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ON SOLVABILITY OF ONE DIFFERENCE EQUATION

Abstract. We consider a system of difference equation similar
to those that appear as a description of cumulative sums. Using
Hamel bases, we construct pathological solutions to this system
for constant right-hand sides. Also we show that bounded so-
lutions do not exist for non-zero right-hand sides, while only
constants can be solutions in the homogeneous case.
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1. Introduction. Let z > 0 and b > z + 1 be some real numbers.
We consider functions js = j(s) on [0, b], s is the independent variable.
Let p ≥ 0, q ≥ 0, p + q = 1 be real numbers. We consider the following
system of difference equations:

js = js+z + rs, s < 1, (1)

js = pjs−1 + qjs+z + rs, 1 ≤ s ≤ b− z, (2)

js = js−1 + rs, b− z < s ≤ b. (3)

Here rs is some function of s. Similar systems describe dynamics of cu-
mulative sums [2, 4]. We studied a system of this kind in [3]. However,
(1)–(3) is different: the factor at j in the right-hand side of (1) and (3)
is 1, not p or q. This system describes special cases of random walk in a
band when the walking particle is repelled from the boundaries.

We are going to study existence and uniqueness of a solution to this
system. We show that there are multiple solutions provided that z is
irrational, but these solutions are quite pathological and hardly can be
used in any application.
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2. Operator form of the system. Let us define operator T by

Tjs = js+z, s < 1, (4)

Tjs = pjs−1 + qjs+z, 1 ≤ s ≤ b− z, (5)

Tjs = js−1, b− z < s ≤ b, (6)

and operator F as E − T with E as the identity. Now the equation can
be written as Fj = r or j − Tj = r.

Now let us note that any constant function is an eigenfunction of T
for the eigenvalue 1. Also any constant function belongs to the core of
F . Therefore the solution js to the problem, if one exists, is not unique:
js + const is also a solution. However, the problem Fjs = rs may lack
solutions for some right-hand sides rs.

Solutions to the problem with rs = const, if exist, possess some kind
of self-similarity:

Theorem 1. If js is a solution to Fjs = c, c = const, then Tjs is also a
solution.

Proof. Operators T and F = E−T commute; so, Fj = c implies TFj =
= Tc = c and, due to commuting, FTj = c. �

3. Bounded solutions. Let us show that for positive right-hand
sides there are no bounded solutions.

Theorem 2. System (1)–(3) has no bounded solutions provided that
rs ≥ r̄ > 0.

Proof. First assume that j∗ = j(s∗) is the minimal value of js on [0, b].
If 1 ≤ s∗ ≤ b− z, then, due to (2),

j∗ = js∗ = pjs∗−1 + qjs∗+z + rs∗ ≥ pj∗ + qj∗ + r∗ = j∗ + rs∗ > j∗,

which is a contradiction. The similar contradiction appears if we assume
that s∗ > b−z or s∗ < 1. This means that a solution, if it exists, does not
have the minimal value. Let us consider the case of a bounded solution
with no minimum.

As the solution is bounded, js > B for some B; let B be the infimum,
so that for any ε > 0 js < B + ε in at least one s.

Choose a positive ε < 1 and find a j∗ = js∗ < B + ε. Then in the
similar way get j∗ ≥ B + r̄ which contradicts j∗ < B + ε < B + r̄. �
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The similar argument shows that in the homogeneous case rs = 0
continuous solutions are only constants provided that z is irrational.

Theorem 3. Let z be irrational and rs = 0 for all s ∈ [0, b]. Then if js
is a continuous solution to (1)–(3), js = const.

Proof. Indeed, a continuous function on a segment must have maximal
and minimal values; if j∗ = js∗ is the minimum, then js∗+z = js∗−1 =
= j∗. Continue this argument to see that js = j∗ on a dense countable
subset of [0, b]. It is dense because it consists of points s∗ + Qz − P
with integers P,Q ≥ 0 and Dirichlet’s approximation theorem guarantees
approximation of any point of [0, b] with arbitrary precision. By continuity
js is constant on [0, b]. �

Obviously the problem can have solutions for specially chosen rs; in
fact for rs = Fjs for any chosen js. The proved result yields a corollary:

Corollary. For any function js its image rs = Fjs cannot be ”absolutely
positive”: for any ε > 0 rs−ε < 0 in some s. Also it cannot be ”absolutely
negative”.

