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ON WEIGHTED GENERALIZED FUNCTIONS
ASSOCIATED WITH QUADRATIC FORMS

Abstract. In this article we consider certain types of weighted
generalized functions associated with nondegenerate quadratic
forms. Such functions and their derivatives are used for con-
structing fundamental solutions of iterated ultra-hyperbolic equa-
tions with the Bessel operator and for constructing negative real
powers of ultra-hyperbolic operators with the Bessel operator.
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1. Introduction and main definitions. The weighted generalized
functions associated with nondegenerate indefinite quadratic forms con-
sidered in this article are necessary for construction of the ultra-hyperbolic
Riezs potential with the Bessel operator. Riezs potential with the Bessel
operator and other operators with the Bessel differential operator are very
interesting subjects with many applications (see, for example, [1]–[9]).

We deal with the part of the Euclidean space

R+
n={x=(x1, . . . , xn) ∈ Rn, x1>0, . . . , xn>0}.

Let Ω be finite or infinite open set in Rn, symmetric with respect to each
hyperplane xi=0, i = 1, ..., n, Ω+ = Ω ∩ R+

n and Ω+ = Ω ∩ R+
n where

R+
n={x=(x1, . . . , xn) ∈ Rn, x1≥0, . . . , xn≥0}.

We have Ω+ ⊆ R+
n and Ω+ ⊆ R+

n .
We consider the class C∞(Ω+) consisting of infinitely differentiable on

Ω+ functions. We denote the subset of functions from C∞(Ω+) such that
all derivatives of these functions with respect to xi for any i = 1, ..., n are

c©Petrozavodsk State University, 2016

http://creativecommons.org/licenses/by/4.0/


Weighted generalized functions 53

continuous up to xi=0 by C∞(Ω+). A function f ∈ C∞(Ω+) will be called

even with respect to xi, i = 1, ..., n if ∂2k+1f

∂x2k+1
i

∣∣∣∣
x=0

= 0 for all nonnegative

integer k (see [10], p. 21). Class C∞ev (Ω+) consists of functions from

C∞(Ω+), even with respect to each variable xi, i = 1, ..., n. Let
◦
C∞ev(Ω+)

be the space of all functions f ∈ C∞(Ω+) with a compact support. We will

call elements of
◦
C∞ev(Ω+) test functions and use the notation

◦
C∞ev(Ω+) =

= D+(Ω+).
We define K as an arbitrary compact in Rn symmetric with respect

to each hyperplane xi=0, i = 1, ..., n, K+ = K ∩ R+
n . A distribution u

on Ω+ is a linear form on D+(Ω+) such that for all compacts K+ ⊂ Ω+,
constants C and k exist and

|u(f)| ≤ C
∑
|α|≤k

sup |Dαf |, f ∈
◦
C
∞
ev(K+),

where Dα = Dα1
x1
...Dαn

xn , α = (α1, ..., αn), α1, ..., αn are integer nonnega-

tive numbers, Dxj = i ∂
∂xj

, i is imaginary unit, j = 1, ..., n. The set of all

distributions on the set Ω+ is denoted by D′+(Ω+) (see [10], p. 11 and
[11], p. 34).

Multiindex γ=(γ1, . . ., γn) consists of positive fixed reals γi > 0,
i=1, ..., n and |γ|=γ1+. . .+γn. Let Lγp(Ω+), 1 ≤ p < ∞ be the space
of all measurable in Ω+ functions even with respect to each variable xi,
i = 1, ..., n such that∫

Ω+

|f(x)|pxγdx <∞, xγ =

n∏
i=1

xγii .

For a real number p ≥ 1, the Lγp(Ω+)–norm of f is defined by

||f ||Lγp(Ω+) =

 ∫
Ω+

|f(x)|pxγdx


1/p

.

Weighted measure of Ω+ is denoted by mesγ(Ω) and is defined by
formula

mesγ(Ω+) =

∫
Ω+

xγdx.
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For every measurable function f(x) defined on R+
n we consider

µγ(f, t) = mesγ{x ∈ R+
n : |f(x)| > t} =

∫
{x: |f(x)|>t}+

xγdx

where {x : |f(x)| > t}+={x ∈ R+
n : |f(x)| > t}. We will call the function

µγ = µγ(f, t) a weighted distribution function |f(x)|.
A space Lγ∞(Ω+) is defined as a set of measurable on Ω+ and even

with respect to each variable functions f(x) such as

||f ||Lγ∞(Ω+) = ess supγ
x∈Ω+

|f(x)| = inf
a∈Ω+

{µγ(f, a) = 0} <∞.

