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COEFFICIENT INEQUALITY FOR MULTIVALENT
BOUNDED TURNING FUNCTIONS OF ORDER α

Abstract. The objective of this paper is to obtain the sharp
upper bound to the H2(p + 1), second Hankel determinant for
p-valent (multivalent) analytic bounded turning functions (also
called functions whose derivatives have positive real parts) of
order α (0 ≤ α < 1), using Toeplitz determinants. The result
presented here includes three known results as their special cases.
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1. Introduction. Let Ap denote the class of functions f of the form

f(z) = zp + ap+1z
p+1 + · · · (1)

in the open unit disc E = {z : |z| < 1} with p ∈ N = {1, 2, 3, ...}. Let S
be the subclass of A1 = A, consisting of univalent functions.

In 1985, Louis de Branges de Bourcia proved the Bieberbach con-
jecture, i.e., for a univalent function its nth coefficient is bounded by n
(see [1]). The bounds for the coefficients of these functions give infor-
mation about their geometric properties. In particular, the growth and
distortion properties of a normalized univalent function are determined
by the bound of its second coefficient. The Hankel determinant of f for
q ≥ 1 and n ≥ 1 was defined by Pommerenke [2] as

Hq(n) =

an an+1 · · · an+q−1
an+1 an+2 · · · an+q

...
...

...
...

an+q−1 an+q · · · an+2q−2

. (2)
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This determinant has been considered by several authors in the literature.
For example, Noonan and Thomas [3] studied the second Hankel deter-
minant of areally mean p-valent functions. Noor [4] determined the rate
of growth of Hq(n) as n→∞ for functions in S with bounded boundary
rotation. The Hankel transform of an integer sequence and some of its
properties were discussed by Layman [5]. One can easily observe that the
Fekete-Szegö functional is H2(1). Fekete-Szegö then further generalized
the estimate |a3−µa22| with real µ and f ∈ S. Ali [6] found sharp bounds
on the first four coefficients and sharp estimate for the Fekete-Szegö func-
tional |γ3 − tγ22 |, where t is real, for the inverse function of f for p = 1,

given in (1.1), defined as f−1(w) = w +
∑∞
n=2 γnw

n, when f ∈ S̃T (α),
the class of strongly starlike functions of order α (0 < α ≤ 1). Further
sharp bounds for the functional |a2a4 − a23|, the Hankel determinant in
the case of q = 2 and n = 2, known as the second Hankel determinant
(functional), given by

H2(2) =
a2 a3
a3 a4

= a2a4 − a23, (3)

were obtained for various subclasses of univalent and multivalent analytic
functions by several authors in the literature. Janteng et al. [7] have
considered the functional |a2a4 − a23| and found a sharp upper bound
for the function f in the subclass R of S, consisting of functions whose
derivative has a positive real part (also called bounded turning functions)
studied by MacGregor [8]. In their work, they have shown that if f ∈ R
then |a2a4 − a23| ≤ 4

9 . Motivated by this result, in this paper we consider
the Hankel determinant in the case of q = 2 and n = p + 1, denoted by
H2(p+ 1), given by

H2(p+ 1) =
ap+1 ap+2

ap+2 ap+3
= ap+1ap+3 − a2p+2. (4)

Further, we seek a sharp upper bound to the functional |ap+1ap+3−a2p+2|
for the functions belonging to the certain subclass of p-valent analytic
functions, defined as follows.

Definition 1. A function f(z) ∈ Ap is said to be in the class Rp(α)
(0 ≤ α < 1) if it satisfies the condition

Re
f ′(z)

pzp−1
> α, ∀ z ∈ E. (5)
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1) If p = 1, we obtain R1(α) = R(α), the class of bounded turning
functions of order α.

2) Choosing α = 0, we get Rp(0) = Rp, the class of p-valent bounded
turning functions.

3) Selecting p = 1 and α = 0, we have R1(0) = R.

In the next section we give some preliminary Lemmas required for
proving our result.

2. Preliminary Results. Let P denote the class of functions con-
sisting of g such that

g(z) = 1 + c1z + c2z
2 + c3z

3 + ... = 1 +

∞∑
n=1

cnz
n, (6)

which are regular in the open unit disc E and satisfy Reg(z) > 0 for any
z ∈ E. Here g(z) is called a Caratheòdory function [9].

