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A NOTE ON THE EFFECT OF PROJECTIONS ON BOTH
MEASURES AND THE GENERALIZATION OF

q-DIMENSION CAPACITY

Abstract. In this paper, we are concerned both with the pro-
perties of the generalization of the Lq-spectrum relatively to two
Borel probability measures and with the generalized q-dimension
Riesz capacity. We are also interested in the study of their be-
haviors under orthogonal projections.
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1. Introduction. The notions of singularity exponents of spectra
and generalized dimensions are the major components of the multifractal
analysis. Recently, the projectional behavior of dimensions and multifrac-
tal spectra of measures have generated a large interest in the mathematical
literature [1]–[9]. The first of these results was obtained by Marstrand in
[7], where he proved that a Borel set E of the plane satisfies

dimH πV (E) = min
(

dimH E, 1
)
, for a.e. line V,

where dimH denotes the Hausdorff dimension (see [10]). This statement
was later generalized by Kaufman [6]. Further more, in [8], Mattila proved
that for a Borel measure µ of Rn

dimH πV (µ) = min
(

dimH µ,m
)
,

for a.e. vector subspace with dimension m.
Hunt and Kaloshin [11] introduced a new potential-theoretic definition

of the dimension spectrum Dq of a probability measure for q > 1 and

c©Petrozavodsk State University, 2016

http://creativecommons.org/licenses/by/4.0/


On the projections of measures 39

explained its relation with prior definitions. This definition was applied
to prove that if 1 < q ≤ 2 and µ is a Borel probability measure with
compact support in Rn, then under almost every linear transformation
from Rn to Rm, the q-dimension of the image of µ is min(m,Dq(µ)). In
particular, the q-dimension of µ is preserved providing m > Dq(µ), for
1 < q ≤ 2. This results was later generalized by Bahroun and Bhouri in
[12].

Readers familiar with potential theory will have encountered the defi-
nition of the s-capacity of a set E, i.e.

Cs(E) =
[

inf
{
Is(µ) : µ ∈M(E)

}]−1
whereM(E) is the set of Radon measures µ with compact support on E ⊂
⊂ Rn such that 0 < µ(Rn) <∞ and Is(µ) is the s-energy of µ (see section
2). This makes us able to recall the defintion of capacitary dimension of
a set E as follows

C(E) = sup
{
s : Cs(E) > 0

}
= inf

{
s : Cs(E) = 0

}
.

We point out, in contrast to the Hausdorff measures (denoted by Hs),
that any bounded set of Rn has finite s-capacity, for all s > 0. Especially,
for E ⊂ Rn with Hs(E) <∞, we have Cs(E) = 0 and C(E) ≤ dimH(E).
Matilla has compared, in [13, 14], the capacitary dimension of a Borel set
E and its orthogonal projection.

In this paper, we study the behavior of the generalized Lq-spectrum
relatively to two measures on Rn and compare it (the spectrum) to its
correspondant under an orthogonal projection. Moreover, we focus on
the generalized (s, q)-Riesz capacity of a subset of Rn. We define the
generalized q-dimension Riesz capacity and show that the q-dimension is
preserved under almost every orthogonal projection.

2. Preliminaries. Let m be an integer with 0 < m < n and Gn,m the
Grassmannian manifold of all m-dimensional linear subspaces of Rn. De-
note by γn,m the invariant Haar measure on Gn,m such that γn,m(Gn,m) =
= 1. For V ∈ Gn,m, we define the projection map πV : Rn −→ V as the
usual orthogonal projection onto V . Then, the set {πV , V ∈ Gn,m} is
compact in the space of all linear maps from Rn to Rm and the identi-
fication of V with πV induces a compact topology for Gn,m. Also, for a
Borel probability measure µ with compact support suppµ ⊂ Rn and for
V ∈ Gn,m, we denote by µV , the projection of µ onto V , i.e.

µV (A) = µ(π−1V (A)) ∀A ⊆ V.
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Since µ is compactly supported and suppµV = πV (suppµ) for all V ∈
∈ Gn,m, then, for any continuous function f : V −→ R, we have,∫

V

fdµV =

∫
f(πV (x))dµ(x),

whenever these integrals exist.
From now on, we consider a compactly supported Borel probability

measure µ on Rn with topological support Sµ and a Borel probability
measure ν on Sµ. First, we give a generalization of the Lq-spectrum, for
q > 0, relatively to two compactly supported Borel probability measures
µ and ν, by

Tµ,ν(q) = lim inf
r→0

1

log r
log

∫
Sµ

µ(B(x, r))qdν(x).

