist a continuum K ⊂ ∂D and an open set U such that
K ⊂ U and (∂D \K) ∩ U = ∅.

(II) There exist a Jordan arc Γ ⊂ ∂D with distinct ends ξ, η and an
open disc B such that ξ, η ∈ ∂B, Γ \ {ξ, η} ⊂ B and (∂D \ Γ) ∩B = ∅.

(III) There exist a point a ∈ ∂D and an open disc B(a) centered at a
such that (B(a) \ {a})∩ ∂D = ∅, i.e., a is an isolated point of the set ∂D.

The continuum K from (I), the arc Γ from (II), and the point a from
(III) are called isolated boundary fragments of D.

Theorem A. [11] Let D ⊂ C be a domain with isolated boundary frag-
ment T . Let point ζ0 belong to this fragment. If this fragment has type
(I), then we assume, in addition, that ζ0 is an accessible and it is an im-
pression of some prime end of D. Let A be an analytic set, ∞ ∈ A. Then
there exists an analytic function f such that As(f, ζ0) = A.

Remark. The fact that ζ0 is an impression of some prime end of D (D
may not be simply connected) means that ζ0 is an impression of some
prime end of the simply connected domain G ⊃ D, ∂G = T.



On asymptotic values and Bagemihl’s theorem 25

In this note Theorem A is extended to functions analytic in a poly-
disk domain D. We describe simple construction of such function with a
preassigned asymptotic set.

Theorem 1. Let k be a fixed natural number, 1 ≤ k ≤ n. Suppose
D = D1 × · · · ×Dn, where Di, 1 ≤ i ≤ n, i 6= k, are arbitrary domains in
C, Dk ⊂ C is a domain with an isolated boundary fragment T. Suppose
z0 = (z0

1 , . . . , z
0
n) ∈ ∂D, moreover z0

i , i 6= k, is either points of the domains
Di or accessible boundary points of Di, z

0
k ∈ T. If T is a fragment of type

(I), then we assume in addition that z0
k is an accessible from Dk and

it is an impression of some prime end of Dk. Let A be an analytic set,
containing the infinity. Then there exists an analytic in D function f such
that As(f, z0) = A.

Proof. Consider the domain Dk ⊂ C and the point z0
k ∈ T. By Theorem

A there exists an analytic in Dk function F (z), possessing the property
As(F, z0

k) = A. Let a ∈ A and Γak be an asymptotic curve, corresponding
to the value a. This means that

lim
Γak3zk→z

0
k

F (zk) = a.

We construct the analytic in D function

f(z) = f(z1, . . . , zn)
def
= F (zk).

Denote by Γai , 1 ≤ i ≤ n, i 6= k, a curve in Di with endpoint z0
i . Then for

any curve γa with endpoint z0, γa ⊂ Γa1 × · · · × Γan, we have

lim
γa3z→z0

= lim
Γak3zk→z

0
k

F (zk) = a

for all a ∈ A. Therefore, As(f, z0) = A. �

Remark. If we put n = 1, we obtain Theorem A.

In the case n = 1 the following fact takes place (see [11]): if cardA > 1,
then the set of all points z0 such that a function f defined in a simply
connected domain D, z0 ∈ ∂D, possesses the property

As(f, z0) = A

is at most countable. This fact follows easily from Bagemihl’s theorem on
ambiguous points.
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If a function f is defined in a domain D ⊂ Rn, Γ ⊂ D, z0 ∈ ∂D ∩ Γ,
then the cluster set C(f, z0,Γ) of f at the point z0 along Γ [1, ch. 1] is
the set of all numbers w ∈ C such that there exists a sequence zn ∈ Γ,
zn −→

n→∞
z0 and f(zn) −→

n→∞
w.

Definition 3. [13], [1, ch 4.7] A point z0 ∈ D is an ambiguous point of
f if there exist two arcs Γ1 and Γ2 in ∆ with endpoint z0 such that

C(f, z0,Γ1) ∩ C(f, z0,Γ2) = ∅.

Bagemihl proved in [13] (see also [1, ch 4.7]) that an arbitrary function
in the open unit disk can have at most countable set of ambiguous points.

Unlike the case n = 1, for n ≥ 2 there exist functions f analytic in a
simply connected polydisk domain D such that

As(f, z0) = A, (cardA > 1)

at an uncountable set of points z0 ∈ ∂D.
Suppose all domains Dk in Theorem 1 be simply connected. Let f0(z)

be the function constructed in the proof of Theorem 1. Then for every
point z0 = (z0

1 , . . . , z
0
n) from the conditions of Theorem 1 we have

As(f0, z0) = A.