For 1 ≤ p ≤ ∞ the Lγp,loc(Ω+) is the set of functions u(x) defined almost

everywhere in Ω+ such that uf ∈ Lγp(Ω+) for any f ∈
◦
C∞ev(Ω+). Each

function u(x) ∈ Lγ1,loc(Ω+) will be identified with the functional u ∈
∈ D′+(Ω+) acting according to the formula

(u, f)γ =

∫
R+
n

u(x) f(x)xγ dx, xγ =

n∏
i=1

xγii , f ∈
◦
C
∞
ev(R+

n ). (1)

Functionals u ∈ D′+(Ω+) acting by the formula (1) will be called regular

weighted functionals. All other functionals u ∈ D′+(Ω+) will be called
singular weighted functionals.

2.Weighted generalized functions concentrated on the part
of the cone. In this section we consider weighted generalized functions
δγ(P ) concentrated on the part of the cone and give formulas for their
derivatives.

Generalized function δγ is defined by equality (by analogy with [12] p.
247)

(δγ , ϕ)γ = ϕ(0), ϕ(x) ∈ K+.

For convenience we will write

(δγ , ϕ)γ =

∫
R+
n

δγ(x)ϕ(x)xγdx = ϕ(0).

Let p, q∈N, n=p+q and

P = |x′|2 − |x′′|2 = x2
1 + ...+ x2

p − x2
p+1 − ...− x2

p+q,
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where x=(x1, ..., xn)=(x′, x′′)∈R+
n , x

′=(x1, ..., xp), x
′′=(xp+1, ..., xp+q).

Definition 1. Let ϕ∈D+(R+
n ) vanishes at the origin. For such ϕ we

define generalized function δγ(P ) concentrated on the part of the cone
P=0 belonging to R+

n by the formula

(δγ(P ), ϕ)γ =

∫
R+
n

δγ(|x′|2 − |x′′|2)ϕ(x)xγdx. (2)

If the function ϕ∈D+(R+
n ) does not vanish at the origin then (δγ(P ), ϕ)γ

is defined by regularizing the integral.

Lemma 1. Let ϕ∈D+(R+
n ) vanishes at the origin, p>1 and q>1. For

δγ(P ) the representation

(δγ(P ), ϕ)γ =
1

2

∞∫
0

∫
S+
p

∫
S+
q

ϕ(s ω)sn+|γ|−3ωγdSpdSqds (3)

holds true. In (3) ω=(ω′, ω′′), ω′=(ω1, ..., ωp)∈R+
p , ω′′=(ωp+1, ..., ωp+q)∈

∈ R+
q , n=p+q, |ω′|=|ω′′|=1, ωγ=

n∏
i=1

ωγii , dSp and dSq are elements of

surface area on the part of the unit sphere

S+
p = {ω′ ∈ R+

p : |ω′|=1} S+
q ={ω′′ ∈ R+

q : |ω′′| = 1},

respectively. For the k-th derivative (k∈N) of δγ(P ) we have

(δ(k)
γ (P ), ϕ)γ =

∞∫
0

[(
1

2s

∂

∂s

)k
ψ(r, s)sq+|γ

′′|−2

]
s=r

rp+|γ
′|−1dr, (4)

where

ψ(r, s) =
1

2

∫
S+
p

∫
S+
q

ϕ(rω′, sω′′)ωγdSpdSq. (5)

Proof. Let us transform (2) to bipolar coordinates defined by

x1 = rω1, ..., xp = rωp, xp+1 = sωp+1, ..., xp+q = sωp+q, (6)

where

r =
√
x2

1 + ...+ x2
p, s =

√
x2
p+1 + ...+ x2

p+q,
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|ω′| =
√
ω2

1 + ...+ ω2
p = 1, |ω′′| =

√
ω2
p+1 + ...+ ω2

p+q = 1.

We obtain
(δγ(P ), ϕ(x))γ =

=

∞∫
0

∞∫
0

∫
S+
p

∫
S+
q

δγ(r2 − s2)ϕ(rω′, sω′′)rp+|γ
′|−1sq+|γ

′′|−1ωγdSp1dS
q
1drds.