This quantity appears as a generalization of the q-spectral dimension
defined, for q > 0, by

Dµ(q) = lim
r→0

1

q log r
log

∫
µ(B(x, r))qdµ(x).

It is clear that, if µ = ν, then Tµ,µ(q) = qDµ(q).
The q-spectral dimension Dµ(q) allows us to measure in certain cases

the degree of singularity and in other ones the degree of regularity of
measures (see, for example, [11], [15]–[21]).

The generalised Lq-dimension Tµ,ν(q) is strictly related to the rela-
tive multifractal analysis, the multifractal variation measure, the relative
Renyi dimention and multifractal variation for projections of measures
developed by Olsen, Cole, Svetova and Selmi et al. [22]–[24], [2]. Other
works were carried in this sense in probability and symbolic spaces [25]–
[29]. We note that some researchers such as El Naschie [30]–[34], Ord
et al. [35] have achieved many valuable results on the same subject and
application.

For example if ν is a Gibbs measure for the measure µ, i.e. there
exists a measure ν on Sµ, a constant K > 1 and tq ∈ R such that for
every x ∈ Sµ and every 0 < r < 0

K−1µ(B(x, r))q(2r)tq ≤ ν(B(x, r)) ≤ Kµ(B(x, r))q(2r)tq

Tµ,ν(q) represents the Cµ function of Olsen’s multifractal formalism [17].
In this case Bahroun and Bhouri compared the multifractal spectrum of
a measure µ and its projections µV (see [12]).
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In [12], Bahroun and Bhouri investigated the behaviour of the genera-
lized Lq-spectrum relatively to µ and ν under orthogonal projection and
proved that, for q > 0 and γn,m-almost every V ∈ Gn,m, we have the
following

1) If 0 < q ≤ 1 and Tµ,ν(q) ≤ mq, then TµV ,νV (q) = Tµ,ν(q);

2) If q > 1 and Tµ,ν(q) ≤ m, then TµV ,νV (q) = Tµ,ν(q).

The (s, q)-energy of µ relatively of ν, denoted by Is,q(µ, ν), is given by

Is,q(µ, ν) =

∫
Sµ

(∫ dµ(y)

| x− y |
s
q

)q
dν(x).

This definition allows the application of some techniques developed by
Bahroun and Bhouri in [12].

Remark. It’s clear that, if q = 1 and µ = ν, then the (s, q)-energy of µ
relatively of ν reduces to the standard notion of the s-energy of µ, given
by

Is(µ) =

∫ ∫
| x− y |−s dµ(y)dµ(x).

Frostman [36] showed that the Hausdorff dimension of a Borel subset
E of Rn is the supremum of the positive reals s for which there exists a
Borel probability measure µ charging E and for which the s-energy of µ
is finite. This characterization is used by Kaufmann [6] and Mattila [8] to
prove their results on the preservation of the Hausdorff dimension.

Proposition 1 generalizes this notion to the q-dimension spectrum
Tµ,ν(q), for q > 0, and thus allows the methods of potential theory to
be applied to this part of the spectrum.

Proposition 1. [12] For q > 0, we have

1) Tµ,ν(q) = inf
{
s ≥ 0 : Is,q(µ, ν) =∞

}
,

2) Tµ,ν(q) = sup
{
s ≥ 0 : Is,q(µ, ν) <∞

}
.

Minkowski dimensions:
For a non-empty bounded subset E of Rn we define the upper Min-

kowski dimension as

∆(E) = inf
{
s : lim sup

r→0
Nr(E) rs = 0

}



42 Bilel Selmi

where 0 < r < ∞ and Nr(E) is the least number of balls with radius r
needed to cover E. In a similar manner, we define the lower Minkowski
dimension as

∆(E) = inf
{
s : lim inf

r→0
Nr(E) rs = 0

}
.

It is clear that dimH(E) ≤ ∆(E) ≤ ∆(E). Whenever these two limits
are equal, we call the common value the Minkowski dimension of E.