Lemma 1. [10, 11] If g ∈ P, then |ck| ≤ 2, for each k ≥ 1 and the
inequality is sharp for the function 1+z

1−z .

Lemma 2. [12] The power series for g(z) = 1 +
∑∞
n=1 cnz

n given in (6)
converges in the open unit disc E to a function in P if and only if the
Toeplitz determinants

Dn =

2 c1 c2 · · · cn
c−1 2 c1 · · · cn−1
c−2 c−1 2 · · · cn−2

...
...

...
...

...
c−n c−n+1 c−n+2 · · · 2

, n = 1, 2, 3 . . .

and c−k = ck, are all non-negative. They are strictly positive except for
p(z) =

∑m
k=1 ρkp0(eitkz), with

∑m
k=1 ρk = 1, tk real and tk 6= tj , for k 6= j,

where p0(z) = 1+z
1−z ; in this case Dn > 0 for n < (m − 1) and Dn

.
= 0 for

n ≥ m.

This necessary and sufficient condition found in [12] is due to Cara-
theòdory and Toeplitz. We may assume without restriction that c1 > 0.
From Lemma 2, for n = 2 we have

D2 =
2 c1 c2
c1 2 c1
c2 c1 2

.
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On expanding the determinant, we get

D2 = 8 + 2Re{c21c2} − 2|c2|2 − 4|c1|2 ≥ 0.

Applying the fundamental principles of complex numbers, the above ex-
pression is equivalent to

2c2 = c21 + y(4− c21). (7)

In the same way,

D3 =

2 c1 c2 c3
c1 2 c1 c2
c2 c1 2 c1
c3 c2 c1 2

.

Then D3 ≥ 0 is equivalent to

|(4c3−4c1c2 +c31)(4−c21)+c1(2c2−c21)2| ≤ 2(4−c21)2−2|(2c2−c21)|2. (8)

Simplifying relations (7) and (8), we obtain

4c3 = {c31 + 2c1(4 − c21)y − c1(4 − c21)y2 + 2(4 − c21)(1 − |y|2)ζ} (9)

for some complex valued y with |y| ≤ 1 and for some complex valued
ζ with |ζ| ≤ 1. To obtain our result, we refer to the classical method de-
vised by Libera and Zlotkiewicz [13], used by several authors in literature.

3. Main Result

Theorem 1. If f(z) ∈ Rp(α) (0 ≤ α < 1) with p ∈ N then

|ap+1ap+3 − a2p+2| ≤
[

2p(1− α)

p+ 2

]2
and the inequality is sharp.

For the function f(z) = zp +
∑∞
n=p+1 anz

n ∈ Rp(α), by virtue of
Definition 1, there exists an analytic function g ∈ P in the open unit disc
E with g(0) = 1 and Re g(z) > 0 such that

f ′(z)− pαzp−1

p(1− α)zp−1
= g(z)⇔ f ′(z)− pαzp−1 = p(1− α)zp−1g(z). (10)
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Replacing f ′(z) and g(z) with their equivalent series expressions in (10),
we have

pzp−1 +

∞∑
n=p+1

nanz
n−1 − pαzp−1 = p(1− α)zp−1

{
1 +

∞∑
n=1

cnz
n

}
.

Upon simplification, we obtain

p(1−α)zp−1 +(p+1)ap+1z
p+(p+2)ap+2z

p+1 +(p+3)ap+3z
p+2 + ... =

= p(1− α)zp−1[1 + c1z + c2z
2 + c3z

3 + ...]. (11)

Equating the coefficients of same powers of zp, zp+1 and zp+2 in (11), we
have

ap+1 =
p(1− α)c1
p+ 1

, ap+2 =
p(1− α)c2
p+ 2

and ap+3 =
p(1− α)c3
p+ 3

. (12)

Substituting the values of ap+1, ap+2, and ap+3 from (12) in the functional
|ap+1ap+3 − a2p+2|, after simplifying we get

|ap+1ap+3 − a2p+2| =

=
p2(1− α)2

(p+ 1)(p+ 2)2(p+ 3)

∣∣(p+ 2)2c1c3 − (p+ 1)(p+ 3)c22
∣∣ .