Now let us choose the coordinates to be r2 = u, s2 = v. In these
coordinates we have

(δγ(P ), ϕ)γ =
1

4

∞∫
0

∞∫
0

∫
S+
p

∫
S+
q

δγ(u− v)ϕ(
√
uω′,
√
vω′′)u

p+|γ′|
2 −1×

×v
q+|γ′′|

2 −1ωγdSpdSqdudv =
1

4

∞∫
0

∫
S+
p

∫
S+
q

ϕ(
√
vω)v

n+|γ|
2 −2ωγdSpdSqdv.

Returning to variable s by the formula v=s2, we obtain (3).
Now we prove the formula (4). After the change of variables by (6)

and r2=u, s2=v in (δ
(k)
γ (P ), ϕ)γ we get

(δ(k)
γ (P ), ϕ)γ =

1

4

∞∫
0

∞∫
0

∫
S+
p

∫
S+
q

∂k

∂vk
[δγ(v − u)]ϕ(

√
uω′,
√
vω′′)×

×u
p+|γ′|

2 −1v
q+|γ′′|

2 −1ωγdSpdSqdudv =

∞∫
0

∞∫
0

∫
S+
p

∫
S+
q

δγ(v − u)×

× (−1)k

4

∂k

∂vk

[
ϕ(
√
uω′,
√
vω′′)v

q+|γ′′|
2 −1

]
u
p+|γ′|

2 −1ωγdSpdSqdudv =

=
(−1)k

4

∞∫
0

∫
S+
p

∫
S+
q

u
p+|γ′|

2 −1ωγ
[
∂k

∂vk
ϕ(
√
uω′,
√
vω′′)v

q+|γ′′|
2 −1

]
v=u

dSpdSqdu.

Returning to variables r, s and using notation (5) we obtain (4). This
completes the proof of Lemma 1. �
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Remark 1. Similarly, we can get the formula

(δ(k)
γ (P ), ϕ)γ=(−1)k

∞∫
0

[(
1

2r

∂

∂r

)k
ψ(r, s)rp+|γ

′|−2

]
r=s

sq+|γ
′′|−1ds. (7)

Remark 2. Noticing that when k=0 formulas (4) and (7) are equivalent
to the formula (3) we will examine intergals (4) and (7) at k∈N ∪ {0}.

Let ϕ∈D+(R+
n ). Assuming that the function ϕ vanishes at the origin

we have that integrals (4) and (7) converge for all k ∈ N∪{0}. If the func-
tion ϕ does not vanish at the origin then integrals (4) and (7) converge

only for k < p+q+|γ|−2
2 . In this case for k ≥ p+q+|γ|−2

2 we will consider

the regularization of (4) and (7) denoting them δ
(k)
γ,1(P ) and δ

(k)
γ,2(P ), re-

spectively. So using the expression (5) for p > 1, q > 1 and k∈N∪ {0} we
have

(δ
(k)
γ,1(P ), ϕ)γ =

+∞∫
0

[(
1

2s

∂

∂s

)k
ψ(r, s)sq+|γ

′′|−2

]∣∣∣∣
s=r

rp+|γ
′|−1dr, (8)

(δ
(k)
γ,2(P ), ϕ)γ = (−1)k

+∞∫
0

[(
1

2r

∂

∂r

)k
ψ(r, s)rp+|γ

′|−2

]∣∣∣∣
r=s

sq+|γ
′′|−1ds.

(9)

The integrals (8) and (9) converge and coincide for k < p+q+|γ|−2
2 and for

k ≥ p+q+|γ|−2
2 these integrals must be understood in the sense of their

regularizations.
2.Weighted generalized function Pλγ,+. Let n=p+q, p>1, q>1 and

P (x) = x2
1 + ...+x2

p−x2
p+1− ...−x2

p+q. Here and further let ϕ ∈ D+(R+
n ).

We define the weighted generalized function Pλγ,+ by

(Pλγ,+, ϕ)γ =

∫
{P (x)>0}+

Pλ(x)ϕ(x)xγdx, (10)

where {P (x) > 0}+ = {x ∈ R+
n : P (x) > 0}, λ ∈ C.

