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ABOUT THE EQUALITY OF THE TRANSFORM OF
LAPLACE TO THE TRANSFORM OF FOURIER

Abstract. We proved that the transform of Laplace does not
have complex part on the complex axis for the wide class of
functions in different situations. The main theorem is proved
presenting a function as sum of two Laplace transforms. The
transforms are defined in the left and right parts of the plain
accordingly. Such presentation is proved to be unique. With help
of the results we obtain equality of the transforms of Laplace and
Fourier for some class of functions.
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1. Introduction. We consider the transform of Laplace in the form

LF−u(x)(·)(v), v ∈ [0,+∞),

where, by definition,

LS(x)(·)(v) =

∞∫
0

e−vxS(x)dx, v ∈ [0,∞),

∞∫
−∞

e±ixy u(x)dx = F±u(x)(·)(y), y ∈ (−∞,∞).

The basic result of the article is formulated in Theorem 2:

(π/2)u(t) = LC0u(x)(·)(t), t ∈ (0,∞),
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if u(−x) = u(x), x ∈ (−∞,∞) (in the condition of Theorem 2), where

∞∫
0

cos vxS(x)dx = C0S(x)(·)(v), v ∈ (−∞,∞).

Similar results are considered in works [1] – [6] in connection with the
problem of the inverse of transform of Laplace ([2], [3], [4]). Traditional
methods, related to regular functions ([1], [3], [6] – [9]), are not applicable
to functions u(t) = u2(x) without properties u2(−x) = u2(x) or u2(−x) =
= −u2(x). The direction is considered in the second part of proof of
Theorem 1.

The main result (Theorem 1) follows from presenting function u(ip)
as a sum of Laplace transforms

L(p) + (−L1(p)) = u(ip),

(the exact formulation is in Lemma 1), if the transforms are defined in the
left and right parts of the complex plain accordingly, where, by definition,

L1(p) = (1/2π)

∞∫
−∞

u(x)/(p+ ix)dx, Re p ≤ 0,

L(p) = (1/2π)

∞∫
−∞

u(x)/(p+ ix)dx, Re p ≥ 0.

With help of this presentation we obtain the equality of the transform
of Laplace to the transform of Fourier (Theorem 2).

In general all results follow from the Re L(is) = L(is) equality of Theo-
rem 1, if s ∈ (−∞,∞).

The results of Theorem 1 are related to the problem of Dirichlet and
the integrals of Poisson and Schwartz [7, p. 209]. This subject is studied
in [1], [4]; we do not touch it here.

The proof follows from some main facts: in rather wide conditions we
can use (for s ∈ (−∞,∞))

2πL(−is) =

∞∫
0

eisxdx

∞∫
−∞

e−itxu(t)dt =
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=

∞∫
0

cos sxdx

∞∫
0

2 cos txu(t)dt+ i

∞∫
0

sin sxdx

∞∫
0

2 cos txu(t)dt =

= πu(s) + 2i

∞∫
0

sin sxdx

∞∫
0

cos txu(t)dt, u(−t) = u(t);

2πL(−is) = πu(s)− 2i

∞∫
0

cos sxdx

∞∫
0

sin txu(t)dt, u(−t) = −u(t),

and we obtain the sum (Lemma 1)

L(is) + (−L1(is)) = u(−s), s ∈ (−∞,∞), L(p) + (−L1(p)) = u(ip),

ip /∈ J , where function L(p) is defined for Re p ≥ 0, and function L1(p)
with the same analytical expression is defined for Re p ≤ 0, J is a set of
the special points of function u(p); we use equalities

L(−is) = L(is), L(is) = −L1(is)), u(−s) = u(s), s ∈ (−∞,∞).