The set of all such points z0 is uncountable.
This difference of the case n ≥ 2 from the case n = 1 is connected

with the fact that Bagemihl’s theorem is not true in Rn for n ≥ 3. There
are functions in Euclidean ball Bn = {x ∈ Rn : ‖x‖ ≤ 1}, n ≥ 3, with
an uncountable set of ambiguous points. Examples are given in [14]–[16].
One more example can be obtained using Theorem 1. Take Dk = ∆ and
A such that cardA ≥ 2. Let f be the function constructed in Theorem 1,
g be a homeomorphism of B2n onto the polydisk ∆n = ∆× · · ·×∆. Then
the set of ambiguous points of the composition f ◦ ϕ is uncountable.

In [17] P. J. Rippon introduced a new definition of ambiguous point
of function in Rn, n ≥ 3. He replaced one arc by the boundary of a
subdomain of Bn. More precisely, P. J. Rippon says that a point z0 ∈ ∂Bn
is an ambiguous point of a function f defined in Bn if there exist

1) a subdomain S of Bn, ∂S ∩ ∂Bn = {z0},
2) an arc Γ ⊂ S with endpoint z0

such that
C(f, z0,Γ) ∩ C(f, z0, ∂S \ {z0}) = ∅.
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This definition allows to obtain the analog of Bagemihl’s theorem in Rn,
n ≥ 3 [17]: for any function in Bn the set of all ambiguous points (in the
sense of Rippon) is at most countable.

One can pose the following problem: how to define the ambiguous
point of function in Bn, n ≥ 3, using object of the same nature (like two
arcs in Bagemihl’s definition), saving the statement about countability
of the set of such points. In view of Rippon’s definition it is natural to
consider points z0 ∈ ∂Bn for which there exist subdomains S1 and S2 of
Bn, ∂S1 ∩ ∂Bn = ∂S2 ∩ ∂Bn = {z0}, and

C(f, z0, ∂S1 \ {z0}) ∩ C(f, z0, ∂S2 \ {z0}) = ∅.

The following example shows that this assumption does not save Ba-
gemihl’s theorem true even for continuous functions.

Example. Take the function

g(t) =
|1− t|
1− |t|

, t ∈ ∆ = {z ∈ C : |z| < 1}.

Construct our example, using the function g(t). For x = (x1, . . . , xn) ∈ Bn
put

f(x) =

√√√√(1− x1√
1− x23 − · · · − x2n

)2

+
x22

1− x23 − · · · − x2n

1−

√
x21 + x22

1− x23 − · · · − x2n

=

=

∣∣∣∣1− ( x1√
1−x2

3−···−x2
n

+ i x2√
1−x2

3−···−x2
n

)∣∣∣∣
1−

∣∣∣∣ x1√
1−x2

3−···−x2
n

+ i x2√
1−x2

3−···−x2
n

∣∣∣∣ = g(t),

where

t =
x1√

1− x2
3 − · · · − x2

n

+ i
x2√

1− x2
3 − · · · − x2

n

∈ ∆. (1)

Consider the set l = ∂Bn ∩ {(x1, 0, x3, . . . , xn), x1 > 0, x3, . . . , xn ∈ R}.
Let

ζ = (ζ1, 0, ζ3, . . . , ζn) ∈ l.
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Fix ε ∈ (0;π/4). By Π denote the plane x3 = ζ3
. . .
xn = ζn.

Let γ0 be the segment [(0, 0, ζ3, . . . , ζn), (ζ1, 0, ζ3, . . . , ζn)] ⊂ Π. By γπ
4−ε

denote the segment [(ζ1, 0, ζ3, . . . , ζn), (0, ζ1tg(π4−ε), ζ3, . . . , ζn)]. Consider
the open triangle Tπ

4−ε ⊂ Π bounded by the segments γ0, γπ4−ε and the
ray {(0, x2, ζ3, . . . , ζn), x2 > 0}.

Let S1 be a subdomain of Bn such that
1.1) ∂S1 ∩ ∂Bn = {ζ},
1.2) for each x = (x1, . . . , xn) ∈ S1 the projection x̃ = (x1, x2, ζ3, . . . , ζn)
of x to Π belongs to Tπ

4−ε,
1.3) |xk| < |ζk|, k = 3, . . . , n for each x = (x1, . . . , xn) ∈ S1.

Suppose p ∈ C(f, ζ, ∂S1\{ζ}). This means that there exists a sequence
wN = (wN1 , . . . , w

N
n ) ∈ ∂S1, w

N → ζ as N → ∞, such that f(wN ) → p
as N →∞. Using (1), for each point wN ∈ Rn let us construct the point
tN ∈ ∆, substituting xk by wNk in (1). Then we get tN → 1 as N → ∞.
By β(tN ) denote the angle between the segments [tN ; 1] and [0; 1] in ∆.
By condition 1.3) we have√

1− (wN3 )2 − · · · − (wNn )2 ≥
√

1− ζ2
3 − · · · − ζ2

n.