Weighted generalized function Pλγ,+ and its derivatives are used for
constructing fundamental solutions of iterated B-ultra-hyperbolic equa-
tions of the form LkBu = f(x), k ∈ N, x ∈ Rn, xi > 0, i = 1, ..., n,
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where LB is B-ultra-hyperbolic operator (see [9] and [13]–[15])

LB = Bx1+...+Bxp−Bxp+1−...−Bxn ,

Bxi=
∂2

∂x2
i
+ γi
xi

∂
∂xi

is the Bessel operator, γi>0, i=1, ..., n.

It should also be noted that negative real powers of an operator LB
called generalized B-hyperbolic potentials (see [16]) are constructed using
function Pλγ,+. Let us find singularities of (Pλγ,+, ϕ)γ . For this purpose
we transform (10) to bipolar coordinates (6) and using notation (5) for
integral (10) we obtain

(Pλγ,+, ϕ)γ =

∞∫
0

r∫
0

(r2 − s2)λψ(r, s)rp+|γ
′|−1sq+|γ

′′|−1drds. (11)

We now make change of variables u=r2, v=s2 in (11):

(Pλγ,+, ϕ)γ =
1

4

∞∫
0

u∫
0

(u− v)λψ1(u, v)u
p+|γ′|

2 −1s
q+|γ′′|

2 −1dudv,

where ψ1(u, v)=ψ(r, s) when u=r2, v=s2.
If we write v=ut then we obtain

(Pλγ,+, ϕ)γ =

∞∫
0

uλ+
p+q+|γ|

2 −1Φ(λ, u)du, (12)

where

Φ(λ, u) =
1

4

1∫
0

(1− t)λt
q+|γ′′|

2 −1ψ1(u, tu)dt. (13)

The formula (12) shows that Pλγ,+ has two sets of poles. The first con-
sists of poles of Φ(λ, u). Namely for t=1 function Φ(λ, u) has singularity
when

λ = −1,−2, ...,−k, ... (14)

in which Φ(λ, u) has simple poles with residues

res
λ=−k

Φ(λ, u) =
1

4

(−1)k−1

(k − 1)!

∂k−1

∂tk−1

[
t
q+|γ′′|−2

2 ψ1(u, tu)
]
t=1

. (15)
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Moreover integral (12) has poles at the points

λ = −n+ |γ|
2

, −n+ |γ|
2

− 1, ..., −n+ |γ|
2

− k, ..., (16)

where n = p+ q, γ = (γ′, γ′′). Wherein

res
λ=−n+|γ|

2 −k
(Pλγ,+, ϕ)γ =

1

k!

∂k

∂uk
Φ

(
−n+ |γ|

2
− k, u

)∣∣∣∣
u=0

. (17)

We have three cases. The first case is when a singular point λ belongs
to the first set (14), but not to the second (16). The second case is when
singular point λ belongs to the second (16), but λ 6=−k, k∈N. And the
third case is when λ belongs both to the first set (14) and the second
set (16). Let us now study each case separately in the following three
theorems.

Theorem 1. If λ=−k, k ∈ N and n + |γ|∈R\N or n + |γ|∈N and

n+ |γ|=2k − 1, k∈N and also if n+|γ| is even and k<n+|γ|
2 the weighted

generalized function Pλγ,+ has simple pole with residue

res
λ=−k

Pλγ,+ =
(−1)k−1

(k − 1)!
δ

(k−1)
γ,1 (P ). (18)

Proof. Let us write Φ(λ, u) in the neighborhood of λ = −k in the form

Φ(λ, u) =
Φ0(u)

λ+ k
+ Φ1(λ, u), Φ0(u) = res

λ=−k
Φ(λ, u),

where function Φ1(λ, u) is regular at λ=−k. We obtain

(Pλγ,+, ϕ)γ=
1

λ+k

∞∫
0

uλ+
n+|γ|

2 −1Φ0(u)du+

∞∫
0

uλ+
n+|γ|

2 −1Φ1(λ, u)du. (19)

The integrals in (19) are regular functions of λ at λ=−k. Therefore
(Pλγ,+, ϕ)γ has a simple pole at such a point and using (15) we have

res
λ=−k

(Pλγ,+, ϕ)=
(−1)k−1

4(k−1)!

∞∫
0

u
n+|γ|

2 −k−1 ∂
k−1

∂tk−1

[
t
q+|γ′′|

2 −1ψ1(u, tu)
]
t=1

du.