In the main second part of proof of Theorem 1 we consider
function u2(p) = L(p) in the form

l(is) + l(−is) = u2(−s) = L∗(is) + L∗1(is), s ∈ (−∞, 0),

where

L∗(p) = (1/2π)

∞∫
−∞

u2(x)/(p+ ix)dx, Re p ≥ 0,

L(x) = u2(x) = Reu2(x), x ∈ (−∞,+∞), and function L∗1(p) with the
same analytical expression is defined for Re p ≤ 0, where, by definition,

l(p) = (1/2π)LC02u2(x)(·)(p), Re p ≥ 0,

but l(is) + l(−is) = l(−is) + l(−is), and we get

L(is) = u2(is) = u2(−is) = L(−is), s ∈ (−∞,+∞),

or (Theorem 1) u(s)/2 = Reu2(is) = u2(is) = L(is) , s ∈ (−∞,+∞).
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The main part of the article is the second part of proof of Theorem 1.

2. The transform of Laplace on the complex axis. By definition,
the area of regularity of function u(p) is Gu.

Theorem 1. If u(−p) = u(p), p ∈ Gu, u(p) is regular in the C plane,
except a finite number of points J = {z1, . . . , zk, Re zk 6= 0, Im zk 6=
6= 0, k ≥ 2}, and

u(0) = 0, |u(s)| ≤ c/|s|2, |s| → ∞, s ∈ (−∞,∞), c <∞,

where c is the constant, the equality

u(−y)/2 = lim
x→0+

(1/2π)

∞∫
−∞

u(t)/((x+ iy) + it)dt, y ∈ (−∞,∞),

takes place, and the equality

πu(it) = LF−u(x)(·)(t), t ∈ (−∞,∞),

takes place if

lim
x→0+

(1/2π)LF−u(t)(·)(x+ iy) = (1/2π)LF−u(t)(·)(iy), y ∈ (−∞,∞).

Proof. We use Lemma 1 (a part of Lemma 1 was proved in [2] – [5]. In
the Appendix we give a new full proof).

Lemma 1. 1. Equality L(is) − L1(is) = u(−s), s ∈ (−∞,∞), takes
place if the function u(s) is continuous for all s ∈ (−∞,∞); equality

L(p)− L1(p) = u(ip), ip ∈ Gu,

takes place if u(p) is regular in {p : |Im p| < a} ∈ Gu, for a constant
a ∈ (0,+∞).

2 . lim
p→iy,Re p≥0

2πL(p) = 2πL(iy) = πu(−y)−
∞∫
−∞

(u(x− y)/ix)dx ,

lim
p→iy,Re p≤0

2πL1(p) = 2πL1(iy), L1(iy) = −L(iy),

y ∈ (−∞,∞), in all points y : du(s)/ds|s=y < ∞, if the function u(s) is
continuous for all s ∈ (−∞,∞), Reu(s) = u(s), s ∈ (−∞,∞), and

|u(s)| ≤ c/|s|δ, s→ ±∞, s ∈ (−∞,∞), δ > 0, δ = const.
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3. If u(0) = 0, and du(s)/ds|s=0+ < ∞, du(s)/ds|s=0− < ∞ values are
defined, but du(s)/ds|s=0+ 6= du(s)/ds|s=0−, the second part of Lemma 1
takes place for y = (−∞,∞) (and for y = 0).

From Lemma 1 in the conditions of Theorem 1 we obtain

u(ip) = L(p)− L1(p), ip /∈ J.

We will assume that

u(ip) = u1(p) + u2(p) = L(p)− L1(p), ip /∈ J,

where u1(p), u2(p) are new functions: u1(p) is regular in the left part of
the complex plane (without points Re p = 0 ), u1(p) is bounded in the
left part of the complex plane (with all points Re p = 0), and u1(p) is
continuous in all points on the complex axis (from the left part of the
plain); u2(p) is regular in the right part of the complex plane (without
points Re p = 0), u2(p) is bounded in the right part of the complex plane
(with all points Re p = 0), and u2(p) is continuous in all points on the
complex axis (from the right part of the plain).