Here is another proof for constant right-hand sides.

Theorem 4. Bounded solutions to Fj = 1 do not exist.

Proof. Note that T does not decrease the upper bound of its argument:
if js > M , Tjs > M . This is easily checked directly. Now, let js be a
bounded solution to Fj = 1: Tjs = js − 1. This decreases the upper
bound of js and thus provides a contradiction. �

Let us consider the case of a rational z. Choose any s ∈ [0, b] and
consider the set U of all points s + mz + n ∈ [0, b] with integer n and
m. The smallest possible distance between these points is bounded from
below by N−1 where N is the smallest natural in z = M/N (M is also
natural). So the set U is finite. Operators T and F transform U into U and
therefore are linear finite dimensional mappings. Matrix T is degenerate.
The results proved above can be made stronger:

Theorem 5. Let z be rational. System (1)–(3) has no bounded solutions
provided that rs ≥ 0 (or rs ≤ 0). For rs = 0 solutions are constant at any
U .

Proof. Proof of theorem 2 remains valid for the considered case. Minimal
value is obtained in some point of any U . The only difference is possibility
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of minimal value at some s∗ with rs∗ = 0. But then js∗−1 and js∗+z are
also minimal (provided that the arguments belong to [0, b]). Then rs = 0
also in these points. Continue to prove that rs = 0 in all s ∈ U for any
U , so that rs = 0 everywhere. In this case solution exists, but is constant
on any U ; though, it can be different for different sets U with no common
points. �

4. The Hamel solutions. Now let us construct a solution for the
special case rs = 1. Choose any Hamel basis on R1 that contains 1 and
z. This is a set H of real numbers, (1, z ∈ H) such that any x ∈ R1 is a
finite linear combination of numbers from H with rational coefficients. It
is known [1] that such basis exists if the lemma of choice is accepted. Let
us denote the coefficient at h ∈ H for expansion of x by x〈h〉.

Consider the function js = s〈1〉 − s〈z〉. Substitute it to (2):

s〈1〉 − s〈z〉 = s〈1〉 − (s〈z〉 + 1) + 1, s < 1,

s〈1〉 − s〈z〉 = p(s〈1〉 − 1− s〈z〉) + q(s〈1〉 − (s〈z〉 + 1)) + 1, 1 ≤ s ≤ b− z,
s〈1〉 − s〈z〉 = s〈1〉 − 1− s〈z〉 + 1, b− z < s ≤ b,

which is true. So the constructed function indeed is a soluton, together
with any js + const.

In the homogeneous case rs = 0 any js = s〈h〉 is a solution for any
h ∈ H except 1 and z.

Let us note a few points as a conclusion.

• Although we have constructed numerous solutions to the system
with special right-hand sides, they are pathological and thus hardly
useful, being discontinuous in every point, unbounded in any neigh-
bourhood of each point, and having only rational values in all points.
It is hardly possible to evaluate the solution, except for special
points.

• In rational points s the constructed solution js = s; however, js = s
for any s is not a solution.

• For practical purposes it is sufficient to evaluate the solution in
points Pz −Q for integer P,Q ≥ 0: jPz−Q = Q− P .

• For different Hamel bases we get the same solutions; however, there
are different solutions (up to adding a constant) for the same Hamel
basis: js + s〈h〉 is obviously a solution for any h ∈ H except 1 and
z, provided that js is a solution.
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• Choosing any rational number instead of 1 in H provides different
solutions; this can be used to provide desired properties of solutions.
The same is true for replacing z by az for a rational a.

• Existence of such solutions in the case of non-constant right-hand
sides is still an open question.
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