(20)
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If in (20) we get tu = v then we may write

res
λ=−k

(Pλγ,+, ϕ) =
(−1)k−1

4(k−1)!

∞∫
0

∂k−1

∂vk−1

[
v
q+|γ′′|

2 −1ψ1(u, v)
]
v=u

u
p+|γ′|

2 −1du,

(21)
where the integral is to be understood in the sense of its regularization
for k ≥ n

2 . We now make the change of variables u = r2 and v = s2 in (8)
and have

(δ
(k−1)
γ,1 (P ), ϕ)γ =

1

2

∞∫
0

[
∂k−1

∂vk−1
v
q+|γ′′|

2 −1ψ1(u, v)

]
v=u

u
p+|γ′|

2 −1du, (22)

where

ψ1(u, v) =
1

2

∫
S+
p

∫
S+
q

ϕ(
√
uω′,
√
vω′′)ωγdSpdSq.

Formulas (21) and (22) imply (17). For k ≥ n
2 integral in (22) is to be

understood in the sense of its regularization. In the case when n+|γ|∈R\N
or n+ |γ|∈N and n+ |γ|=2k−1, k∈N regularization of the integral in (22)
is defined by analytic continuation. This proves the desired result. �

Now we study the case when the singular point λ is in the second

set (16), but not in the first (14). If λ=−n+|γ|
2 −k, k=0, 1, 2, ..., and

n + |γ|∈R\N or n + |γ|∈N and n + |γ|=2k − 1, k∈N, then function

Φ(λ, u) is regular in the neighborhood of λ=−n+|γ|
2 −k. Therefore function

(Pλγ,+, ϕ)γ will have a simple pole with residue given by (17).

Before proceeding to the expression of the residue res
λ=−n+|γ|

2 −k
(Pλγ,+, ϕ)

through derivatives of function ϕ(x) at the origin we will obtain one useful
formula. Consider the B-ultra-hyperbolic differential operator

LB = Bγ′1 + ...+Bγ′p −Bγ′′p+1
−Bγ′′p+q , Bγi =

∂2

∂x2
i

+
γi
xi

∂

∂xi
.

Applying an operator LB to quadratic form

P (x)=x2
1+...+x2

p−x2
p+1−...−x2

p+q, n = p+ q, p > 1, q > 1

we obtain

LBP
λ+1(x)=4(λ+1)

(
λ+

n+|γ|
2

)
Pλ(x). (23)
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Theorem 2. Let n+ |γ| be not integer or n+ |γ|∈N and n+ |γ|=2k− 1,
k∈N. When p+ |γ′| is not integer or p+|γ′|∈N, p+|γ′|=2m−1, m∈N and

q+ |γ′′| is even weighted functional Pλγ,+ has simple poles at λ=−n+|γ|
2 −k,

k∈N∪{0} with residues

res
λ=−n+|γ|

2 −k
Pλγ,+ =

(−1)
q+|γ′′|

2

2n+2kk!

n∏
i=1

Γ
(
γi+1

2

)
Γ
(
n+|γ|

2 + k
)LkBδγ(x).

If p+ |γ′| is even then weighted functional Pλγ,+ is regular at λ=−n+|γ|
2 −k,

k∈N∪{0}.

Proof. We first consider λ=−n+|γ|
2 . Using formula (17) we can write

res
λ=−n+|γ|

2

(Pλγ,+, ϕ)γ=Φ

(
−n+|γ|

2
, 0

)
=
ψ1(0, 0)

4

1∫
0

(1−t)−
n+|γ|

2 t
q+|γ′′|

2 dt=

=
1

4
ψ1(0, 0)

Γ
(
q+|γ′′|

2

)
Γ
(
−n+|γ|

2 + 1
)

Γ
(
−p+|γ

′|
2 + 1

) . (24)

From the last formula we can see that if p+|γ′| is even then

res
λ=−n+|γ|

2

(Pλγ,+, ϕ)=0.