We get

u2(p) = L(p), u1(p) = −L1(p), −L1(p) = L(−p), p /∈ J ;

the fact we obtain from

u2(p)− L(p) = −u1(p) + (−L1(p)) ≡ 0,

where the functionin the left-hand side has special points in the left part of
the complex plane (see Lemma 1), and the function in the right-hand side
has special points in the right part of the complex plane (see Lemma 1),
and both functions are equal to 0 in ∞ (it is obvious from Lemma 1).
By definition u2(p) − L(p) is regular in the right part of the plain (with
Re p = 0), and −u1(p) + (−L1(p)) is regular in the left part of the plain
(with Re p = 0). We obtain that both functions are regular in all points
of the complex plain, and both functions are bounded by a constant in
their domains (this is obvious from the definition), or both functions are
zero ([7]).

As a result we have Reu2(s) = u2(s), s ∈ (−∞,∞), where

u2(−s) = L1(−s) + u(−is) = −L(s) + u(−is), u(is) = u(−is), s ∈ [0,∞).
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The second part of the proof of Theorem 1. We will prove that
Reu2(is) = u2(is), s ∈ (−∞,∞), where u2(p) = L(p).

With help of Lemma 1 we will repeat the previous reasoning for new
pairs of functions (function u2(x) can be neither odd nor even)

2πL∗(p) =

∞∫
−∞

u2(x)/(p+ ix)dx, Re p ≥ 0,

2πL∗1(p) =

∞∫
−∞

u2(x)/(p+ ix)dx, Re p ≤ 0.

We get

L∗(is) + (−L∗1(is)) = u2(−s), s ∈ (−∞,∞), L∗(p) + (−L∗1(p)) = u2(ip),

ip 6= J, (in the equality we use Lemma 1 with u2(x) instead of function
u(x), Reu2(x) = u2(x), x ∈ (−∞,∞) ).

We use the new function

u0(x) = u2(|x|), x ∈ (−∞,∞).

With help of Lemma 1 we get

l(is) + l1(is) = u2(|s|) = u2(−s), s ∈ (−∞, 0),

(not for s ∈ (−∞,∞)), where

2πl(p) =

∞∫
−∞

u2(|x|)/(p+ ix)dx, Re p ≥ 0,

2πl1(p) = −
∞∫
−∞

u2(|x|)/(p+ ix)dx, Re p ≤ 0.

For all positive −s we obtain :

u2(−s) = L∗(is) + (−L∗1(is)) = l(is) + l1(is) = u2(|s|), −s ∈ (0,+∞),
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and (as in Lemma 1, but only for positive −s ∈ (0,+∞)) we get ([7])

u2(ip) = L∗(p) + (−L∗1(p)) = l(p) + l1(p),

in the area of joint regularity of the sum u2(ip), p /∈ J . (We use the
theorem about analytical continuation across a line ([7]), where functions
L∗(p), L∗1(p), l(p), l1(p) are continuous on the complex axis in their do-
mains).

But l1(p) = l(−p),Re p < 0 (it is obvious from the values on (−∞, 0)),
and we get

l(p) + l1(p) = l(p) + l(−p) = u2(ip) = L∗(p) + (−L∗1(p)), ip 6= J.

From the equality

l(p)− L∗(p) = −l(−p) + (−L∗1(p)), ip 6= J,

with help of continuity of functions l(p), l1(p) = l(−p) on the complex axis
and regularity of function −L∗(p), L∗1(p) for all ip 6= J , p ∈ (−i∞, i∞) we
obtain that

l(p) = L∗(p)− l(−p) + (−L∗1(p)), Re p ≤ 0

is the analytical continuation of function l(p) across all points of the com-
plex axis from the right part of the plain to the left part of the plain
(theorem about analytical continuation across the line [7]).