3. Projection results. In the following theorem, we investigate the
relationship between the generalization of the Lq-spectrum relatively to
two Borel probability measures µ and ν and study their behaviors under
orthogonal projections.

Theorem 1. For q > 0 and γn,m-a.e. V ∈ Gn,m, the following holds

1) If 0 < q ≤ 1, then

min
((

1 + ∆(Sµ)
)−1

Tµ,ν(q),mq
)
≤ TµV ,νV (q) ≤ Tµ,ν(q).

2) If q > 1, then

min
((

1 + ∆(Sµ)
)−1

Tµ,ν(q),m
)
≤ TµV ,νV (q) ≤ Tµ,ν(q).

Remark.

1) The techniques used in the proof of the first assertion are similar to
those of the proof of Theorem 3.1 in [11]. The proof of the second
one is almost identical to that of assertion 2 of Theorem 2.1 in [12].
For more details, the reader can see the appendix.

2) In the case where ∆(Sµ) = 0, we obtain the main theorem of
Bahroun and Bhouri in [12].

Generalization of the q-dimension capacity. Let µ be a locally finite
Borel measure Rn and ν is a Borel probability measure on Sµ. For E ⊂ Rn,
we set

M(E) =
{
µ : suppµ ⊂ E, suppµ is compact, µ(E) = 1

}
.

We define the (s, q)-Riesz capacity of E for s > 0 and q > 0, by

Cs,q(E) =
[

inf
ν∈M(E)

{
inf

µ∈M(E)

{
Is,q(µ, ν)

}}]−1
.
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Note that, in this definition, the potentials and the energies may be
infinite: we adopt the convention 1

∞ = 0. The generalized capacity Cs,q
is an outer measure on Rn, this means that a Borel set E has a positive
(s, q)-capacity if and only if there are two measures µ and ν inM(E) such
that Is,q(µ, ν) <∞.

The generalised capacity Cs,q(E) plays a role in the study of poten-
tial theory, for example one can compare the generalised capacity to the
variational q-capacity, the relative q-capacity and the Riesz capacity in
metric spaces (see [37]–[39]).

Now, we define the generalized q-dimension Riesz capacity by

Cq(E) = sup
{
s : Cs,q(E) > 0

}
= inf

{
s : Cs,q(E) = 0

}
. (1)

In the following theorem, we show that Cq(E) is preserved under al-
most every orthogonal projection.

Theorem 2. Let E ⊂ Rn. For q > 0 and γn,m-a.e. V ∈ Gn,m, one has
the following:

1) If 0 < q ≤ 1 and Cq(E) ≤ mq, then Cq(πV (E)) = Cq(E).

2) If q > 1 and Cq(E) ≤ m, then Cq(πV (E)) = Cq(E).

Remark. We can define an other type of (s, q)-Riesz capacity of E by
setting, for s > 0 and q > 0,

C̃s,q(E) =
[

inf
µ∈M(E)

{
Is,q(µ, µ)

}]−1
.

This allows us to define the generalized q-dimension Riesz capacity by

C̃q(E) = sup
{
s : C̃s,q(E) > 0

}
= inf

{
s : C̃s,q(E) = 0

}
.

1) Taking q = 1, C̃s,q reduces to the standard notion of the s-Riesz

capacity. Particularly, we obtain C̃1(E) = C(E).

2) The generalized q-dimension Riesz capacity is preserved under al-

most every orthogonal projection. This means that C̃q(E) satisfies
the assertions of Theorem 2.

To prove Theorem 2, we need some preliminary lemmas.

Lemma 1. Let 0 < q ≤ 1 and 0 < s < mq.
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1) There is a constant c, depending only on m,n and s, such that for
E ⊂ Rn, ∫

V

Cs,q(πV (E))−1dγn,m(V ) ≤ c Cs,q(E)−1.

2) If Cs,q(E) > 0, then Cs,q(πV (E)) > 0, for γn,m-a.e. V ∈ Gn,m.

Proof. We will prove Assertion 1). The second is its immediate conse-
quence.

Let µ and ν be two compactly supported Radon measures on Rn, such
that

Sµ, Sν ⊂ E and µ(E) = ν(E) = 1.