Now assume that p+|γ′| is not integer or p+|γ′|∈N and p+|γ′|=2k−1,
k∈N and q+|γ′′| is even. We have

ψ1(0, 0) = ψ(0, 0) = ϕ(0)

∫
S+
p

∫
S+
q

ωγdSpdSq = ϕ(0)|S+
1 (p)|γ′ |S+

1 (q)|γ′′ ,

(25)
where

|S+
1 (p)|γ′ =

p∏
i=1

Γ
(
γ′i+1

2

)
2p−1Γ

(
p+|γ′|

2

) , |S+
1 (q)|γ′′ =

q∏
i=1

Γ
(
γ′′i +1

2

)
2q−1Γ

(
q+|γ′′|

2

) (26)
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(see [1], p. 20, formula (1.2.5)). After some simple calculations, we obtain

res
λ=−n+|γ|

2

(Pλγ,+, ϕ)γ =
(−1)

q+|γ′′|
2

2n

n∏
i=1

Γ
(
γi+1

2

)
Γ
(
n+|γ|

2

) ϕ(0).

Also we have

res
λ=−n+|γ|

2

Pλγ,+=
(−1)

q+|γ′′|
2

2n

n∏
i=1

Γ
(
γi+1

2

)
Γ
(
n+|γ|

2

) δγ(x). (27)

Using Green’s theorem and formula (23) we derive∫
{P (x)>0}+

(
ϕ(x)[LBP

λ+1(x)]− Pλ+1(x)[LBϕ(x)]
)
xγdx = 0,

therefore

(Pλγ,+, ϕ)γ =
1

2(λ+ 1)(2λ+ n+ |γ|)
(Pλ+1
γ,+ , LBϕ)γ . (28)

Then k-fold iteration of (28) leads to

(Pλγ,+, ϕ)γ=
(Pλ+k
γ,+ , LkBϕ)γ

22k(λ+ 1)...(λ+ k)
(
λ+n+|γ|

2

)
...
(
λ+n+|γ|

2 +k−1
) . (29)

Consequently

res
λ=−n+|γ|

2 −k
(Pλγ,+, ϕ)γ = res

λ=−n+|γ|
2 −k

(Pλ+k
γ,+ , LkBϕ)γ×

× 1

22k(λ+1)...(λ+k)
(
λ+n+|γ|

2

)
...
(
λ+n+|γ|

2 +k−1
)∣∣∣∣
λ=−n+|γ|

2 −k
,

and

res
λ=−n+|γ|

2 −k
(Pλ+k
γ,+ , LkBϕ)γ = res

λ=−n+|γ|
2

(Pλγ,+, L
k
Bϕ)γ .
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Therefore if p+ |γ′| is even this residue vanishes. If p+ |γ′| is not integer
or p+ |γ′|∈N and p+ |γ′|=2k − 1, k∈N then (27) gives

res
λ=−n+|γ|

2 −k
(Pλγ,+, ϕ)γ =

(−1)
q+|γ′′|

2

2n+2kk!

n∏
i=1

Γ
(
γi+1

2

)
Γ
(
n+|γ|

2 + k
) (LkBδγ(x), ϕ)γ .

This completes the proof of Theorem 2. �

Theorem 3. If n+|γ| is even and p + |γ′| and q + |γ′′| are also even,

k∈N∪{0}, then function Pλγ,+ has a simple pole in λ=−n+|γ|
2 −k with

residue

res
λ=−n+|γ|

2 −k
Pλγ,+=

1

Γ
(
n+|γ|

2 + k
)[(−1)

n+|γ|
2 +k−1δ

(n+|γ|
2 +k−1)

γ,1 (P )+

+
(−1)

q+|γ′′|
2

22kk!

n∏
i=1

Γ

(
γi + 1

2

)
LkBδγ(x)

]
.

If p+|γ′| and q+|γ′′| are not integer or p+|γ′|, q+|γ′′|∈N and p+|γ′| =
= 2m− 1, q+|γ′′|=2k− 1, m, k∈N then function Pλγ,+ a pole of order two

at λ=−n+|γ|
2 −k. Coefficients c

(k)
−2 and c

(k)
−1 of expansion of function Pλγ,+

in Laurent series at λ = −n+|γ|
2 − k are expressed by formulas

c
(0)
−1 =

1

Γ
(
n+|γ|

2 + k
)[(−1)

n+|γ|
2 +k−1δ

(n+|γ|
2 +k−1)

γ,1 (P ) +
(−1)

n+|γ|
2 −1

22kk!
×

×
n∏
i=1

Γ

(
γi+1

2

)
sin

(
p+|γ′|

2
π

)(
ψ

(
p+|γ′|

2

)
−ψ

(
n+|γ|

2

))
LkBδγ(x)