We have proved u2(−pi) = u2(pi) = l(p) + l(−p), ip /∈ J , and

Reu2(is) = u2(is) = L(is) = Re L(is), s ∈ (−∞,∞)

(for the function u(−p) = u(p) ([7])).
We can see

u(−y)/2 = Re L(iy) = L(iy) = lim
x→0+

L(x+ iy), y ∈ (−∞,∞),

(from Lemma 1), and (changing limits of integration ([10]))

u(−y)/2 = (1/2π)LF−u(t)(·)(iy) = L(iy), u(−y) = u(y), y ∈ (−∞,∞),

if lim
x→0+

(1/2π)LF−u(t)(·)(x + iy) = (1/2π)LF−u(t)(·)(iy), y ∈ (−∞,∞).

Theorem 1 is proved. �
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From Theorem 1 and formula

LF−u(x)(·)(it) = 2LC0u(x)(·)(t), t ∈ (−∞,∞),

we obtain Theorem 2.

Theorem 2. In the conditions of Theorem 1

πu(t) = 2LC0u(x)(·)(t), t ∈ (0,∞),

if u(p) = f(p4), p /∈ J , where function f(z) is regular for all z = p4, p /∈ J.

3. Appendix.
Proof of Lemma 1. From [10]

2π(L(x+ iy)− L1(−x+ iy)) =

=

∞∫
−∞

[u(t)/(x+ iy + it)]dt−
∞∫
−∞

[u(t)/(−x+ iy + it)]dt =

=

∞∫
−∞

[u(t1−y)2x/(x2+t21)]dt1 = 2

∞∫
−∞

[u(t2x−y)/(1+t22)]dt2 → 2πu(−y),

x→ 0, y ∈ (−∞,∞).
The first part of Lemma 1 is proved.
From [10]

2πL(x+ iy) =

∞∫
−∞

[u(t)/(x+ iy + it)]dt =

∞∫
−∞

[u(t1 − y)/(x+ it1)]dt1 =

=

∞∫
−∞

[u(t1 − y)x/(x2 + t21)]dt1 − i
∞∫
−∞

[u(t1 − y)t1/(x
2 + t21)]dt1 =

=

∞∫
−∞

[u(xt2 − y)/(1 + t22)]dt2−

−i
∞∫
−∞

(u(t1 − y)/t1)dt1 + i

∞∫
−∞

[(u(t1 − y)/t1)x2/(x2 + t21)]dt1 →
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→ πu(−y)− i
∞∫
−∞

(u(t1 − y)/t1)dt1, y ∈ (−∞,∞);

we use

2x

∞∫
−∞

(u(t1 − y)/t1)x

(x2 + t21)
dt1 = x

∞∫
−∞

((u(t1 − y)− u(−t1 − y))/t1)x

(x2 + t21)
dt1 =

= x

∞∫
−∞

[2U(t1 − y − 2θt1)x/(x2 + t21)]dt1 =

= x

∞∫
−∞

[2U(xt2−y−2θ1xt2)/(1+t22)]dt2 = xπ(U(−y)+o(1))→ 0, x→ 0,

2U(−y) <∞, y ∈ (−∞,∞), 0 ≤ θ ≤ 1, 0 ≤ θ1 ≤ 1,

where we use notation du(t)/dt = U(t), (if du(t)/dt = U(t) is defined for
all t ∈ (−∞,∞)), and the second part of Lemma 1 is proved.

If u(0) = 0, and du(s)/ds|s=0+, du(s)/ds|s=0−, s ∈ (−∞,∞),
values are defined, we use for y = 0

∞∫
−∞

[(u(t1)/t1)x2/(x2 + t21)]dt1 = x

0∫
−∞

[([u(t1)− u(0)]/t1)x/(x2 + t21)]dt1+

+x

∞∫
0

[([u(t1)− u(0)]/t1)x/(x2 + t21)]dt1 = ∆(x)→ 0, x→ 0;

Im 2πL(x+ i0) = −
∞∫
−∞

(u(t1 − 0)/t1)dt1 + ∆(x)→

→ −
∞∫
−∞

([u(t1)− u(0)]/t1)dt1, x→ 0.

For L1(−x+ iy)→ L1(iy), −x = Re p ≤ 0, the equalities are proved in
the similar way. �
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