The above expression is equivalent to

|ap+1ap+4 − a2p+2| = t
∣∣∣d1c1c3 + d2c

2
2

∣∣∣, (13)

where

t =
p2(1− α)2

(p+ 1)(p+ 2)2(p+ 3)
, d1 = (p+ 2)2 and d2 = −(p+ 1)(p+ 3). (14)

Substituting the values of c2 and c3 from (7) and (9) respectively from

Lemma 2 in the expression
∣∣∣d1c1c3 +d2c

2
2

∣∣∣, which is on the right-hand side

of (13), we have∣∣∣d1c1c3 + d2c
2
2

∣∣∣ =
∣∣∣d1c1 × 1

4
{c31 + 2c1(4− c21)y − c1(4− c21)y2+

+ 2(4− c21)(1− |y|2)ζ}+ d2 ×
1

4
{c21 + y(4− c21)}2

∣∣∣;
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4
∣∣∣d1c1c3 +d2c

2
2

∣∣∣ =
∣∣(d1 +d2)c41 +2d1c1(4− c21)ζ+2(d1 +d2)c21(4− c21)y−

−
{
d1c

2
1y

2 + 2d1c1|y|2ζ − d2(4− c21)y2
}

(4− c21)
∣∣;

4
∣∣∣d1c1c3 +d2c

2
2

∣∣∣ =
∣∣(d1 +d2)c41 +2d1c1(4− c21)ζ+2(d1 +d2)c21(4− c21)y−

−
{

(d1 + d2)c21y
2 + 2d1c1|y|2ζ − 4d2y

2
}

(4− c21)
∣∣.

Applying the triangle inequality, we get

4
∣∣∣d1c1c3+d2c

2
2

∣∣∣ ≤ ∣∣(d1+d2)c41+2d1c1(4−c21)|ζ|+2(d1+d2)c21(4−c21)|y|+

+
{

(d1 + d2)c21|y|2 + 2d1c1|y|2|ζ| − 4d2|y|2
}

(4− c21)
∣∣.

Using the fact that |ζ| < 1 in the above iequality, we obtain

4
∣∣∣d1c1c3 +d2c

2
2

∣∣∣ ≤ ∣∣(d1 +d2)c41 +2d1c1(4−c21)+2(d1 +d2)c21(4−c21)|y|+

+
{

(d1 + d2)c21 + 2d1c1 − 4d2
}

(4− c21)|y|2
∣∣. (15)

Using the values of d1, d2 given in (14), we can write

d1 + d2 = 1 and
{

(d1 + d2)c21 + 2d1c1 − 4d2
}

=

= c21 + 2(p+ 2)2c1 + 4(p+ 1)(p+ 3).
(16)

Substituting the values from (16) and value of d1 from (14) to the right-
hand side of (15), we have

4
∣∣∣d1c1c3 + d2c

2
2

∣∣∣ ≤ ∣∣c41 + 2(p+ 2)2c1(4− c21) + 2c21(4− c21)|y|+

+
{
c21 + 2(p+ 2)2c1 + 4(p+ 1)(p+ 3)

}
(4− c21)|y|2

∣∣. (17)

Consider
{
c21 + 2(p+ 2)2c1 + 4(p+ 1)(p+ 3)

}
=

=
[{
c1 + (p+ 2)2

}2 − (
√
p4 + 8p3 + 20p2 + 16p+ 4)2

]
=

=
[
c1 +

{
(p+ 2)2 + (

√
p4 + 8p3 + 20p2 + 16p+ 4)

}]
×

×
[
c1 +

{
(p+ 2)2 − (

√
p4 + 8p3 + 20p2 + 16p+ 4)

}]
.
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Noting that (c1+a)(c1+b) ≥ (c1−a)(c1−b), where a, b ≥ 0, and c1 ∈ [0, 2]
in the above expression, we obtain{

c21 + 2(p+ 2)2c1 + 4(p+ 1)(p+ 3)
}
≥

≥
{
c21 − 2(p+ 2)2c1 + 4(p+ 1)(p+ 3)