]
,

c
(k)
−2 = (−1)

n+|γ|
2 +1

sin π(p+|γ′|)
2

n∏
i=1

Γ
(
γi+1

2

)
2n+2kk!πΓ

(
n+|γ|+k

2

) LkBδγ(x),

where ψ(x) = Γ′(x)
Γ(x) .
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Proof. Let n+|γ| be even and λ=−n+|γ|
2 −k, k∈N∪{0}. We express this

(Pλγ,+, ϕ)γ in the form

(Pλγ,+, ϕ)γ=
1

λ+k

∞∫
0

uλ+
n+|γ|

2 −1Φ0(u)du+

∞∫
0

uλ+
n+|γ|

2 −1Φ1(λ, u)du, (30)

where Φ0(u)= res
λ=−n+|γ|

2 −k
Φ(λ, u) and Φ1(λ, u) is a regular at λ=−n+|γ|

2 −k

function. By virtue of the proposal each integral in (30) may have at

λ=−n+|γ|
2 −k a simple pole therefore function (Pλγ,+, ϕ)γ may have a pole

of order two at λ=−n+|γ|
2 −k. In the neighborhood of such a point we

may expand Pλγ,+ in the Laurent series

Pλγ,+ =
c
(k)
−2(

λ+ n+|γ|
2 + k

)2 +
c
(k)
−1

λ+ n+|γ|
2 + k

+ ... .

Let us find c
(k)
−1 , c

(k)
−2 . We have

(c
(k)
−2 , ϕ)γ = res

λ=−n+|γ|
2 −k

∞∫
0

uλ+
n+|γ|

2 −1Φ0(u)du =
1

k!
Φ

(k)
0 (0).

If k = 0 then c
(0)
−2 = Φ0(0). According to (13)

Φ0(0) =
1

4
ψ1(0, 0) res

λ=−n+|γ|
2

1∫
0

(1− t)λt
q+|γ′′|−2

2 dt =

= ψ1(0, 0) res
λ=−n+|γ|

2

Γ
(
q+|γ′′|

2

)
Γ(λ+ 1)

4Γ
(
λ+ q+|γ′′|

2 + 1
) .

Considering that ψ1(0, 0)=ϕ(0)|S+
1 (p)|γ′ |S+

1 (q)|γ′′ where |S+
1 (p)|γ′ and

|S+
1 (q)|γ′′ were determined in (26) we obtain

(c
(0)
−2, ϕ)γ =

=
(−1)

n+|γ|
2 +1B

(
p+|γ′|

2 , q+|γ
′′|

2

)
4π

sin
π(p+ |γ′|)

2
|S+

1 (p)|γ′ |S+
1 (q)|γ′′ϕ(0).
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When p+ |γ′| is even (in this case q + |γ′′| is also even) we have c
(k)
−2 = 0

i.e. function (Pλγ,+, ϕ)γ has a simple pole at λ = −n+|γ|
2 . If p+ |γ′| is not

integer or p+ |γ′|∈N and p+ |γ′|=2k − 1, k∈N then

c
(0)
−2 = (−1)

n+|γ|
2 +1

sin π(p+|γ′|)
2

n∏
i=1

Γ
(
γi+1

2

)
2nπΓ

(
n+|γ|

2

) δγ(x).

As well as in Theorem 2 we obtain that if p+|γ′| and q+|γ′′| are even then

function Pλγ,+ has a simple pole at λ = −n+|γ|
2 −k. If p+|γ′| and q+|γ′′| are

not integer or p+|γ′|, q+|γ′′|∈N and p+|γ′|=2m−1, q+|γ′′|=2k−1, m, k∈N
then

c
(k)
−2 = (−1)

n+|γ|
2 +1

sin π(p+|γ′|)
2

n∏
i=1

Γ
(
γi+1

2

)
2n+2kk!πΓ

(
n+|γ|+k

2

) LkBδγ(x).

Let’s find c
(k)
−1 . We have

(c
(k)
−1 , ϕ) =

∞∫
0

u−k−1Φ0(u)du+

+ res
λ=−n+|γ|

2 −k

∞∫
0

uλ+
n+|γ|

2 −1Φ1

(
−n+ |γ|

2
− k, u

)
du.