Then, µV and νV are two compactly supported Radon measures on
Rm, such that

SµV , SνV ⊂ πV (E) and µV (πV (E)) = νV (πV (E)) = 1.

Consequently, Cs,q(πV (E))−1 ≤ Is,q(µV , νV ).

By Fubini-Tonelli’s theorem and the fact that 0 < q ≤ 1, we have∫
V

Cs,q(πV (E))−1dγn,m(V ) ≤
∫
V

Is,q(µV , νV )dγn,m(V ) =

=

∫ ∫
V

(∫
dµ(y)

| πV (x− y) |
s
q

)q
dγn,m(V )dν(x) ≤

≤
∫ (∫

V

∫
dµ(y)

| πV (x− y) |
s
q
dγn,m(V )

)q
dν(x) =

=

∫ (∫ ∫
V

dγn,m(V )

| πV (x− y) |
s
q
µ(y)

)q
dν(x).

Since s < mq, ∫
V

dγn,m(V )

| πV (x− y) |
s
q
≤ c

| x− y |
s
q

(2)

where c is a constant depending only on m,n and s (see corollary 3.12 in
[13]).
Hence ∫

V

Cs,q(πV (E))−1dγn,m(V ) ≤ c Is,q(µ, ν).
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By taking the infimum over all such µ and ν, we are done. �

Lemma 2. Let q > 1 and 0 < s < m.

1) There is a constant c depending only on m,n and s, such that for
E ⊂ Rn, ∫

V

Cs,q(πV (E))−1dγn,m(V ) ≤ c Cs,q(E)−1.

2) If Cs,q(E) > 0, then Cs,q(πV (E)) > 0, for γn,m-a.e. V ∈ Gn,m.

Proof. By Fubini-Tonelli’s theorem, Minkowski’s inequality, inequality
(2) and the fact that q > 1, we get∫

V

Cs,q(πV (E))−1dγn,m(V ) ≤
∫
V

Is,q(µV , νV )dγn,m(V ) =

=

∫ ∫
V

(∫
dµ(y)

| πV (x− y) |
s
q

)q
dγn,m(V )dν(x) ≤

≤
∫ (∫ [∫

V

dγn,m(V )

| πV (x− y) |s

] 1
q

dµ(y)

)q
dν(x) ≤ c Is,q(µ, ν).

�

Lemma 3.

1) Let 0 < q ≤ 1 and 0 < s < mq. There is a constant c depending
only on m,n and s such that, for E ⊂ Rn, we have

c−1 Cs,q(E) ≤
∫
V

Cs,q(πV (E))dγn,m(V ) ≤ Cs,q(E).

2) Let q > 1 and 0 < s < m. There is a constant c1 depending only on
m,n and s such that for E ⊂ Rn, we have

c−11 Cs,q(E) ≤
∫
V

Cs,q(πV (E))dγn,m(V ) ≤ Cs,q(E).

Proof.
1) Since γn,m is an invariant Radon probability measure on Gn,m, using
Hölder’s inequality and Lemma 1, we obtain

1 =

(∫
V

dγn,m(V )

)2

=
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=

(∫
V

(
Cs,q(πV (E))

) 1
2
(
Cs,q(πV (E))

)− 1
2 dγn,m(V )

)2

≤

≤
∫
V

Cs,q(πV (E))dγn,m(V )

∫
V

(
Cs,q(πV (E))

)−1
dγn,m(V ) ≤

≤ c
(
Cs,q(E)

)−1 ∫
V

Cs,q(πV (E))dγn,m(V ).

Hence

c−1 Cs,q(E) ≤
∫
V

Cs,q(πV (E))dγn,m(V ).

Now, Fix V ∈ Gn,m. For all s > 0 and q > 0, we have

Is,q(µV , νV ) =

∫ (∫
dµ(u)

| u− v |
s
q

)q
dν(v) =

=

∫ (∫
dµ(y)

| πV (x− y) |
s
q

)q
dν(x) ≥

∫ (∫
dµ(y)

| x− y |
s
q

)q
dν(x) =

= Is,q(µ, ν) ≥ Cs,q(E)−1.

By taking the infimum over all the measures µV and νV , we get

Cs,q(πV (E)) ≤ Cs,q(E).