}
. (18)

From expressions (17) and (18), we get

4
∣∣∣d1c1c3 + d2c

2
2

∣∣∣ ≤ ∣∣c41 + 2(p+ 2)2c1(4− c21) + 2c21(4− c21)|y|+

+
{
c21 − 2(p+ 2)2c1 + 4(p+ 1)(p+ 3)

}
(4− c21)|y|2

∣∣. (19)

Choosing c1 = c ∈ [0, 2], replacing |y| by µ on the right-hand side of (19),
we obtain

4
∣∣∣d1c1c3 + d2c

2
2

∣∣∣ ≤ [c4 + 2(p+ 2)2c(4− c2) + 2c2(4− c2)µ+

+
{
c2 − 2(p+ 2)2c+ 4(p+ 1)(p+ 3)

}
(4− c2)µ2

]
=

= F (c, µ) , 0 ≤ µ = |y| ≤ 1 and 0 ≤ c ≤ 2. (20)

Next, we maximize function F (c, µ) on the closed region [0, 2] × [0, 1].
Differentiating F (c, µ) given in the right-hand side of (20) partially with
respect to µ, we get

∂F

∂µ
= 2

[
c2 +

{
c2 − 2(p+ 2)2c+ 4(p+ 1)(p+ 3)

}
µ
]

(4− c2). (21)

For 0 < µ < 1, for fixed c with 0 < c < 2 and p ∈ N, from (21), we observe
that ∂F

∂µ > 0. Therefore, F (c, µ) becomes an increasing function of µ and
hence it cannot have a maximum value at any point in the interior of the
closed region [0, 2] × [0, 1]. The maximum value of F (c, µ) occurs on the
boundary i.e., when µ = 1. Therefore, for fixed c ∈ [0, 2], we have

max
0≤µ≤1

F (c, µ) = F (c, 1) = G(c). (22)

Replacing µ by 1 in F (c, µ), it simplifies to

G(c) = −2c4 − 4p(p+ 4)c2 + 16(p+ 1)(p+ 3), (23)

G′(c) = −8c3 − 8p(p+ 4)c. (24)
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From (24), we observe that G′(c) ≤ 0 for every c ∈ [0, 2] with p ∈ N.
Consequently, G(c) becomes a decreasing function of c, whose maximum
value occurs at c = 0 only. From (23), the maximum value of G(c) at
c = 0 is obtained to be

Gmax = G(0) = 16(p+ 1)(p+ 3). (25)

Simplifying expressions (20) and (25), we get∣∣∣d1c1c3 + d2c
2
2

∣∣∣ ≤ 4(p+ 1)(p+ 3). (26)

From relations (13) and (26), along with the value of t in (14), upon
simplification, we obtain

|ap+1ap+3 − a2p+2| ≤
[

2p(1− α)

p+ 2

]2
. (27)

By setting c1 = c = 0 and selecting y = 1 in the expressions (7) and
(9), we find that c2 = 2 and c3 = 0, respectively. Substituting the values
c2 = 2, c3 = 0, and d2 = −(p+ 1)(p+ 3) in (26), we observe that equality
is attained, which shows that our result is sharp. For the values c2 = 2
and c3 = 0, from (6) we derive the extremal function given by

g(z) = 1 + 2z2 + 2z4 + ... =
1 + z2

1− z2
.

So that from (10), we have

f ′(z)− pαzp−1

p(1− α)zp−1
= 1 + 2z2 + 2z4 + ... =

1 + z2

1− z2
.

This completes the proof of our Theorem.

Remark 1. If p = 1 and α = 0 in (27) then |a2a4−a23| ≤ 4
9 ; this coincides

with the result of Janteng et al. [7].

Remark 2. If p = 1 in (27) then |a2a4 − a23| ≤
4(1−α)2

9 , this result is
same as that of Vamshee Krishna and RamReddy [14].

Remark 3. If α = 0 in (27) then |ap+1ap+3−a2p+2| ≤
[

2p
p+2

]2
, this result

coincides with the result obtained by Vamshee Krishna and RamReddy
[15].
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