Since Φ0(u) = res
λ=−k

Φ(λ, u) then using the formulas (15) and (22) we

obtain

∞∫
0

u−k−1Φ0(u)du =
(−1)

n+|γ|
2 +k−1

Γ
(
n+|γ|

2 + k − 1
) (δ(

n+|γ|
2 +k−1)

γ,1 (P ), ϕ

)
γ

.

Thus

res
λ=−n+|γ|

2 −k

∞∫
0

uλ+
n+|γ|

2 −1Φ1

(
−n+ |γ|

2
− k, u

)
du =

=
1

k!

∂kΦ1

(
−n+|γ|

2 − k, u
)

∂uk

∣∣∣∣
u=0

= (α(k)
γ , ϕ)γ
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and c
(k)
−1 =

(−1)
n+|γ|

2 +k−1

Γ
(
n+|γ|

2 + k − 1
)δ(

n+|γ|
2 +k−1)

γ,1 (P ) + α(k)
γ .

For k = 0 we obtain

(α(0)
γ , ϕ)γ = Φ1

(
−n+ |γ|

2
, 0

)
.

In order to find Φ1

(
−n+|γ|

2 , 0
)

we consider Φ(λ, 0). Using (24), (25) and

(26) we obtain

Φ(λ, 0) = ϕ(0)

Γ(λ+ 1)
n∏
i=1

Γ
(
γi+1

2

)
2nΓ

(
p+|γ′|

2

)
Γ
(
λ+ q+|γ′′|

2 + 1
) .

Taking into account the formula Γ(1− x)Γ(x) = π
sinπx we can write

Φ(λ, 0) =
sinπ

(
λ+ q+|γ′′|

2

)
sinπλ

Γ
(
−λ− q+|γ′′|

2

) n∏
i=1

Γ
(
γi+1

2

)
Γ
(
p+|γ′|

2

)
Γ(−λ)

ϕ(0).

If p+|γ′| and q+|γ′′| are even then

lim
λ→−n+|γ|

2

sinπ
(
λ+ q+|γ′′|

2

)
sinπλ

=(−1)
q+|γ′′|

2 ,

hence function Φ(λ, 0) is regular at λ=−n+|γ|
2 and

Φ1

(
−n+ |γ|

2
, 0

)
=Φ

(
−n+ |γ|

2

)
whence

(α(0)
γ , ϕ)γ = (−1)

q+|γ′′|
2

n∏
i=1

Γ
(
γi+1

2

)
Γ
(
n+|γ|

2

) ϕ(0).

If p+|γ′| and q+|γ′′| are not integer or p+|γ′|, q+|γ′′|∈N and p+|γ′|=2m−1,

q+|γ′′|=2k−1, m, k∈N then Φ(λ, 0) has a pole at λ = −n+|γ|
2 . In this case

(α(0)
γ , ϕ)γ = Φ1

(
−n+ |γ|

2
, 0

)
= (−1)

n+|γ|
2 −1

n∏
i=1

Γ

(
γi + 1

2

)
×
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×
sin
(
p+|γ′|

2 π
)(

ψ
(
p+|γ′|

2

)
− ψ

(
n+|γ|

2

))
Γ
(
n+|γ|

2

) ϕ(0),

where ψ(x) = Γ′(x)
Γ(x) . We obtain

c
(0)
−1 =

1

Γ
(
n+|γ|

2

) [(−1)
n+|γ|

2 −1δ
(n+|γ|

2 −1)
γ,1 (P ) + θδγ(x)

]
,

with a value

θ=(−1)
q+|γ′′|

2

n∏
i=1

Γ

(
γi + 1

2

)
if p+|γ′| and q+|γ′′| are even. If p+|γ′| and q+|γ′′| are not integer or
p+|γ′|, q+|γ′′|∈N and p+|γ′|=2m−1, q+|γ′′|=2k−1, m, k∈N then

θ = (−1)
n+|γ|

2 −1
n∏
i=1

Γ

(
γi+1

2

)
sin

(
p+|γ′|

2
π

)
×

×
(
ψ

(
p+ |γ′|

2

)
−ψ

(
n+ |γ|

2

))
.

Finally, in order to obtain c
(k)
−1 for arbitrary k, we again use the formula

(29). This proves the desired result. �
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