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Abstract. In this article, we study a connection between quasi-
isometric mappings of n-dimensional domains and the p-moduli
of path families. In particular, we obtain explicit (and sharp)
estimates for the distortion of the p-moduli of path families under
K-quasi-isometric mappings.
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1. Introduction. The article is devoted to the study of problems
connected with the search for a complete descritpion of quasi-isometric
mappings of n-dimensional domains in terms of the p-moduli of families of
paths (curves). Note that this problem (for quasi-isometric mappings and
also for quasiconformal mappings, space mappings with bounded distor-
tion, mappings with finite distortion, homeomorphisms with finite mean
dilatations, mappings with (p, ¢)-distortion etc) was successfully solved by
many mathematicians (see, for example, [I]—[3]; see also [4]-[9]). Our
main goal is to obtain explicit (and sharp) estimates for the distortion
of the p-moduli of families of paths and curves under K-quasi-isometric
mappings. Here we use the following, metric definition of such mappings:

Definition 1. Let K € [1,00[. A homeomorphism f: U; — Uy of do-
mains U; and Uy in R™ is called K-quasi-isometric if

K '< 1iminfw < lim sup |f(y) — f(z)]

<K
y—z ly — x| y—w ly — x|

for any x € U;. A homeomorphism f: Uy — Us is called quasi-isometric
if it is K-quasi-isometric for some K € [1,o0].
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Our main result is

Theorem 1. Suppose that f: Uy — Usy is a K-quasi-isometric homeo-
morphism of bounded domains Uy and Uy in R™, wheren > 2 (1 < K <
o0). Then

K* P~ M,(T) < M, (f(T)) < KPT 2 M, (T (1)
for every p €]1, 00 and any family " of paths ~ such that Im~y C clU.

Remark 1. The quantity M,(I'), where 1 < p < oo, is called the p-
modulus of the path family I' and defined as

M, (T) inf /[p )|Pdz,
peR(T)

where R(I") is the set of all nonnegative Borel measurable functions p:

R™ — R such that [ pds > 1 for every rectifiable path v € T.
2l

It should be noted that our main result (Theorem [1)) is conceptually
most close to the results on quasi-isometries in [1].

For example, using Theorem 1 in [10] and our result, Corollary 3 to
Theorem 4.4’ in [I], Chapter 5, Section 4, can be supplemented by the
following assertion:

Theorem 2. Under the conditions of Theorem
K27 Co(Fo, Fi; Un) < Cp(f(Fo), f(F1); Uz) < KPP 7205 (Fy, Fys Un)

for every p €|1, 00| and any condenser (Fy, Fy;U).

Remark 2. C’;(FO, Fy,U) is the p-capacity of the condenser (Fy, F1;U)

(Fy and Fy are closed disjoint nonempty sets in clU, where U C R® =
= R" U {oc} is an open set), i.e.,

C(Fo, Fy:U) = inf/ Vulda,
U
where infimum is taken over all functions u € C*(U) N L,(U) that are
equal to unity (zero) in some neighborhood of Fy (Fy) (see [11]).
In what follows, for x € R™ and E C R", dist(z, F) = ing|m -1,
ye

all paths v: [o, B] — R™, where «, 5 € R, are assumed continuous and
non-constant, and [(y) means the length of a path ~.
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2. Proof of Theorem [1l The proof of Theorem [1] follows the lines
of the proof of the second claim of Theorem 6.5 in [12].

Let I" be a family of paths in the domain U; (i.e., of paths 7: [a,b] —
— R™ such that Im+ C clU;). Consider the subfamily T'* of T' consisting
of all locally rectifiable paths v € I' such that f is absolutely continuous
on every closed subpath of 7. Since f is a quasi-isometry, f € ACL,
for all p > 1 (see, for example, [13| [12], for the definition of the class
ACL,); therefore, M,(I'g) = 0 for the family I'y of all locally rectifiable
paths in U; having subpaths on which the mapping f is not absolutely
continuous ([13]). The fact that T'\ T'* C 'y and the properties of moduli
imply the equality M,(I' \ I'*) = 0. Consequently, M,(I'*) = M,(I).
Therefore, for proving, for example, the left-hand inequality in , which
we will do below, it suffices to show that M,(I'*) < KPT2M,(f(T)),
where f(I') = {foy:ye€Tl}.

Let E be a Borel subset in U; that contains all points x € U; at which f
is not differentiable and all those points x in U; at which f is differentiable
but the Jacobian J(z, f) = 0, moreover, mes F (= mes,, E) = 0. Here we
use the facts that a quasi-isometric mapping is quasiconformal and the set
of points of nondegenerate differentiability of a quasiconformal mapping
is a set of full measure with respect to its domain of definition.

Assume that p € R(f(I'*)) (f(I"™) = {fovy:ye€I'*}), ie, f§ p(z)ds >
> 1 for every locally rectifiable path 5 € f(I'*). Define a function p : R™ —
— R™ by setting p(x) = p(f(x))||f (x)||if z € UL\ E, p(z) = if x € E,
and p(z) =0 if x € R™\ U;. Arguing as in the proof of the second part of
Theorem 6.5 in [12] (or of Theorem 32.3 in [14], which is the n-dimensional
variant of the first theorem), we further infer that p € R(I"*), and hence

M,(T) = M,(I") < / Pda = / U@ @)z =

R™ U,
_ ~ T pr/(CC)Hp T T p+n—2 ~ )P T T =
- U/ U@ e . lde < 167 U/ P @)PLI (e, f)ld
_ grin-? / Ply)Pdy = KP+n-2 / PwPdy. @)
Us R™

In , we have used the fact that, since f is K-quasi-isometry, it is easy

to verify the inequality |||§l(gf}|)|r < KPt=2 for x € Uy \ E. Taking
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into account and recalling that the inverse mapping f~! is also K-quasi-
isometric, we finally get .

3. Sharpness of estimates (1). Suppose that II, =]0,1[", K €
€ [1, 00[, and

frx=(x1,...,Zp-1,Tpn) — (le,...,K:cn,Kfla:n), z e 1Il,,.

Then f: II,, — f(II,) is a K-quasi-isometric homeomorphism, and if
p €]1,00[ and T is the family of paths joining the sets |0, 1[""1x {0} and
10,1[""1x{1} in I, f(T') = {fo~y: v €T} then M,(T) =1, and

Kn—l

_ p+n—2
-t

Mp(f(r)) =

Thus, the rightmost estimate in is sharp. Similarly, the leftmost esti-
mate is also sharp.

Remark 3. It is worth noting that estimates were previously un-
known.
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