2) The proof is similar to that of assertion 1). �

Proof of Theorem 2.
1) Take 0 < q ≤ 1 and s < Cq(E) ≤ mq. From (1), we have Cs,q(E) > 0.
Lemma 1 yields Cs,q(πV (E)) > 0 for γn,m-a.e. V ∈ Gn,m. The definition
of Cq implies that s ≤ Cq(πV (E)) for γn,m-a.e. V .
The second inequality is a consequence of assertion 1) of Lemma 3.
Assertion 2) is a consequence of Lemma 2 and Assertion 2) of Lemma 3.�

4. Appendix.
Proof of Theorem 1. We first need the following lemma.

Lemma 4. Suppose that s < m and there exists a constant C, depen-
ding only on n, m and s, such that for all x, y ∈ Rn \ {0} and ρ > 0,∫

V

dγn,m(V )

| πV (x− y) |s
≤ C

min
{
| x− y |, 1

}s(1+ρ) .
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Proof of lemma 4. It is a consequence of corollary 3.12 in [13]. �
1) Fix 0 < q ≤ 1 and choose ρ > ∆(Sµ).

We will prove that for 0 ≤ s <
(
1 + ρ

)−1
Tµ,ν(q) ≤ mq,

Is(1+ρ),q(µ, ν) <∞ ⇒ Is,q(µV , νV ) <∞,

for γn,m-a.e. V ∈ Gn,m. The result follows from the fact that ρ can be
arbitrarily chosen close to ∆(Sµ).

The case where mq ≤
(
1 + ∆(Sµ)

)−1
Tµ,ν(q) is similar.

Computing the (s, q)-energy of µV relatively of νV , we have

Is,q(µV , νV ) =

∫
Rm

(∫
Rm

dµV (u)

| u− v |
s
q

)q
dνV (v) =

=

∫ (∫
dµ(y)

| πV (x− y) |
s
q

)q
dν(x).

We integrate the energy over V ∈ Gn,m. Thanks to the fact that 0 < q ≤ 1
and by the Fubini-Tonelli’s theorem, we have∫

V

Is,q(µV , νV )dγn,m(V ) =

=

∫
V

∫ (∫
dµ(y)

| πV (x− y) |
s
q

)q
dν(x)dγn,m(V ) =

=

∫ ∫
V

(∫
dµ(y)

| πV (x− y) |
s
q

)q
dγn,m(V )dν(x) ≤

≤
∫ (∫

V

∫
dµ(y)

| πV (x− y) |
s
q
dγn,m(V )

)q
dν(x) =

=

∫ (∫ [∫
V

dγn,m(V )

| πV (x− y) |
s
q

]
dµ(y)

)q
dν(x).

Now, applying Lemma 4 to the preceding inequality, we get∫
V

Is,q(µV , νV )dγn,m(V ) ≤
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≤
∫ (∫ [

C

min
{
| x− y |, 1

} s(1+ρ)
q

]
dµ(y)

)q
dν(x) < +∞.

Thus,
Is(1+ρ),q(µ, ν) <∞ ⇒ Is,q(µV , νV ) <∞,

for γn,m-a.e. V ∈ Gn,m.
2) Fix q > 1 and choose ρ > ∆(Sµ). We will show that, under the

assumption 0 ≤ s <
(
1 + ρ

)−1
Tµ,ν(q), we have

Is(1+ρ),q(µ, ν) <∞ ⇒ Is,q(µV , νV ) <∞,

for γn,m-a.e. V ∈ Gn,m.

By Fubini-Tonelli’s theorem and Minkowski’s inequality as well as the
fact that q > 1, we have∫

V

Is,q(µV , νV )dγn,m(V ) =

=

∫ ∫
V

(∫
dµ(y)

| πV (x− y) |
s
q

)q
dγn,m(V )dν(x) ≤

≤
∫ (∫ [∫

V

dγn,m(V )

| πV (x− y) |s

] 1
q

dµ(y)

)q
dν(x).

(3)

Applying lemma 4 to the inequality (3), we get∫
V

Is,q(µV , νV )dγn,m(V ) ≤

≤
∫ (∫ [

C

min
{
| x− y |, 1

} s(1+ρ)
q

]
dµ(y)

)q
dν(x) < +∞,

which shows that Is,q(µV , νV ) is finite for γn,m-a.e. V ∈ Gn,m. This
proves the result. �
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