Therefore,

0 ≤ Re tN =
wN1√

1− (wN3 )2 − · · · − (wNn )2
≤ wN1√

1− ζ2
3 − · · · − ζ2

n

, (2)

0 ≤ Im tN =
wN2√

1− (wN3 )2 − · · · − (wNn )2
≤ wN2√

1− ζ2
3 − · · · − ζ2

n

. (3)

From condition 1.2) it follows that the point

wN1 + iwN2√
1− ζ2

3 − · · · − ζ2
n

=
wN1 + iwN2

ζ1

belongs to the triangle ∆π
4−ε

def
= 1

ζ1
·Tπ

4−ε ⊂ ∆. Consequently, taking into

account (2) and (3), we obtain that tN belongs to ∆π
4−ε too. Hence,

0 ≤ β(tN ) ≤ π

4
− ε
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for all wN ∈ ∂S1.
Denoting a = |1− tN |, we have

|1− tN |
1− |tN |

=
a

1−
√
a2 + 1− 2a cosβ(tN )

≤ a

1−
√
a2 + 1− 2a cos

(
π
4 − ε

) .
Then

p = lim
N→∞

f(wN ) = lim
N→∞

g(tN ) = lim
N→∞

|1− tN |
1− |tN |

≤

≤ lim
a→0

a

1−
√
a2 + 1− 2a cos

(
π
4 − ε

) =
1

cos
(
π
4 − ε

) . (4)

Now consider a domain S2 ⊂ Bn, possessing the following properties:
2.1) ∂S2 ∩ ∂Bn = {ζ},
2.2) for every x = (x1, . . . , xn) ∈ S2 the projection x̃ = (x1, x2, ζ3, . . . , ζn)
of x to Π belongs to the set Tπ

4 +ε, bounded by the circle ∂Bn ∩Π and the
straight line, passing through the points (ζ1, 0, ζ3, . . . , ζn) and (0, ζ1tg(π4 +
+ε), ζ3, . . . , ζn); (0, 0, ζ3, . . . , ζn) /∈ Tπ

4 +ε.
2.3) |xk| > |ζk|, k = 3, . . . , n, for each x = (x1, . . . , xn) ∈ S2.

If p′ ∈ C(f, ζ, ∂S2\{ζ}), then there exists a sequence ωN = (ωN
1 , . . . , ω

N
n ) ∈

∈ ∂S2, ω
N → ζ as N → ∞, such that f(ωN ) → p′. For ωN ∈ Rn calculate

τN ∈ ∆ by formula (1). By 2.3),√
1− (ωN3 )2 − · · · − (ωNn )2 ≤

√
1− ζ2

3 − · · · − ζ2
n.

Consequently,

Re τN =
ωN1√

1− (ωN3 )2 − · · · − (ωNn )2
≥ ωN1√

1− ζ2
3 − · · · − ζ2

n

,

Im τN =
ωN2√

1− (ωN3 )2 − · · · − (ωNn )2
≥ ωN2√

1− ζ2
3 − · · · − ζ2

n

.

Since, by condition 2.2),

ωN1 + iωN2√
1− ζ2

3 − · · · − ζ2
n

∈ ∆π
4 +ε

def
=

1

ζ1
Tπ

4 +ε,
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we have τN ∈ ∆π
4 +ε. This yields that β(τN ) ≥ π

4 +ε for all N ∈ N. Hence,

denoting b = |1− τN |, we get

|1− τN |
1− |τN |

=
b

1−
√
b2 + 1− 2b cosβ(tN )

≥ b

1−
√
b2 + 1− 2b cos

(
π
4 + ε

) .
This implies that

p′ = lim
N→∞

f(ωN ) ≥ lim
b→0

b

1−
√
b2 + 1− 2b cos

(
π
4 + ε

) =
1

cos
(
π
4 + ε

) .
We have proved that for all p ∈ C(f, ζ, ∂S1\{ζ}) and p′ ∈ C(f, ζ, ∂S2\

\{ζ}) the following inequality holds

p ≤ 1

cos
(
π
4 − ε

) < 1

cos
(
π
4 + ε

) ≤ p′.
This yields

C(f, ζ, ∂S1 \ {ζ}) ∩ C(f, ζ, ∂S2 \ {ζ}) = ∅ (5)

for each ζ ∈ l. The set of all points, possessing property (5), contains l.
Therefore this set is uncountable.

Remark. The above example shows that the requirement for Γ to be a
subset of D in Rippon’s definition is essential. If we take D = S1 from the
example and Γ be a curve, contained in the domain S2, then the function
f has the property

C(f, ζ,Γ) ∩ C(f, ζ, ∂D \ {ζ}) = ∅

at uncountable set of points ζ.
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